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ABSTRACT
We address the problem of learning in repeated N-player
(as opposed to 2-player) general-sum games. We describe
an extension to existing criteria focusing explicitly on such
settings. While there have been several criteria proposed
recently for evaluating learning algorithms in multi-agent
systems, most of this work has focused on the two-player set-
ting. Relatively little work has addressed situations in which
there are a mixture of several agents using the algorithm
in consideration against opponents using other algorithms.
Roughly speaking, our proposed criteria require that the
agents employing the particular learning algorithm work to-
gether to achieve a joint best-response against a target class
of opponents, while guaranteeing they each achieve at least
their individual security-level payoff against any possible set
of opponents outside this target class. We then provide al-
gorithms that provably meet these criteria for two target
classes: stationary strategies and adaptive strategies with a
bounded memory. We also demonstrate that the algorithm
for stationary strategies outperforms existing algorithms in
tests spanning a wide variety of repeated games with more
than two players.

1. INTRODUCTION
Recently there have been several proposals for criteria

with which to evaluate learning algorithms in multi-agent
environments and corresponding algorithms achieving these
criteria [2, 7, 22, 21]. However, these approaches focus pri-
marily on settings with two agents and do not adequately
address the different situations arising from multiple oppo-
nents. While other research has focused on situations with
more than two agents, it has for the most part either concen-
trated on games with common payoffs or assumed no cooper-
ation is possible and focused on no-regret payoff guarantees
for each agent. In this paper we will try to address how
an agent should behave in general-sum games in which the
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opponents can be either cooperative or adversarial. Follow-
ing the approach of [22], we propose new criteria focusing
on payoff guarantees for the agent against various classes of
opponents:

Targeted Group Optimality: The payoffs achieved by
all the agents using this algorithm are at least within ε of
being Pareto-efficient over the set of possible outcomes given
the actual strategies of any agents that are members of the
target set.

Safety: Against any combination of opponents, the algo-
rithm always receives at least within ε of its security value
for the game.

In the rest of this paper we will first start with a brief
review of related work on learning in multi-agent systems,
focusing on the limitations of current approaches. Building
on this we detail our proposal for a set of desirable criteria
for agents in n-player repeated games and confront some of
the thorny issues that arise when playing against a mix of
different opponent types during a single game. Next, we
outline a novel algorithm achieving these criteria and show
encouraging empirical results against a number of existing
algorithms in a wide range of multi-agent environments. In
the final section, we’ll point out some of the successes and
limitations of our approach and pose some open questions
for future work in this domain.

Throughout this paper, we will focus our attention on the
class of repeated games with average reward. In this set-
ting the players repeatedly play a simultaneous move nor-
mal form game, represented as a tuple, G = (n, A, R1...n),
where n is the number of players, A = A1 × ...×An, where
Ai is the set of actions for player i, and Ri : A → < is the
reward function for agent i. We also use m to denote the
maximum number of actions for an agent in G, and |A| the
number of stage-game outcomes in G. After each round, the
agents accumulate their reward from the joint outcome and
get to observe the prior actions of the other agents. Each
agent is assumed to be trying to maximize its average re-
ward for games with finite repetitions or the limit average
for infinitely repeated games. For our purposes we assume
that the full game structure and payoffs are known to all
agents from the start of the game and the payoffs in the
game are bounded.

2. RELATED WORK
One of our main objectives in this paper is to develop a set

of criteria for learning algorithms in repeated games with an
arbitrary number of players. In reviewing existing work, we
start with work focusing explicitly on games with more than



two players. Following this we consider proposals of criteria
for learning algorithms and see how well they generalize to
games with more than two players.

Many researchers have focused on the problem of coordi-
nating multiple agents to achieve mutually beneficial out-
comes, but have for the most part restricted their attention
to team games [16, 15, 24, 5]. In a team game, all the
agents get identical payoffs for each action, so the challenge
is focused entirely on how the agents can independently co-
ordinate on an optimal equilibrium. Additional related work
has been carried out in the areas of multi-robot planning and
multi-agent pursuit games, but most of these approaches as-
sume explicit communication or sharing of information be-
tween the cooperative agents.

Bowling and Veloso[2] were among the first to propose spe-
cific requirements for effective learning in multi-agent sys-
tems with their two criteria of rationality and convergence:

Rationality: If the other players’ policies converge to
stationary policies then the learning algorithm will converge
to a stationary policy that is a best-response (in the stage
game) to the other players’ policies.

Convergence: The learner will necessarily converge to a
stationary policy.

