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Abstract

We introduce Bayesian Coalitional Games1 (BCGs), a gen-
eralization of classical coalitional games to settings with un-
certainties. We define the semantics of BCG using the parti-
tion model, and generalize the notion of payoffs to contracts
among agents. To analyze these games, we extend the solu-
tion concept of the core under three natural interpretations—
ex ante, ex interim, and ex post—which coincide with the
classical definition of the core when there is no uncertainty.
In the special case where agents are risk-neutral, we show
that checking for core emptiness under all three interpreta-
tions can be simplified to linear feasibility problems similar
to that of their classical counterpart.

1 Introduction
In typical multiagent systems, individuals have limited capa-
bility and information. Agents often have to cooperate with
one another to perform the desired tasks. As agents are ulti-
mately interested in their own welfare, the question of payoff
division is central to the formation of successful cooperative
partnerships. Coalitional game theory (CGT) provides guid-
ance as to how to divide the payoffs to achieve stability and
fairness, and has been used in AI as means of achieving co-
ordination (Sandholm and Lesser 1997).

However, most work in CGT to date has made two cru-
cial assumptions. First, it assumes that the payoff to each
coalition is given by a fixed, deterministic value. Second, it
assumes that these values are common knowledge among
all agents. Both assumptions often fail to hold for real-
world problems. Consider the following example, adapted
from (Chalkiadakis, Markakis, and Boutilier 2007).

Suppose a carpenter, a painter, and a stone mason are in-
terested in forming a partnership for building houses. The
revenue they can make depends on the skills of the individu-
als, and the jobs that come along. While each of them knows
how skillful he is, he does not know how skillful the others
are. To them, therefore, the revenue to the partnership is an
uncertain payoff that depends on the true state of the world;
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1This term has appeared in (Chalkiadakis and Boutilier 2007)
as an abbreviation for Bayesian coalition formation problems. We
employ the same term as it is the most descriptive of our work—a
direct generalization of coalitional games to Bayesian settings.

further, they may have different beliefs about its value. To
divide the benefits, the three of them may want to arrange
with one another how to divide the revenue under different
scenarios. Our interest lies in analyzing the stability and
fairness of such “arrangements.”

In order to study these problems of cooperation under
uncertainty, we generalize coalitional games to a Bayesian
framework using the information partition model, which we
call Bayesian Coalitional Games (BCGs). In BCGs, agents
have a common prior over the set of possible coalitional
games, and some private information about the true state of
the world captured by their information partitions. To divide
the possibly uncertain payoffs, agents enter into contracts
with one another. As in CGT, we do not worry about how
agents come to agree on a contract; rather, we are interested
in properties of contracts. One such property that we study
is stability. Specifically, we generalize the solution concept
of the core and give conditions under which no group of
agents would prefer to form a separate coalition. We also
show that these conditions can be simplified to sets of linear
constraints when agents are risk neutral.

There has been some work in Economics (Suijs 1999;
Myerson 2005) and in AI (Chalkiadakis 2007) that addresses
uncertainty in coalitional games in different ways. We dis-
cuss how our work is related to and yet different from these
after presenting our model.

2 Coalitional Game Theory
CGT is the study of payoff division within groups of agents.
A game assigns to each group of agents, called a coalition,
a set of possible payoffs. Throughout this paper, we as-
sume that the payoff to a coalition can be freely redistributed
among its members. This is known as the transferable utility
assumption, and is commonly made in CGT.

Definition 1. A coalition game (with transferable utility)
(CG) is given by 〈N, v〉, where

• N is a set of agents (the grand coalition); and
• v : 2N 7→ R is a function that maps each group of agents

S ⊆ N to a real-valued payoff.

An outcome or payoff vector in a CG specifies how to
divide the payoff of the grand coalition among the agents.
A solution concept assigns to each CG a set of “reasonable”



outcomes. In this paper, we focus on stable outcomes as
captured by the solution concept of the core.

Intuitively, the core attempts to characterize when an out-
come is stable with respect to coalitional deviations. Stabil-
ity under the core means that no set of players can jointly
deviate to improve their payoffs.

Definition 2. An outcome x ∈ RN is in the core of CG
〈N, v〉 if for all S ⊆ N ,

∑

i∈S

xi ≥ v(S)

For a given game, the core game may be empty, i.e., there
may be no payoff vector that satisfies the stated condition.

