
Appears in Tools with AI '94

MLC

++

: A Machine Learning Library in C

++

Ron Kohavi George John Richard Long David Manley Karl P
eger

Computer Science Department

Stanford University

Stanford, CA 94305

mlc@CS.Stanford.EDU

Abstract

We present MLC

++

, a library of C

++

classes and

tools for supervised Machine Learning. WhileMLC

++

provides general learning algorithms that can be used

by end users, the main objective is to provide re-

searchers and experts with a wide variety of tools that

can accelerate algorithm development, increase soft-

ware reliability, provide comparison tools, and display

information visually. More than just a collection of

existing algorithms, MLC

++

is an attempt to extract

commonalities of algorithms and decompose them for

a uni�ed view that is simple, coherent, and extensi-

ble. In this paper we discuss the problems MLC

++

aims to solve, the design of MLC

++

, and the current

functionality.

1 Introduction

Newton said he saw farther because he stood on the

shoulders of giants. Computer programmers stand

on each other's toes | James Coggins [5]

In supervised machine learning [18, 2], one tries to

�nd a rule (a categorizer) that can be used to accu-

rately predict the class label of novel instances. During

the last decade, the machine learning community has

developed a plethora of algorithms for this task. Many

researchers have implemented similar algorithms in

isolation, inevitably duplicating much work. Many

algorithms currently exist, yet few are publicly avail-

able, and a researcher who wishes to compare a new

algorithm with existing algorithms, or run a few algo-

rithms on a real dataset, �nds the task daunting. Fur-

thermore, as algorithms become more complex, and as

hybrid algorithms combining several approaches are

A full version of this paper can be retrieved using URL

http://robotics.stanford.edu:/users/ronnyk/mlc.html

or using anonymous ftp from

ftp://starry.stanford.edu:pub/ronnyk/intromlc.ps .

suggested, the task of implementing such algorithms

from scratch becomes hopeless.

TheMLC

++

project at Stanford aims to help those

who need to use machine learning algorithms and re-

searchers who wish to experiment with new algorithms

or make modi�cations to existing algorithms. The

goal ofMLC

++

is to provide a library of C

++

classes

and functions implementing the most common algo-

rithms, and to enable e�ortless programming of vari-

ants of existing ones.

MLC

++

not only provides di�erent implementa-

tions of algorithms, but also integrates them in a C

++

library with one uni�ed coding methodology and de-

composition of components into C

++

classes. Not only

will coding a new algorithm be substantially easier,

but the array of tools provided by MLC

++

will give

the researcher a broad picture of the performance of

the algorithm when compared to other algorithms on

di�erent domains.

Our main goal is to provide capability to do the

following tasks easily and quickly:

1. Implement and test new ideas and variants of su-

pervised learning algorithms.

2. Generate performance statistics such as accuracy,

learning rates, and confusion matrices.

3. Compare algorithms on di�erent datasets (e.g.,

compare algorithms A;B;C on datasets X;Y; Z).

4. Experiment with hybrid algorithms such as per-

ceptron trees, multivariate trees and hierarchical

structures.

5. Graphically display the learned structure (e.g.,

display the decision tree).

6. Graphically display the learned concept and devi-

ations from the target concept (when it is known).



1.1 Problems with current methodology

The results included in this survey were produced un-

der a very wide variety of experimental conditions,

and therefore it is impossible to compare them in any

detailed manner. : : : the number of runs varies con-

siderably, as does the ratio of the sizes of the training

and test set. : : : it is virtually certain that some pa-

pers reporting results on a dataset have used slightly

di�erent versions of the dataset than others : : :

| Robert Holte [7]

Although many experimental results have appeared

in the literature, the �eld seems to be in a state of dis-

array. There are too many algorithms and variations

of algorithms, each claiming to do better on a few

datasets. We believe the �eld has reached a stage of

maturity that calls for more systematic experiments

and comparisons. Extensive experiments, and broad

comparisons are only possible when algorithms are

available in an integrated uniform environment. We

describe six problems with the current methodology.