While these criteria are suitably general to apply to games
with any number of players, the WoLF algorithm they pro-
posed is only guaranteed to achieve these criteria in two
player games. Conitzer and Sandholm[7] then proposed a
new algorithm that achieved the above criteria for arbitrary
repeated games, but only when all the opponents were of the
same type (either all stationary or all self-play). Their work
provides no guarantees for other cases such as when two
agents use their algorithm and a third agent is stationary.

Moreover, as we pointed out in [22], there are limitations
to these criteria. The first limitation is that the property
of convergence cannot be applied unconditionally, since one
cannot ensure that a learning procedure converges against
all possible opponents in finite time without sacrificing ratio-
nality. So implicit in that requirement is some restrictions on
the class of opponents. And indeed both [3] and [7] acknowl-
edge this and choose to concentrate on the case of self-play,
in which the opponents are identical to the agent in ques-
tion. There are no requirements for the learning algorithm
when there is a mixture of self-agents and the others.

The second limitation is that the requirement of conver-
gence to a stationary strategy is particularly hard to justify.
When combined with the requirement to play a best re-
sponse to any stationary opponent, this requires the agents
to converge to playing a Nash equilibrium of the stage game.
While at first glance this may seem desirable, consider the
game of Prisoner’s Dilemma. Any algorithm satisfying the
above criteria will be forced to Defect at each period in order
to arrive at the unique Nash equilibrium. In the repeated
game, however, two agents could instead use a strategy such
as Tit-for-Tat, to achieve a much higher reward for each
agent without providing the opponent with an incentive to
deviate. (Tit-for-Tat starts by cooperating and thereafter
repeats whatever action the opponent played last.)

Brafman and Tennenholtz addressed this problem directly
in [4] and made a counter-proposal for how to consider equi-
libria in repeated games. They require that the learning
algorithms form an Efficient Learning Equilibrium (ELE)
in which any agent deviating from its algorithm will suffer

a net loss of payoff within a polynomial number of stage
games. They also propose an ELE algorithm based on the
folk theorem that satisfies this requirement for 2-player re-
peated game in a perfect monitoring setting. However, once
generalized to games with more than two players, the ELE
algorithm requires a communication mechanism outside the
game or is only applicable for a restricted number of games.

Game theory also addressed the issue of reasonable cri-
teria for learning in multi-agent systems at numerous times
with the proposals of universal consistency, no-regret learn-
ing, and the Bayes envelope dating back to at least [11] (see
[9] for an overview of this history). There is a fundamen-
tal similarity in approach throughout, and we will take the
approach of Fudenberg and Levine in [10] as being represen-
tative. They first proposed two criteria:

Safety: The learning rule must guarantee at least the
minimax payoff of the game.

Consistency: The learning rule must guarantee that it
does at least as well as the best response (in the stage game)
to the empirical distribution of play when playing against an
opponent whose play is governed by independent draws from
any fixed distribution.

They then defined universal consistency as the require-
ment that a learning rule do at least as well as the best
response to the empirical distribution of play regardless of
the actual strategy the opponent is employing (this implies
both safety and consistency) and propose an algorithm that
achieves this requirement. Recently, these ideas have also
been adopted by researchers in the artificial intelligence com-
munity (see [12], [13] and [26] for examples in both game
theory and AI). In recent work [1], Bowling attempted to
combine these criteria by proposing that an agent should
both guarantee a no-regret payoff and achieve convergence
in self-play. He then put forth, GIGA-WoLF, a no-regret al-
gorithm that provably achieves convergence in self-play for
games with two players and two actions per player.

A limitation common to all these approaches is that the
game theoretic basis they’re derived from was initially fo-
cused on large-population games and therefore ignores the
effect of the agent’s play on the future play of the opponent.
This can pose problems in smaller games. Let us again con-
sider the game of Prisoner’s Dilemma with a Tit-for-Tat
opponent. The only universally consistent strategy would
be to defect at every time step, ruling out the higher payoff
achievable by cooperating. Clearly, a universally consistent
(or no-regret) policy is not the best response in this richer
strategy space.

In response to the exiting work, we proposed a new set of
criteria in [22]:

Targeted Optimality: Against any member of the tar-
get set of opponents, the algorithm achieves within ε of the
expected value of the best response to the actual opponent.

Auto-Compatibility: During self-play, the algorithm
achieves at least within ε of the payoff of a Nash equilibrium
that is not Pareto dominated by another Nash equilibrium.

Safety: Against any opponent, the algorithm always re-
ceives at least within ε of the security value for the game.