3 Bayesian Coalitional Games
In this section we define Bayesian coalitional games and ex-
plain how they are analyzed. We also give a simple example
to illustrate the key concepts.

3.1 Semantics
We define Bayesian coalitional games (BCGs) using the
partition model, similar to how (non-cooperative) Bayesian
games are defined (Osborne and Rubinstein 1994). The two
predominant approaches to modeling these non-cooperative
games are based on possible worlds and on types. While
the latter is mathematically most elegant, we find the former
better suited here, since its semantics are more transparent.
This turns out particularly useful for disambiguating solu-
tion concepts in the coalitional case. We note that (Myerson
2005; Chalkiadakis and Boutilier 2007) both use type-based
formulations. We discuss this further in Section 4.

Definition 3. A Bayesian coalitional game is given by
〈N, Ω,P, (Ij), (<j)〉 where

• N = {1, 2, . . . , n} is a set of agents;
• Ω = {ω1, ω2, . . . , ωm} is a set of possible worlds, where

each world specifies a coalitional game defined over N ;
• P is a common prior over the worlds Ω;

and for each agent j,

• Ij is agents j’s partition of the worlds Ω;
• <j describes agent j’s preference over distributions of

payoffs.

The interpretation of BCGs is as follows. There are a set
of possible worlds Ω in which the coalitional game may take
place, drawn according to some probability distribution P,
commonly known among all agents. For each world, in ad-
dition to the common prior, each agent knows that the world
lies in a subset of worlds that are indistinguishable from his
point of view; these subsets are known as information sets,
and together they form a partition of the worlds, called an in-
formation partition. The information partitions of all agents
are also common knowledge. Each agent has some prefer-
ence over the distribution of payoffs as captured by the rela-
tion <. We are interested in the “agreements” that the agents
might make; we formalize this in Subsection 3.2.

As mentioned in Section 2, we make the transferable util-
ity assumption in this paper. In BCGs, this assumption ap-
plies to the payoffs in the individual worlds. In other words,
the payoffs in each world is transferable. This does not apply
to the game as a whole, as agents have individual preferences
over distributions of payoffs. This will be made clear when
we speak about coalitional deviation in Subsection 3.2.
Notation. We overload the notation ω to denote the coali-
tional game in world ω ∈ Ω, i.e., ω(S) denotes the value
of coalition S in world ω. We use I(ω) to denote the set of
worlds to which ω belongs under partition I. We use P(ω|I)
to denote the conditional probability of the true world being
ω when the set of possible worlds is I .

3.2 Contracts
In CGs, we specify a single number for each agent to be in-
terpreted as his payoff. In BCGs, however, since agents may
not know the exact value of a coalition, one cannot specify
a precise payoff to an agent in advance before uncertainty is
resolved. Instead, we assume that agents enter into agree-
ments about how to divide the values of the coalitions. We
call these contracts. They specify how payoffs should be
divided after the true world is made known to all agents.
Definition 4. A contract among agents of coalition S (S-
contract) is a mapping from the set of worlds to payoff vec-
tors, cS : Ω 7→ RS , such that cS

j (ω) denotes the payoff to
agent j ∈ S in world ω. A contract is feasible if for all
worlds ω,

∑
j∈S cS

j (ω) ≤ ω(S).

Since contracts assign distributions of payoffs to agents,
agents have preferences over contracts, induced by their
preferences over distribution of payoffs, (<j)j∈N .

In BCGs, we are interested in comparing different N -
contracts (grand contracts). A solution concept specifies
the conditions that grand contracts should satisfy, and cap-
tures desirable properties such as stability and fairness. Just
as we do not worry about where payoff vectors come from
in simple coalitional games, we do not worry about where
contracts come from in BCGs; we take them as exogenously
given. In this paper, we focus only on feasible contracts, and
study the question of whether stable grand contracts exist.

3.3 Stable Contracts—Core of BCGs
A natural question in BCGs is whether a grand contract is
stable with respect to coalitional deviation. In other words,
whether any group of agents is dissatisfied with it and prefers
to divide the payoff to their coalition instead. To speak about
this kind of deviation, we must first discuss what it means for
a coalition to prefer one division of payoff to another.
Definition 5. Let X = (Xj)j∈S and Y = (Yj)j∈S be two
distributions of payoffs for agents in coalition S. Let the
preferences of the agents be (<j)j∈S . We say that S weakly
prefers X to Y, X <S Y, if for all agents j, Xj <j Yj .
We say that S strictly prefers X to Y, X ÂS Y, if the
preferences are strict for all agents.