Comparisons with other algorithms

Results are usually given in isolation. When a

learning algorithm is presented, comparison is

usually limited to a trivial straw algorithm, as

opposed to state-of-the-art algorithms.

Comparisons on di�erent datasets

Results are given on di�erent datasets, and can-

not be easily compared.

Programs are written in isolation

Authors of machine learning algorithms seldom

make their code available, and thus other re-

searchers working in the same area must start

from scratch in order to implement the previ-

ous algorithm and modify it. Algorithms and

input/output routines are coded over and over,

without using existing code.

Experiments are hard to replicate

Replication plays an important role in science,

since it ensures that results are robust and re-

liable before they are widely accepted.

Lesion studies and hybrid algorithms

Machine learning systems contain many compo-

nents, and most authors report results on one

modi�cation. It is not clear how such variations

interact; while some combinations of variations

might be synergistic, other combinationsmay nul-

lify the individual gains. Conversely, hybrid ap-

proaches, where more than one machine learn-

ing paradigm is used, seem to be a promising

avenue of research in machine learning. Imple-

menting such algorithms from scratch, and with

su�cient generality to support varying of many

components (factor experiments) is an arduous

task.

Display of information

In order to understand the problem better, and

perhaps bias a learning algorithm, it is helpful to

view the resulting structures (e.g., decision tree),

or the data. Even commercially available pro-

grams such as C4.5 [17] and CART [3] give only

a rudimentary display of an induced tree.

A library providing a common framework and basic

tools for implementing learning algorithms would alle-

viate the pain involved in programming from scratch.

Since researchers will need to write less code, they can

write higher quality code and do it in shorter time.

Such code currently exists in theMLC

++

library. We

hope that with the existence of this common frame-

work, researchers will publish more of their code.

2 Related work

Although MLC

++

is a unique project, there have

been previous e�orts to create large resources for the

machine learning community. Below, we mention pre-

vious projects addressing similar concerns.

An extensive collection of over 100 datasets has

been collected by Murphy and Aha at the University

of California at Irvine [14]. We do not intend to du-

plicate any of this e�ort; in fact, we use their data

formats as much as possible. There is also a large

repository of data used by statisticians in the StatLib

archive, created and maintained by Meyer [13].

Mooney has a collection of a few machine learning

algorithms implemented in Lisp at UCI [14], but they

are not an integrated environment, and are not very

e�cient.

StatLog [19] is an ESPRIT project studying the be-

havior of over twenty algorithms (mostly in the ML-

Toolbox), on over twenty datasets. StatLog is an in-

stance of a good experimental study, but does not pro-

vide the tools to aid researchers in performing similar

studies.

Wray Buntine has recently suggested a uni�ed ap-

proach to some machine learning paradigms using

graphical models. We believeMLC

++

could be a base

on which such an automatic compiler could be built.



3 Design of the MLC

++

library

In this section we describe the main decomposition

ofMLC

++

giving an overview of several of the impor-

tant classes inMLC

++

. The library is divided into �ve

main types of functions:

General Support Classes

These classes provide support for general opera-

tions, not speci�c to machine learning. These in-

clude classes for arrays, linked lists, strings, ran-

dom numbers, and graphs. We attempt to use as

much educational and public domain software as

possible for this part of MLC

++

. For example,

the graph manipulations are done using LEDA

(Library of E�cient Data Structures) written by

Stefan N�aher [15], and dot from AT&T [6].

Core classes

These are the basic tools that are shared by many

algorithms in supervised machine learning. They

further divide into three types of functionality:

Input/Output Classes for reading and writing

data �les.

Generation and Conversions Classes for gen-

erating arti�cial data, converting attribute

types between formats (e.g., local encoding,

binary encoding), and normalizing values.

Wrappers Algorithms that \wrap around" an

induction algorithm to generate accuracies

from test sets, estimate accuracy using cross-

validation or bootstrap, and generate learn-

ing curves.

Since the core classes are the most useful to re-

searchers implementing algorithms, most of the

work onMLC

++

is concentrated on these classes.