In addition these requirements were required to hold with
probability at least 1 − δ after an initial polynomial period
of time. Our first paper provided an algorithm that consid-
ered only stationary opponents, but a new algorithm meet-



ing these criteria against memory-bounded opponents was
presented in [21]. Unfortunately, neither of the algorithms
can easily be generalized to situations with more than two
agents. A critical component of the design of the two al-
gorithms is a teaching component based on the Bully and
Godfather algorithms proposed by Littman and Stone in
[17]. This component relies on having a single opponent in
order to calculate the best action or sequence of actions to
play given that the opponent will play a best response.

3. NEW CRITERIA
In our work we seek to pull together the advances made in

existing work and encourage the development of algorithms
that can both cooperate with one another and achieve strong
guarantees on payoff against a variety of opponents.

In the criteria of [22] we had three categories of opponents
we cared about: members of the target class, identical (self-
play) agents, and other (unconstrained) agents. When only
considering games for two agents, these three categories are
sufficient for all the scenarios. However, once we extend to
games with more than two agents, we need to consider mixes
of agent types. Since each agent can be any of the three
types, there are seven different possible sets of opponent
types. We divide those seven sets into two scenarios:

• Each of the opponents is either a self-agent or in the
target class.

• At least one opponent is of the Unconstrained type.

We also need to consider the issues of coordination be-
tween the agents when selecting actions. Although other
researchers may find different assumptions appropriate for
particular settings, we have chosen to focus on the most pes-
simistic/conservative assumptions in which the self-agents
have no communication mechanism outside the game. Thus
they must choose independently if they are selecting actions
according to a probability distribution.

For the first scenario, ideally the agents should achieve a
“joint best response” against the given target class. This is
clearly defined when there is only one self-agent. The agent
just needs to adopt the best response to the joint play of the
agents in the target class. However, it remains an interesting
issue when there are at least two self-agents. The self-agents
will need to distribute the payoffs between themselves since
selfishly trying to maximize one’s payoff will not help the
agent in many cases, such as the Prisoner’s Dilemma game.
Each of the self-agents should also be able and willing to co-
operate with other agents who are using the same or similar
algorithms as long as this will help to increase its current
payoff. Thus the self-agents should achieve a Pareto-optimal
(PO) outcome among themselves, i.e. there is no other joint
outcome that could provide a higher payoff for one self-agent
without decreasing the payoff of some other self-agent given
the strategies of the opponents in the target class.

The PO condition alone, however, is not sufficient. Each
agent has a minimum payoff that it can guarantee by itself
without the cooperation of any other agents. In the worst
case when all other agents are trying to minimize its pay-
off, this minimum value is Vsecurity, defined for agent i as
maxπi∈Πi minπ−i∈Π−i EVi(πi, π−i). In this formula, Πi is
the set of strategies for agent i, and Π−i is the set of joint
strategies for the other agents. Any strategy that achieve
this value on expectation is called a security strategy. Note

that if an agent has determined the strategies of the oppo-
nents in the target class, it can sometimes guarantee a higher
value than Vsecurity, which we will call Vg. Thus it is only
rational for an agent to cooperate in a PO joint outcome if
its payoff is at least Vg. Notice that the best response condi-
tion for one self-agent is a special case of this criterion, since
the PO condition will guarantee that the agent is using an
optimal strategy against the target class.

When there are opponents that are neither members of
the target class nor self-agents, we instead require that each
agent achieve at least Vg. Ideally, multiple self-agents could
each exceed this value in some settings by cooperating with
each other against the unconstrained agents.

Combining these two scenarios, we put forth the following
new criteria:

Let n be the number of players in the game and m the
maximum number of actions for a player. We require that
for any choice of ε > 0 and δ > 0 there exist a τ , polynomial
in 1

ε
, 1

δ
, n, and m, such that for any number of rounds t > τ

the algorithm achieves the following payoff guarantees with
probability at least 1− δ:

Targeted Group Optimality: When each of the agents
in the game is either a self-agent or in the target class, the
payoffs of all the self-agents are at least Vg − ε and within
ε of an PO outcome, given the actual strategies of agents in
the target class.

Safety: Against any set of opponents, the agent must
achieve at least Vg − ε.

Note that the Target Group Optimality condition com-
bines and generalizes the Targeted Optimality and Auto-
Compatibility conditions from [22].