Note that an agent only cares about the distribution of pay-
offs he receives, governed by the contract that specifies how
payoffs to a coalition is to be divided. As a result, even if the



preferences of the agents can be described by utility func-
tions, utilities are not transferable as they depend directly on
how the contracts distribute the payoffs.

Given a contract, an agent’s perception of its desirability
depends on when it is evaluated. When it is evaluated be-
fore a world is drawn, we call the situation ex ante; when it
is evaluated after a world is drawn, and each agent is made
aware of the information set to which the world belongs in
his partition of the worlds, but before the world itself is made
known, we call it ex interim; when it is evaluated after the
true world is made known, we call it ex post. These notions
are borrowed from non-cooperative Bayesian games. To il-
lustrate the differences, let G = 〈N, Ω,P, (Ij), (<j)〉 be a
BCG and cS be some S-contract.

Ex ante, the distribution of payoffs to agent j equals cS
j .

Ex interim, the distribution of payoffs to agent j is con-
ditional on the information set to which the true world ω∗
belongs in his partition of the worlds, namely

cS
j (ω) with probability P(ω|Ij(ω∗)). (1)

We denote this by cS
j |Ij(ω∗).

Ex post, no uncertainty remains. If the true world is ω∗,
the payoff to agent j is simply cS

j |ω∗.
For coalition T ⊆ S, we write cS

T (resp. cS
T |Ij) to de-

note the set of distributions of payoffs to agents in T under
contract cS (resp. when j’s payoff is conditional on worlds
Ij).

We are now ready to define the notion of blocking, i.e.,
when a coalition is dissatisfied with a grand contract.

Definition 6 (Ex-Ante Blocking, Ex-Post Blocking). Given a
BCG 〈N, Ω,P, (Ij), (<j)〉 and a grand contract cN , a coali-
tion S ex ante blocks cN if there exists an S-contract cS

such that
cS

S ÂS cN
S . (2)

A coalition S ex post blocks cN if there exists world ω∗ ∈ Ω
and an S-contract cS such that

cS
S |ω∗ ÂS cN

S |ω∗ (3)

We defer the discussion of ex interim blocking to Subsec-
tion 3.4 as there are additional subtleties with its definition.

The core of BCGs is defined analogously to the core of
coalitional games using the more general notion of blocking.

Definition 7 (Core). A grand contract cN is in the (ex ante,
ex interim, ex post) core of a BCG if no coalition S ⊆ N (ex
ante, ex interim, ex post) blocks cN .

In the special case where there is no uncertainty, i.e.,
|Ω| = 1, all three definitions coincide with the classical
definition of the core in CG. As a consequence, as BCGs
generalize CGs, all three kinds of core may be empty.

3.4 Ex-Interim Blocking
Let us start by examining the following intuitive-looking but
myopic definition: a coalition S ex-interim blocks a contract
cN if for some world ω∗ and contract cS ,

cS
S |Ij(ω∗) ÂS cN

S |Ij(ω∗). (4)

The problem with this definition is that for some contracts
cN and cS , an agent may be able to learn more about the
true state of the world if all agents in S prefer cS to cN .
Consequently, he may refine his information set when eval-
uating this S-contract. Consider this example.

Example 1. Suppose there are two agents {1, 2} and two
worlds {ω1, ω2}. Let the information partitions be I1 =
{{ω1, ω2}}, and I2 = {{ω1}, {ω2}}. Consider some grand
contract cN . Suppose for some cS ,

cS
2 |I2(ω1) Â2 cN

2 |I2(ω1)

cN
2 |I2(ω2) <2 cS

2 |I2(ω2)

Suppose the true world is ω1. In principle, agent 1 should
not be able to tell whether the true world is ω1 or ω2 because
of his information partition. However, he can reason that
if both agents believe cS is better than cN , then the true
world must be ω1, since agent 2 would not have preferred
cS otherwise. Notice that this reasoning does not require
agent 1 to know agent 2’s realized information set; it simply
requires agent 1 to know agent 2’s information partition.