Categorizers

Categorizers are functions mapping instances to

categories, or classes. These are the basic struc-

tures that induction algorithms induce. MLC

++

provides the most common categorizers such as a

constant categorizer (which returns the same cat-

egory regardless of the instance), attribute cat-

egorizer (which uses only a single attribute to

predict the category), threshold categorizer, per-

ceptron categorizer, nearest-neighbor categorizer,

decision tree categorizer, and decision graph cate-

gorizer. Categorizers are built recursively; for ex-

ample, in a decision tree categorizer, the branch-

ing nodes are categorizers themselves (mapping

the set of instances into the set of children of

that node), and the induction algorithm can use

any categorizer, including the possibility of recur-

sive decision trees. ID3 [16] always uses attribute

categorizers for nominal attributes and threshold

categorizers for real attributes. To generate mul-

tivariate trees with perceptrons at nodes, the in-

duction algorithm can put perceptron categoriz-

ers at the nodes.

Induction algorithms

Induction algorithms induce categorizers. The

library currently provides a majority inducer, a

nearest-neighbor inducer [1], an ID3-like decision

tree inducer [16], and an inducer for oblivious

read-once decision graphs [9].

Visualization tools

From the outset, one of our top priorities was to

provide visualization tools to the user. Graphi-

cal displays of datasets and induced concepts can

provide key insights. Without such visualization

tools, the user must rely totally on simple perfor-

mance statistics (such as accuracy on a test set)

that provides little understanding.

Visualization of structures

An important tool in MLC

++

allows the

user to view the actual structures induced by

the learning algorithms. While most stud-

ies of supervised machine learning discuss

accuracy on an unseen test set as the per-

formance component, in many cases it is

equally or more important to induce com-

prehensible structures which give the users

new insight regarding their data. Decision

trees and decision graphs are excellent exam-

ples of interpretable structures, andMLC

++

interfaces the excellent graph-drawing pro-

grams dot and dotty provided by AT&T [6].

Visualization of discrete data

For viewing datasets and induced concepts,

we have implemented General Logic Dia-

grams [20], a method for diagrammatic visu-

alization of discrete data. After running an

induction algorithm, users may gain insight

about the induced concept by inspecting the

GLD.

Currently, MLC

++

consists of over 25,000 lines of

code (ignoring public domain code used), and over

7,000 lines of test code to verify correctness. The li-

brary has high coding standards, code is well docu-

mented, and each class has a speci�c tester that tests

it. Development utilizes the ObjectCenter and Test-

Center products which ensure that there are no illegal

memory accesses and no memory leaks. Pro�ling is

done regularly to improve e�ciency.



4 Summary

The most radical possible solution for constructing

software is not to construct it at all. : : : The key

issue, of course, is applicability. Can I use an avail-

able o�-the-shelf package to perform my task?

| Frederick Brooks [4]

MLC

++

is an attempt at providing such an o�-

the-shelf package to researchers and users of machine

learning algorithms. We have described several prob-

lems researchers in machine learning currently face,

and we believe that these problems can be solved with

the right tool. We described MLC

++

, our attempt at

building such a tool. Much work has already been

done onMLC

++

, and it has already aided some of us

in our research [8, 9, 10, 11, 12]. We trust that other

researchers will also enjoy productivity gains when us-

ingMLC

++

, and will contribute to this e�ort.

Acknowledgments The MLC

++

project is partly

funded by ONR grant N00014-94-1-0448 and NSF

grant IRI-9116399. George John is supported by an

NSF Graduate Research Fellowship. Nils Nilsson and

Yoav Shoham have provided crucial support for the

MLC

++

project. Wray Buntine, Pat Langley, Ofer

Matan, and Scott Roy have contributed important

ideas. Finally, we wish to thank everyone working on

MLC

++

, including James Dougherty, Brian Frasca,

Svetlozar Nestorov, and Yeo-Girl Yun.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-

based learning algorithms. Machine Learning,

6(1):37{66, 1991.