4. CORRSTRATEGY(S): AN ALGORITHM
FOR STATIONARY OPPONENTS

Besides proposing the novel criteria, we also want to pro-
vide algorithms that provably achieve the criteria for differ-
ent target sets. We first consider here such an algorithm for
stationary opponents which we call CorrStrategy(S).

4.1 Algorithm Description
CorrStrategy(S) is composed of four modules:

• Learn Best Response: Using observations about
the opponents’ play estimate and play a best-response
strategy for the agent to the actual strategy of the
opponents.

• Coordinate: Select a single, common deterministic
joint strategy for all the self-play agents from among
a set of Pareto-optimal possibilities.

• Secure Value: Play a strategy that ensures that the
player receives at least the security value against any
possible set of opponents.

• Signal/Explore: Observe the opponents’ play and
use explicit signaling to distinguish self-play agents
from agents in the target class.

We show how these modules can be put together in Figure 1.
The four bolded rectangles represent the modules. Note that
in order to preserve clarity, we only show a detailed view
of the “Coordinate” module, the most complex one. The
agents following the framework will start with the “Signal”
module and make transition between the modules based on
the payoffs they receive and the observed behavior of the
other agents in the environment.
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Figure 1: Flow of control for CorrStrategy(S).

It is necessary for the agents to distinguish between self-
agents and members of the target class. Otherwise it would
be possible for the agents to adopt best-responses assuming
the other self-agents are stationary and play a Nash equi-
librium with possibly non-PO payoffs. In general, it is not
always trivial to distinguish between different types of oppo-
nents. One self-agent might appear stationary if the most
rational action it needs to take always happens to be the
same. This issue can be resolved easily if we allow the self-
agents to explicitly signal each other in the “Signal” module.

Since the target class is stationary, the self-agents will
signal each other by playing a pure strategy for τ1 rounds
and then switching to a different pure strategy for another τ1

rounds. By the end of this block, the self-agents will be able
to correctly partition all self-agents and stationary agents
into two different sets with high probability. Agents whose
distribution of actions during the last τ1 rounds is within ε
of the distribution from the full history are assumed to be
stationary.

Each self-agent can now essentially reduce the current
game to a smaller game by removing all stationary oppo-
nents and using the expected payoffs for each of the re-
maining outcomes instead. If there is only one remaining
player in the sub-game, it transitions to the “Learn Best
Response” module to find the best response to the station-
ary opponents. Using the sub-game, finding a BR strategy
against stationary opponents is straightforward, since the
agent can simply choose the action that gives the highest
expected payoff. However, the agent needs to keep monitor-
ing its payoff in order to protect itself against an adversarial
opponent that pretends to be stationary during the “Signal”
phase and changes strategy later on. At any time, if its pay-
off drops below Vg − ε, the agent will switch to the “Secure
Value” module.

If there are multiple non-stationary agents left in the sub-
game, the self-agents will make the transition to the “Co-
ordinate” module instead. In this module, they will try
synchronize with each other in order to achieve the Tar-
geted Group Optimality criterion. Each self-agent will first

solve a linear program with size polynomial in the number
of stage-game outcomes, |A|, to find a PO outcome in the
repeated game:

maximize
∑|A|

i=1

∑n
j=1 αi ∗ POj(Oi)

subject to ∀jVg(j)−∑|A|
i=1 αi ∗ POj(Oi) ≤ ε∑|A|

i=1 αi = 1

In the equations above, POj(Oi) is the payoff of agent j
in the stage game outcome Oi and Vg(j) is the guaranteed
value of agent j. We denote this linear program LP ∗.

The solution to LP ∗ is a distribution over joint outcomes
in the stage game that maximizes the sum of the payoffs for
the self-agents in the repeated game. In this distribution,
αi is the frequency with which the stage-game outcome Oi

should be played by the self-agents to achieve a PO repeated
game outcome. The solution always exists because if every
self-agent, j, plays its security strategy they are all guaran-
teed to receive at least Vg(j). Since the self-agents are not
allowed to communicate outside the game, they can’t mix
over joint outcomes so will instead have to approximate this
distribution by repeating a deterministic sequence S of joint
actions. S will specify which action each agent needs to
choose at each step. By using Hoeffding’s inequality, it can
be proved that self-agents can have an arbitrarily close ap-
proximation to the PO outcome in the repeated game with
S of length polynomial in m, n, 1

ε
, and 1

δ
.