Therefore, when evaluating cS , agent 1 should only con-
dition his distribution of payoffs on worlds where cS is ben-
eficial to both players. In this instance, he should compare
cS
1 |ω1 with cN

1 |ω1. This is because if the true world is ω2,
cS will be rejected by agent 2 anyway, so it should not factor
into agent 1’s evaluation.

This example suggests that when an agent evaluate a con-
tract at the ex-interim stage, he should ignore worlds where
other agents, given their information partitions, will find
unattractive. To reason about this formally, we first specify
the choices of the agents at the ex-interim stage.

Definition 8. Given a contract cS , the response rj of an
agent j ∈ S is a mapping from Ω to {0, 1}, with the con-
straint that rj(ω) = rj(ω′) if ω and ω′ belong to the same
information set under partition Ij . A contract cS is agreed
in world ω if rj(Ij(ω)) = 1 for all agents j ∈ S.

We also need to define the finest common coarsening of
a set of partitions, also known as the common knowledge
among agents with those partitions (Fagin et al. 1995).

Definition 9. For a set of partitions (Ij)j∈S over worlds
Ω, a common coarsening is a partition I over Ω such that
for all I ∈ I, for all j and Ij ∈ Ij , either Ij ⊆ I , or
Ij ∩ I = ∅. A common coarsening is the finest one if any
further partitioning will fail to be a common coarsening. We
denote the finest common coarsening of (Ij)j∈S by I∧S .

We can now formalize “unattractiveness.”

Definition 10. Given BCG 〈N, Ω,P, (Ij), (<j)〉, contracts
cN and cS , and some subset of worlds Ω′ ⊆ Ω. For coalition
T ⊆ S, an information set I ∈ I∧T is T -dominated in Ω′ if
for all responses by agents in S, if contract cS will be agreed
in some subset of worlds I ′ ⊆ (I ∩ Ω′), then for all worlds
ω ∈ I ′,

cS |Ij(ω) ∩ I ′ 6ÂT cN |Ij(ω) ∩ I ′.

In other words, for coalition T , when the set of worlds is
restricted to Ω′, for some information set I in partition I∧T ,



over all responses by agents S ⊇ T , agents in T cannot all
strictly prefer contract cS . The set of worlds I can therefore
be eliminated from consideration, because the contract will
never be agreed there. The reason why I has to be in I∧T is
because all agents in T needs to know the others know which
set of worlds is under consideration, and that they know the
other know that they know, etc.; this is captured by common
knowledge of I .

After some worlds are eliminated, with respect to the re-
maining worlds, some previously undominated information
set may now be dominated, and the worlds in this set can be
eliminated. Formally,
Definition 11. Given BCG 〈N, Ω,P, (Ij), (<j)〉, contracts
cN and cS . A set of worlds Ω∗(cN , cS) survives iterated
elimination of dominated information sets if there exists a
sequence of worlds, (Ωt)K

t=0, such that
• Ω0 = Ω and ΩK = Ω∗(cN , cS).
• Ωt+1 = Ωt \ (I ∩ Ωt), where I ∈ I∧T is T -dominated in

Ωt for some coalition T ⊆ S.
• In ΩK , for all coalitions T ⊆ S and I ∈ I∧T , I is not

T -dominated in ΩK .
This process can be likened to that of iterated elimination

of dominated strategies in non-cooperative games. Note that
the set of worlds that survives iterated elimination is unique.
Lemma 1. For BCG 〈N, Ω,P, (Ij), (<j)〉 and any con-
tracts cN , cS , Ω∗(cN , cS) is unique.

The proof is omitted for brevity.
We can now define ex-interim blocking.

Definition 12 (Ex-interim blocking). Given a BCG
〈N, Ω,P, (Ij), (<j)〉 and grand contract cN , a coalition S
ex-interim blocks cN if there exists an S-contract cS such
that for some ω ∈ Ω∗(cN , cS),

cS
S |Ij(ω) ∩ Ω∗(cN , cS) ÂS cN

S |Ij(ω) ∩ Ω∗(cN , cS).