[2] Dana Angluin. Computational learning theory: Sur-

vey and selected bibliography. In Proceedings of the

24th Annual ACM Symposium on the Theory of Com-

puting, pages 351{369. ACM Press, 1992.

[3] Leo Breiman, Jerome H. Friedman, Richard A. Ol-

shen, and Charles J. Stone. Classi�cation and Regres-

sion Trees. Wadsworth International Group, 1984.

[4] Frederick P. Brooks. No silver bullets. In H. J. Ku-

gler, editor, Information Processing. Elsevier Science

Publishers, North Holland, 1986. Reprinted in Unix

Review November 1987.

[5] James Coggins. Designing C++ libraries. The C++

Journal, 1(1):25{32, 1990.

[6] E. R. Gansner, E. Koutso�os, S. C. North, and K. P.

Vo. A technique for drawing directed graphs. In

IEEE Transactions on Software Engineering, pages

214{230, 1993.

[7] Robert C. Holte. Very simple classi�cation rules per-

form well on most commonly used datasets. Machine

Learning, 11:63{90, 1993.

[8] George John, Ron Kohavi, and Karl P
eger. Irrel-

evant features and the subset selection problem. In

Machine Learning: Proceedings of the Eleventh Inter-

national Conference, pages 121{129. Morgan Kauf-

mann, July 1994. Available by anonymous ftp from:

starry.Stanford.EDU:pub/ronnyk/ml94.ps.

[9] Ron Kohavi. Bottom-up induction of oblivious, read-

once decision graphs : strengths and limitations.

In Twelfth National Conference on Arti�cial Intelli-

gence, pages 613{618, July 1994. Available by anony-

mous ftp from

Starry.Stanford.EDU:pub/ronnyk/aaai94.ps.

[10] Ron Kohavi. Feature subset selection as search with

probabilistic estimates. In AAAI Fall Symposium on

Relevance, pages 122{126, November 1994. Available

by anonymous ftp from: starry.Stanford.EDU:

pub/ronnyk/aaaiSymposium94.ps.

[11] Ron Kohavi. A third dimension to rough sets. In

Third InternationalWorkshop on Rough Sets and Soft

Computing, pages 244{251, November 1994. Available

by anonymous ftp from:

starry.Stanford.EDU:pub/ronnyk/roughOODG.ps.

[12] Ron Kohavi. Useful feature subsets and rough set

reducts. In Third International Workshop on Rough

Sets and Soft Computing, pages 310{317, November

1994. Available by anonymous ftp from:

starry.Stanford.EDU:pub/ronnyk/rough.ps.

[13] Mike Meyer. Statlib. Available at

lib.stat.cmu.edu.

[14] Patrick M. Murphy and David W. Aha. UCI reposi-

tory of machine learning databases. For information

contact ml-repository@ics.uci.edu, 1994.

[15] Stefan Naeher. LEDA: A Library of E�cient Data

Types and Algorithms. Max-Planck-Institut fuer

Informatik, IM Stadtwald, D-66123 Saarbruecken,

FRG, 3.0 edition, 1992. Available by anonymous ftp

in ftp.cs.uni-sb.de:LEDA.

[16] J. R. Quinlan. Induction of decision trees. Machine

Learning, 1:81{106, 1986. Reprinted in Shavlik and

Dietterich (eds.) Readings in Machine Learning.

[17] J. Ross Quinlan. C4.5: Programs for Machine Learn-

ing. Morgan Kaufmann, Los Altos, California, 1993.

[18] Je�rey C. Schlimmer and Pat Langley. Learning, Ma-

chine. In Stuart Shapiro and David Eckroth, editors,

The Encyclopedia of Arti�cial Intelligence, pages 785{

805. Wiley-Interscience, 2nd edition, 1992.

[19] C.C. Taylor, D. Michie, and D.J. Spiegalhalter. Ma-

chine Learning, Neural and Statistical Classi�cation.

Paramount Publishing International, 1994.

[20] Janusz Wnek and Ryszard S. Michalski. Hypothesis-

driven constructive induction in AQ17-HCI : A

method and experiments. Machine Learning,

14(2):139{168, 1994.