As there are possibly many such sequences S, the self-
agents also need to coordinate with each other to converge
to the same one. Each self-agent will pick one such se-
quence at the beginning and then with probability γ on each
round will switch to a different sequence. Each agent only
switches once. Let C be the group of agents who have al-
ready switched. The self-agents will try to ensure that all
the agents in C are always using a joint sequence that max-
imizes the sum of payoffs. Whenever an agent attempts to
pick a different sequence, i.e. joining C, it will pick one that
preserves this property.

Since the agents in C are approximating some distribution
over joint outcomes, the switching agent just needs to find
this distribution and then find a matching deterministic se-
quence over joint outcomes that will approximate this distri-
bution with the agents in C. To achieve this, the switching
agent can re-solve LP ∗ with additional constraints to guar-
antee that in the new solution, the action distributions of
the agents in C match their current observed distributions.

∀j ∈ C, k = 1..|Aj | :
∑|A|

i=1 fj(i, k) ∗ αi = πj(k)

In the above equation, πj(k) is the observed action distribu-
tion of action k for player j, and fj(i, k) = 1 if agent j plays
action k in outcome Oi and fj(i, k) = 0 otherwise. If no
agents have switched sequences, the agent will simply pick
a different sequence that also approximates the solution for
current LP ∗.

At the end of the process, there are two possibilities that
occur with high probability: either all the self-agents are
playing the same deterministic sequence of joint actions or
there exist unconstrained agents. In the first case, the pay-
off profile for the self-agents is at most ε away from the
payoff profile in the PO outcome they are trying to approx-
imate. However, they still need to monitor their payoffs to
avoid the case in which there are unconstrained agents that
only pretend to cooperate with the self-agents. Once the
payoff to any agent drops more than ε below their target



payoff in LP ∗, the agents will switch to the “Secure Value”
module. This will also handle the second case where the
unconstrained agents prevented them from converging to a
common sequence. Note that in the case the unconstrained
agents fully cooperate with the self-agents in an PO out-
come, the self-agents will implicitly achieve the Safety re-
quirement, and therefore can safely treat the unconstrained
ones as self-agents.

A self-agent uses the “Secure Value” module to guarantee
its payoff ia at least the guaranteed value of Vg−ε in the pres-
ence of unconstrained agents. The agent can easily achieve
this by calculating and adopting the security strategy for the
sub-game obtained by removing all stationary opponents.
While using this module, the self-agent still needs to moni-
tor the opponents that are assumed to be stationary. Oth-
erwise, unconstrained agents could impersonate members of
the target set at the beginning of the game and then lower
the payoff of a self-agent by changing strategies, or more
subtly, by using a correlated joint mixed-strategy that still
makes them appear stationary. In both cases, any harmful
variations can be easily detected with high probability by
replacing each stationary agent’s actual play with random
draws from their observed distribution and detecting if the
payoffs to any of the self-agents change by more than ε. If
such an unconstrained agent is detected, a new Vg can be
calculated and a new security strategy played.

Theorem 1. CorrStrategy(S) satisfies the Targeted Group
Optimality and Safety criteria for the target class of sta-
tionary opponents after a number of rounds polynomial in
n, m, 1

ε
and 1

δ
.

Proof. Since we only consider games with bounded pay-
offs, we can assume, without loss of generality, that all the
payoffs are normalized to be between 0 and 1. The proof can
be constructed naturally from the following lemmas. The
proofs for the lemmas can be constructed using Hoeffding’s
inequality and are omitted due to space constraints:

Lemma 1. For any given δ1 > 0, 0.5 > ε1 > 0, there ex-
ists τ1 polynomial in 1

ε1
, log( 1

δ1
), log n and log m such that if

an agent uses a full action history of length at least 2τ1, and
a recent action history of length τ1, all self-agents will cor-
rectly partition stationary and self-agents into two different
sets and the observed action distribution for all stationary
opponents will be within ε1 of the true distribution with prob-
ability at least 1− δ1.

Lemma 2. For any given δ2 > 0, ε2 > 0, there exists a
deterministic sequence of joint actions, S, with length poly-
nomial in 1

ε2
, log( 1

δ2
), log n, and m that can approximate

within ε2 the distribution over PO outcomes of any solu-
tion to LP ∗. When there are only self-agents, the difference
between the payoffs achieved by the self-agents using S and
a PO outcome will be at most n ∗m ∗ ε2 with probability at
least 1− δ2.

Lemma 3. Within the “Coordinate” block, for any given

δ3 > 0, T > 0, and γ ≤ 1− (1− δ3)
1

n2T , if each cooperating
player attempts to change its distribution of actions on each
round with probability γ, there exists a τ2 polynomial in 1

δ3
, T

and n such that with probability at least 1 − δ3, after τ2

rounds all the self-agents will change their sequence exactly
once and no two self-agents will change within T rounds of
each other.