3.5 Illustration of Main Concepts
We now consider a simple example of BCG. Let N =
{1, 2}, and consider five possible worlds with the following
probability (prior) and values:

ω = ω1 ω2 ω3 ω4 ω5

P(ω) 0.1 0.2 0.2 0.3 0.2
ω({1}) 5 5 2 2 3
ω({2}) 2 6 1 3 3
ω({1, 2}) 6 12 4 6 7

Let the information partitions be

I1 = {{ω1, ω2}, {ω3, ω4}, {ω5}};
I2 = {{ω1}, {ω2, ω3}, {ω4}, {ω5}}.

Finally, let <1 be induced by the utility function u1(X) =
E[X], i.e., agent 1 is risk-neutral and only cares about his
expected payoff, and <2 be induced by the utility function
u2(X) = E[X]− 0.2Var[X], modeling risk averseness.

To analyze this game, consider the following grand con-
tract. (Payoffs appeared in order of the worlds.)

cN = [(3, 3), (9, 3), (1, 3), (3, 3), (4, 3)]

For individual agents, contracts play no role—they simply
receive their own payoff in each world. Hence, c1

1 and c2
2 are

simply distributed according to rows 1 and 2 in the table.
To determine if cN is in the ex-ante core, we compute

u1(cN
1 ) = E[cN

1 ] = 4.0

u1(c1
1)) = E[c1

1] = 3.1

u2(cN
2 ) = E[cN

2 ]− 0.2Var[cN
2 ] = 3.0− 0.0 = 3.0

u2(c2
2) = E[c2

2]− 0.2Var[c2
2] = 3.1− 0.5 = 2.6

Hence, u1(cN
1 ) > u1(c1

1)) and u2(cN
2 ) > u2(c2

2). Note
that although c2

2 has higher expectation, agent 2 prefers cN
2

due to risk averseness. For the grand coalition, no contract
can increase utilities for one agent without hurting the other
since cN minimizes the variance for agent 2. Thus, cN is in
the ex ante core of the game.

To decide if cN is in the ex interim core, we examine the
distribution of payoffs conditional on the agents’ respective
information sets. For agent 1,

Ω′ = {ω1, ω2} {ω3, ω4} {ω5}
u1(c1

1|Ω′) 5.0 2.0 3.0
u1(cN

1 |Ω′) 7.0 2.2 4.0

And for agent 2,

Ω′ = {ω1} {ω2, ω3} {ω4} {ω5}
u2(c2

2|Ω′) 2.0 2.3 3.0 3.0
u2(cN

2 |Ω′) 3.0 3.0 3.0 3.0

Hence, both agents do worse by themselves. We also need
to check to see if the grand coalition can do better with some
other contracts. Consider the following alternative

c′N = [(6, 0), (7.5, 4.5), (1.5, 2.5), (2.8, 3.2), (4, 3)]

Suppose the true world is ω4. If we naı̈vely apply the myopic
ex-interim criterion of Equation (4), we find that

u1(c′N1 |{ω3, ω4}) = 2.3, u2(c′N2 |{ω4}) = 3.2,

and it would appear that both agents are better off. How-
ever, if we apply the process of iterated elimination, ω1 is
first eliminated since agent 1 knows agent 2 would prefer
cN . After that, ω2 is eliminated since, without ω1, agent 1
is worse in information set {ω2}. Continuing this process,
all worlds are eventually eliminated, except ω5. However,
no agent is strictly better off in ω5 hence c′N does not ex-
interim block cN . Note that iterated elimination is neces-
sary, as ω3 is not eliminable initially in agent 1’s view be-
cause agent 2 is also better off in information set {ω3, ω4}
with utility of 3.3. The contract cN is in fact in the ex-
interim core of the game, since cN minimizes the variance
for agent 2 in each of her information sets.

On the other hand, it is also easy to verify that cN is not
in the ex post core of the game.

4 Related Work
There are three strands of work that are most relevant to
this paper, in which uncertainty is modeled probabilistically.



They are CGs with random payoffs, incentive-compatible
CGs under uncertainty, and Bayesian coalition formation
problems. We discuss them in turn.

CGs where payoffs may be random were first analyzed
in (Charnes and Granot 1973). In (Suijs et al. 1998), the
authors generalized the model and introduced risk prefer-
ences and coalitional actions. Both are important for model-
ing cooperation in financial and insurance applications. The
authors studied properties of payoff divisions of the form
(d, r), where d gives an agent a deterministic share of the
payoff, and r a relative share. See (Suijs 1999) for a survey.