From Lemma 1, by the end of the “Signal” module (after
2τ1 rounds), the self-agents have correctly partitioned sta-
tionary players and coop players into two different sets with
probability at least 1− δ1.

Consider first the case in which there are no unconstrained
agents. Within the “Coordinate” module, once an agent
decides to pick a different sequence, it has to recalculate the
optimal solution to LP ∗. From Lemma 1, we know that the
observed distribution of each stationary opponent is within
ε1 of its true distribution. Since the payoffs are bounded
between 0 and 1 and there are at most m actions, the payoff
for the self-agent can be reduced by at most m ∗ ε1 for each
of the up to n stationary opponents. Thus if we choose ε1
to be ε

2mn
and ε2 in Lemma 2 to be ε

2mn
, once all the self-

agents converge to the same sequence, the payoff for each
agent can only be at most ε away from the optimal payoff.
From Lemma 3, if we set T ≥ L, we can choose a γ such
that no two agents will switch sequence within a period of
L. Thus, each self-agent will always correctly determine
the distribution of the agents that have already switched
sequences. All self-agents will switch sequence once within a
polynomial number of rounds and therefore converge to one
sequence. Combining all of these conditions we have that the
self-agents will converge to a sequence with payoffs within
ε3 of a PO outcome of the repeated game with probability
at least 1 − δ1 − δ2 − δ3. If we then set δ1, δ2, δ3 to be δ

3
we satisfy Target Group Optimality. With these values, τ1

and τ2 are clearly polynomial in m, n, 1
ε
, and 1

δ
. Moreover,

since the losses of the payoffs over the initial period of length
τ = 2 ∗ τ1 + τ2 are bounded by τ , by allowing another 2τ

ε
additional rounds to pass, the average payoffs of the agents
for the entire game will converge within ε of a PO outcome.

Let us now consider the case when there is at least one
unconstrained agent. Notice that in all the modules the
self-agents switch to the Security Value module whenever
their payoffs fall below Vg − ε. If an agent has correctly
divided the stationary and unconstrained agents it can now
be guaranteed a payoff at least Vg − ε with probability at
least 1−δ after a period polynomial in 1

ε
, 1

δ
, m, and n by the

Hoeffding inequality. If on the other hand an unconstrained
agent is simulating a stationary opponent, it will not be able
to drive the agent’s value below Vg − ε without revealing
itself by causing its play to vary from that of its assumed
stationary distribution. The agents can then update their
estimates of Vg and adopt a new security strategy where the
unconstrained agent is categorized correctly. Thus they will
always achieve the Safety criteria.

Therefore, there exists a τ polynomial in m, n, 1
ε
, and 1

δ
such that after an initial experimentation period of length τ ,
CorrStrategy(S) will satisfy the two criteria in section 3.

Theorem 2. The computational complexity of CorrStrat-
egy(S) for playing one round of the repeated game is polyno-
mial in |A|, the size of the game.

Proof. To find the worst case complexity for one iter-
ation, we can consider separately the complexity for each
module of the algorithm as presented in Figure 1:

• Within the “Signal” module, once all the stationary
opponents are recognized, the self-agent can find the
sub-game in O(|A|) time.

• Within the “Learn Best Response” module, finding the
best response in the sub-game is O(m).
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Figure 2: Percent of maximum value for 200K rounds averaged for each agent over all different pairs of
opponents for selected games in GAMUT.

• Within the “Secure Value” module, solving the linear
program for the security strategy can be done in time
polynomial in |A|.

• Within the “Coordinate” module, in the worst step the
agent has to switch to a different sequence. This pro-
cess involves solving a linear program with the number
of variables and constraints polynomial in the number
of outcomes. Thus the complexity for the worst step
within this module is also polynomial in |A|.

4.2 Experimental Results
Even though our algorithm has been proven to meet the

proposed criterion, we want to demonstrate empirically that
the algorithm performs well against a variety of opponents
including those outside the target class. We will use the
testing environment first described in [22] by testing against
a number of existing approaches from the multi-agent learn-
ing literature over a wide variety of repeated games from
GAMUT [19]. GAMUT is the result of a project to develop
a comprehensive collection of game theoretic matrix games
that have been described by researchers in either game the-
ory or artificial intelligence. It contains generators for creat-
ing random instances of 34 individual base game classes as
well as numerous additional variants and specialized param-
eter settings (more information and downloads are available
at gamut.stanford.edu). The existing algorithms we tested
against include Local Q-learning[25], a stochastic version of
IGA[23], WoLF-PHC[2], JointQ-Max[6], and smooth ficti-
tious play[10]. We also tested all the algorithms against
random stationary strategies (Random), the security value
strategy (MiniMax), and random strategies that condition
their actions on the past outcome (Mem1).

Focusing our attention on settings with more than two
players, our first test measured the average performance of
a pair of players using the same algorithm playing against
another pair of players using identical algorithms. In figure
2, we show the average payoffs of the five most successful

algorithms as well as the performance of the MiniMax al-
gorithm for a representative set of games in GAMUT. The
payoffs have been normalized by dividing each algorithm’s
payoff by the best payoff achieved by any strategy for that
game in order to make visual comparisons across games eas-
ier. We can see that CorrStrategy(S) performs well across
all the games, achieving the highest or close to the high-
est payoff in nearly every game and unlike other algorithms,
CorrStrategy(S) has no pitfalls in which its payoffs are sig-
nificantly worse than the highest payoffs achieved. This is
at least partly due to the fact that agents using CorrStrat-
egy(S) can cooperate with agents using other algorithms as
long as they each still achieve their security value.
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Figure 3: 2v2 By Opp: Value achieved against each
pair of opponents averaged over all games.

In Figure 3, we show the results for the same algorithms
averaged across games for each possible pair of opponents
(note that all payoffs for each game are in the range [−1, 1]).
We can see that CorrStrategy performs well against each
of the different classes of opponents, but truly excels when
playing against other CorrStrategy agents. Smooth ficti-
tious play fares similarly well against several of the strate-
gies, but is unable to cooperate in self-play resulting in a
payoff near that of the MiniMax algorithm. One of CorrStrat-



egy’s largest advantages lies in its ability to cooperate when
possible without sacrificing much performance against agents
outside its target set.

To further investigate the contribution of this advantage
to the strong results achieved by CorrStrategy(S), we ran
two alternate experimental settings. In one setting we had
each algorithm play by itself against a pair of algorithms
using identical algorithms. In the second setting we instead
let two versions of the algorithm being tested play against
a single instance of an opponent algorithm. In Table 4.2
we can see the average results for these settings compared
with the results in the four player setting shown earlier.
As we would predict, CorrStrategy(S)’s advantage over the
other algorithms increases in settings where it outnumbers
its opponents, but its results remain competitive even when
it is outnumbered in turn.

1 Agent vs 2 Opps 2 vs 1 2 vs 2
CorrStrategy 0.45 0.49 0.40

LocalQ 0.42 0.44 0.37
SmoothFP 0.43 0.36 0.35

WoLF-PHC 0.38 0.38 0.34
StochIGA 0.39 0.37 0.33
MiniMax 0.29 0.20 0.21

Table 1: Summary of average payoff by setting.

5. CORRSTRATEGY(A): AN ALGORITHM
FOR ADAPTIVE OPPONENTS

As encouraging as the theoretical and experimental re-
sults for CorrStrategy(S) may be, we still have yet to ad-
dress one of our critiques of existing research, which was the
tendency to only focus on stationary opponents. Although
we addressed this concern explicitly in [21], our algorithm
depended critically on the assumption that there was only a
single opponent. We are aware of very little additional work
to date that deals with adaptive opponents explicitly, al-
though de Farias and Megiddo [8] address it in the design of
their experts algorithm and the rational learning approach
of Kalai and Lehrer [14] can in principle handle adaptive al-
gorithms of arbitrary complexity as long as they are assigned
positive probability in the prior.

In the remainder of this section, we’ll outline a way to
extend our CorrStrategy algorithm to deal with opponents
whose play may be a function of the prior history of the
game. We do this by expanding the target set against which
we can guarantee a best-response. Note however that we
still need to limit the capabilities of the opponents in some
way. If we were to consider opponents whose future behavior
could depend arbitrarily on the entire history of play, we
would lose the ability to learn anything about them in a
single repeated game, since we would only ever see a given
history once and an opponent’s past strategy may bear no
relation to their future play.

We therefore adopt the model for bounded memory we
used in [21] and assume a limit on each opponent’s ability
to condition on the history. This model requires that the op-
ponents play a conditional strategy where their distribution
over actions can only depend on the most recent k periods
of past history, Fi : o−1× ...× o−k → ∆Ai, where o−t is the
outcome of the game t periods ago. Additionally, the oppo-
nents have a default past history they assume at the start

of the game. Note that even this simple model allows us
to capture many methods, such as Tit-for-Tat, that current
approaches are unable to properly handle.