Assuming that each coalition has only one action, BCG is
a strict generalization of Suijs’ model. Their model restricts
the information partition of each agent to be the set of all
worlds Ω. The payoff divisions that they are interested in
places a restriction on the space of contracts. Their gener-
alization of the core is equivalent to our ex-ante core, and
incidentally also the ex-interim core, as the two concepts are
identical when the information partitions of all agents equal
Ω. They also consider coalitional action; our model can be
generalized to take that into account.

Incentive-compatible CGs under uncertainty are pre-
sented in (Myerson 2005). In his model, agents have uncer-
tain types, and payoffs to coalitions depend on the actions of
their members and the types of all agents. The outcome of a
game is determined by mechanisms that take reported agent
types as input, pick actions for the agents, and redistribute
the payoffs. Mechanisms are required to be truthful, i.e.,
agents should have no incentives to misreport their types. An
outcome, induced by a mechanism, ultimately assigns pay-
offs to agents as a function of their types; this can be inter-
preted as a contract in our model. An outcome is in the core
defined by Myerson (M-core) if it is not blocked, where an
outcome is blocked if there exists a blocking mechanism that
selects a random coalition according to some known distri-
bution, asks agents their types, picks actions, and reallocates
payoffs such that no agent in the selected coalition is worse
off compared to the blocked outcome, and the mechanism
makes a profit in expectation.

The primary difference between the M-core and ours is
that blocking is caused by some blocking mechanism that
can choose from a distribution of coalitions, rather than
caused by a single coalition, as in ours or classical CGT. The
M-core requires contracts to be feasible only in expectation,
whereas ours requires feasibility in all worlds. Finally, the
requirement that mechanisms are truthful constrains payoff
distributions across different worlds.

The work closest to our model is the Bayesian coalitional
formation problems introduced by Chalkiadakis et al. in
(2004; 2007; 2007). They investigate a host of problems,
including learning, bargaining, and coalitional stability. Full
discussion of their work and its connection to ours will ap-
pear in the full version of the paper, but the following will
help explain the main similarity and differences.

In their model, agents have uncertain types, and payoffs
to coalitions depend on types and actions. The outcome of a
game is specified by three components 〈CS,a,d〉: a coali-
tion structure CS that specifies the coalitions formed, the
actions a chosen by the coalitions, and the agents’ demands

d of relative share of payoffs. For comparison, we focus on
the case when the grand coalition is formed in their model,
i.e., CS = {N}. An outcome, 〈{N},a,d〉, specifies the
payoffs to the agents as a function of their types. This can
be interpreted as a contract, with constraints over the payoff
distribution across different worlds governed by d.

Chalkiadakis et al. propose three notions of stability. The
weak Bayesian core (weak C-core) defines blocking as the
existence of a coalition of which its members each believes
he is better off in the deviating coalition. The strict Bayesian
core coincides with the weak one under the transferable util-
ity assumption made in this paper. The strong Bayesian core
(strong C-core) defines blocking as having an agent who be-
lieves there is an alternative outcome in which he is better
off and no one else in the deviating coalition is worse off.
These three cores differ from our ex-interim core with re-
spect to how blocking is defined.

Let us call the set of S-contracts, for some deviating coali-
tion S, that an agent i ∈ S considers preferable to the cur-
rent outcome his defection set. One can view each notion
of blocking as characterized by three considerations: (a)
Does the defection set of an agent take into account the other
agents’ reasoning at all? (b) If it does, at what level of depth
does it do it, and in particular, does it consider the other
agents’ own modeling of other agents? And (c) how are the
agents’ individual defection sets aggregated to define block-
ing? Do all agents in the deviating coalition have to prefer
to defect, i.e., one should take the intersection of these sets,
or just some agent prefers to defect, i.e., take the union of
these sets? The differences are summarized as follows:

Concept (a) (b) (c)

Weak C-core No N/A ∩
Strong C-core Yes One level of modeling (with re-

spect to other agents’ expected
payoff), but no mutual modeling

∪

Ex-interim core Yes Infinite level of mutual modeling ∩
Given that the M-core, the C-cores, and the ex-interim

core can all be interpreted as contracts in our model (in some
cases with transformations), a natural question is whether
these sets of contracts that constitute these cores satisfy any
set relationship, such as subset or non-empty intersection.
We conjecture that they do not satisfy any relationship in
general, but may be related in special cases.