Taking the set of conditional strategies with history k
as our new target set, we propose the extension CorrStrat-
egy(A). CorrStrategy(A) shares the same basic algorithmic
framework as CorrStrategy(S) with the following changes:

• For the “Signal/Explore” module, the self-agents play
a uniform mixed strategy for a period long enough to
gather sufficient observations to calculate each oppo-
nent’s distribution of play for each possible history of
length k. The self-agents then switch to a pure strat-
egy that is inconsistent with the prior observed dis-
tribution of their play. The opponents using the same
distribution for each history belong to the target class.

• For the “Learn Best Response” module, we calculate
a best response against conditional strategies. This
approach maintains counts of the opponent’s actions
after each history of length k, which it uses to calculate
the cycle of agent actions with the highest expected re-
ward out of all possible unique agent action sequences
(those that don’t contain a length k repeated sub-
sequence). Given sufficient observations, this lets us
guarantee that we achieve an ε-best response against
any members of our target opponent set.1

• Note that in order to use this new best-response func-
tion in CorrStrategy(A), we need to insure that the
algorithm observes each length k history a sufficient
number of times. This will be satisfied as long as the
initial exploration phase continues for a length of time
exponential in k. This exponential exploration period
is unavoidable since we need to consider the possibility
of opponents that only play a desirable action distribu-
tion for a single one of the exponentially many possible
histories.

• For the “Coordinate” block, the optimization problem
needs to take into account all possible sequences of
actions for the adaptive opponents in the target set.

Theorem 3. CorrStrategy(A) satisfies the Targeted Group
Optimality and Safety criteria for the target class of condi-
tional strategies with bounded memory k.

The proof of Theorem 3 follows the same framework as
the proof of Theorem 1 but we need to take into account
a much longer initial period for signaling and observing op-
ponent’s distributions and also a longer sequence S to ap-
proximate the PO outcome. The initial experimentation
period τ required will unfortunately now depend on mk and

( 1
λ
)(m

nk), where λ is the minimum probability the opponent
assigns to any action (λ = 1 for opponents that condition
only on the coop player’s actions). Note that our worst case
time complexity also grows similarly as we may now need
to solve an optimization problem with up to mk variables,
although both of these bounds (computational complexity
and amount of training) are based on extremely pessimistic
assumptions and are likely to prove tractable in practice for
larger games with small values of k.
1This implementation is suitable for conditional strategies
that only depend on the self-agents’ actions. For general
conditional strategies we need to consider the full space of
deterministic conditional strategies to find a best response.



6. CONCLUSIONS AND FUTURE WORK
Even though there have been several recent proposals for

different criteria to evaluate learning algorithms in multi-
agent systems, little attention has been given to two im-
portant scenarios: learning in games with more than two
players, and learning against adaptive opponents. We have
addressed both scenarios by proposing a new set of criteria
for learning in games with any number of players that takes
a target class as parameter, allowing the designer to choose
a class of opponents of interest. This set of criteria en-
courages learning algorithms to allow cooperation between
agents while still guaranteeing a basic security guarantee
for each agent. We then designed two algorithms that can
achieve the criteria against two target classes: stationary
strategies and adaptive strategies with bounded memories.
Moreover, our implementation of the algorithm for station-
ary strategies outperforms a wide range of opponents across
the games of a comprehensive test-bed of repeated games.

One interesting problem we will continue to investigate is
how to improve the guaranteed payoff of self-agents playing
against adversaries outside their target class. In many set-
tings the agents should be able to cooperate with each other
in order to reduce the adversarial effects of their opponents
and guarantee payoffs above their individual security val-
ues. In addition, we are continuing to extend our approach
to consider other models of adaptive opponents. A com-
mon approach used in the literature on bounded rationality
[18, 20] is to assume the players can be modelled by finite
automata with k states. It should prove relatively straight-
forward to extend our CorrStrategy(A) algorithm to handle
automata by replacing the best response function and opti-
mization functions once again.

We are also looking at several ways to expand the set of
environments these algorithms can be employed within. Of
particular concern is looking for ways to weaken the require-
ment of full prior knowledge about the payoffs of the game.
The major challenge seems to lie in creating the capability
to cooperate without knowing or being able to observe the
space of payoffs available to the other players. An additional
area for further consideration would be extending to handle
games in which the agents have only partial observability of
the previous actions of the other players.
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