Finally, other forms of uncertainty in coalitional games
have been studied in (Yamamoto and Sycara 2001; Blanken-
burg, Klusch, and Shehory 2003; Li et al. 2003; Yokoo et al.
2005). Their models are different from BCG as uncertainty
is not explicitly modeled as probabilities in these papers.

5 Risk-Neutral Agents
We now explore an important special case of BCGs when
agents are risk-neutral. We show that checking for whether
a grand contract belongs to any of the three kinds of core
can be simplified to sets of linear constraints. Let us start by
defining risk-neutrality.
Definition 13. An agent is risk-neutral if his preference over
distributions of payoffs is such that X < Y if and only if the



expectation of X is at least that of Y , E[X] ≥ E[Y ].
For risk-neutral agents, checking whether the ex-ante core

of a BCG is empty is equivalent to checking whether the core
is empty in a related simple CG.
Theorem 1. Given a BCG 〈N, Ω,P, (Ij), (<j)〉 with risk-
neutral agents, a grand contract cN is in the ex-ante core of
the game if and only if for all S ⊆ N ,

E[ω(S)] ≤
∑

j∈S

E[cN
j ]

The proof is omitted for brevity.
Theorem 1 reduces the checking of ex-ante core mem-

bership of BCG 〈N, Ω,P, (Ij), (<j)〉 to checking the core
membership of the CG with value of coalition S equals the
expected value of the coalition S in the BCG, E[ω(S)]. A
similar reduction is noted in (Suijs and Borm 1996).

The situation is more complicated for the ex-interim core.
For coalition S, let us denote by I∨S the set {I : I =⋂

j∈S Ij for all Ij ∈ Ij} . Note that I∨S is a partitions over
the worlds Ω. We establish the following lemma.
Lemma 2. Given BCG 〈N, Ω,P, (Ij), (<j)〉 with risk-
neutral agents, a coalition S can ex-interim block a grand
contract cN if and only if there exists I∗ ∈ I∨S such that

E[ω(S)|I∗] >
∑

j∈S

E[cN
j |I∗] (5)

The proof is omitted for brevity. Using this lemma, check-
ing for membership in ex-interim core can also be simplified.
Theorem 2. Given BCG 〈N, Ω,P, (Ij), (<j)〉 with risk-
neutral agents, a grand contract cN is in the ex-interim core
of the game if and only if for all S ⊆ N , for all information
sets I ∈ I∨S ,

E[ω(S)|I] ≤
∑

j∈S

E[cN
j |I]

Checking whether a grand contract belongs to the ex-post
core of a BCG is conceptually simple.
Theorem 3. Given BCG 〈N, Ω,P, (Ij), (<j)〉 with risk-
neutral agents, a grand contract cN is in the ex-post core
of the game if and only if for all S ⊆ N , for all worlds ω,

ω(S) ≤
∑

j∈S

E[cN
j |ω]

(
=

∑

j∈S

cN
j (ω)

)

In other words, cN is in the ex-post core of BCG if and
only if it is in the core of each constituent game. The proof
is straight-forward and omitted for brevity.

While determining whether the core is empty in all three
cases simplify to sets of linear constraints, this does not
mean that the problems are necessarily easy to solve, as the
number of constraints are large (exponential in the number
of agents, polynomial in the number of information sets and
worlds). Nonetheless, this result may help to design efficient
algorithms that takes advantage of linearity of constraints.

As a consequence of the three characterization theorems,
we obtain the following interesting corollary.
Corollary 1. For BCG with risk-neutral agents,

Ex-ante core ⊇ Ex-interim core ⊇ Ex-post core
Note that this relationship is not necessarily true for gen-

eral BCGs; it fails to hold for our example in Subsection 3.5.

6 Concluding Remarks
We introduce BCGs, a generalization of classical CGs to
a Bayesian setting. We study payoff division in the form
of contracts, and generalize the core in three ways to cap-
ture different notions of coalitional stability. We also show
that checking for core emptiness reduces to linear feasibility
problems when agents are risk-neutral.

There are many open questions regarding BCGs. Chief
among them is about representation. Direct specification of
CGs as a set function takes space exponential in the number
of agents. For BCGs, there is the additional complication
of having to specify a CG in each world. We are interested
in designing compact representation scheme for BCGs and
efficient algorithms for finding contracts in the core.
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