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1 Definition

Multi-agent learning refers to settings in which multiple agents learn simultane-
ously. Usually defined in a game theoretic setting, specifically in repeated games
or stochastic games, the key feature that distinguishes multi-agent learning from
single-agent learning is that in the former the learning of one agent impacts he
learning of others. As a result neither the problem definition for mutli-agent
learning, nor the algorithms offered, follow in a straightforward way from the
single-agent case. In this second of two entries on the subject we focus on
algorithms.

2 Some MAL techniques

We will discuss three classes of techniques – one representative of work in game
theory, one more typical of work in AI, and one that seems to have drawn equal
attention from both communities.

2.1 Model-based approaches

The first approach to learning we discuss, which is common in the game theory
literature, is the model-based one. It adopts the following general scheme:

1. Start with some model of the opponent’s strategy.

2. Compute and play the best response.

3. Observe the opponent’s play and update your model of her strategy.

4. Goto step 2.

Among the earliest, and probably the best-known, instance of this scheme
is fictitious play. The model is simply a count of the plays by the opponent
in the past. The opponent is assumed to be playing a stationary strategy, and
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the observed frequencies are taken to represent the opponent’s mixed strategy.
Thus after five repetitions of the Rochambeau game in which the opponent
played (R,S, P, R, P ), the current model of her mixed strategy is (R = .4, P =
.4, S = .2).

There exist many variants of the general scheme, for example those in which
one does not play the exact best response in step 2. This is typically accom-
plished by assigning a probability of playing each pure strategy, assigning the
best response the highest probability, but allowing some chance of playing any
of the strategies. A number of proposals have been made of different ways to as-
sign these probabilities such as smooth fictitious play and exponential fictitious
play.

A more sophisticated version of the same scheme is seen in rational learning.
The model is a distribution over the repeated-game strategies. One starts with
some prior distribution; for example, in a repeated Rochambeau game, the
prior could state that with probability .5 the opponent repeatedly plays the
equilibrium strategy of the stage game, and, for all k > 1, with probability
2−k she plays R k times and then reverts to the repeated equilibrium strategy.
After each play, the model is updated to be the posterior obtained by Bayesian
conditioning of the previous model. For instance, in our example, after the first
non-R play of the opponent, the posterior places probability 1 on the repeated
equilibrium play.

2.2 Model-free approaches

An entirely different approach that has been commonly pursued in the AI lit-
erature is the model-free one, which avoids building an explicit model of the
opponent’s strategy. Instead, over time one learns how well one’s own various
possible actions fare. This work takes place under the general heading of re-
inforcement learning1, and most approaches have their roots in the Bellman
equations. We start our discussion with the familiar single-agent Q-learning
algorithm for computing an optimal policy in an unknown MDP.

Q(s, a) ← (1− αt)Q(s, a) + αt[R(s, a) + γV (s′)]
V (s) ← max

a∈A
Q(s, a)

As is well known, with certain assumptions about the way in which actions
are selected at each state over time and constraints on the learning rate schedule,
αt, Q-learning can be shown to converge to the optimal value function V ∗.

The Q-learning algorithm can be extended to the multi-agent stochastic
game setting by having each agent simply ignore the other agents and pretend
that the environment is passive:

1We note that the term is used somewhat differently in the game theory literature.
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Qi(s, ai) ← (1− αt)Qi(s, ai) + αt[Ri(s,#a) + γVi(s′)]
Vi(s) ← max

ai∈Ai

Qi(s, ai)

Several authors have tested variations of the basic Q-learning algorithm for
MAL. However, this approach ignores the multi-agent nature of the setting
entirely. The Q-values are updated without regard for the actions selected by
the other agents. While this can be justified when the opponents’ distributions
of actions are stationary, it can fail when an opponent may adapt its choice of
actions based on the past history of the game.

A first step in addressing this problem is to define the Q-values as a function
of all the agents’ actions:

Qi(s,#a) ← (1− α)Qi(s,#a) + α[Ri(s,#a) + γVi(s′)]

We are however left with the question of how to update V , given the more
complex nature of the Q-values.

For (by definition, two-player) zero-sum SGs, the minimax-Q learning algo-
rithm updates V with the minimax of the Q values:

V1(s) ← max
P1∈Π(A1)

min
a2∈A2

∑

a1∈A1

P1(a1)Q1(s, (a1, a2)).

Later work proposed other update rules for the Q and V functions focus-
ing on the special case of common-payoff (or ‘team’) games. A stage game is
common-payoff if at each outcome all agents receive the same payoff. The payoff
is in general different in different outcomes, and thus the agents’ problem is that
of coordination; indeed these are also called games of pure coordination.

The work on zero-sum and common-payoff games continues to be refined
and extended; much of this work has concentrated on provably optimal trade-
offs between exploration and exploitation in unknown, zero-sum games. Other
work attempted to extend the “Bellman heritage” to general-sum games ( as
opposed to zero-sum or common-payoff games), but the results here have been
less conclusive.

2.3 Regret minimization approaches

Our third and final example of prior work in MAL is no-regret learning. It is
an interesting example for two reasons. First, it has some unique properties
that distinguish it from the work above. Second, both the AI and game theory
communities appear to have converged on it independently. The basic idea
goes back to early work on how to evaluate the success of learning rules in the
mid-50s, and has since been extended and rediscovered numerous times over
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the years under the names of universal consistency, no-regret learning, and the
Bayes envelope. The following algorithm is a representative of this body of work.
We start by defining the regret, rt

i(aj , si) of agent i for playing the sequence of
actions si instead of playing action aj , given that the opponents played the
sequence s−i.

rt
i(aj , si|s−i) =

t∑

k=1

R(aj , s
k
−i)−R(sk

i , sk
−i)

The agent then selects each of its actions with probability proportional to
max(rt

i(aj , si), 0) at each time step t + 1.

3 Some typical results

One sees at least three kinds of results in the literature regarding the learning
algorithms presented above, and others like them. These are:

1. Convergence of the strategy profile to an (e.g., Nash) equilibrium of the
stage game in self play (that is, when all agents adopt the learning proce-
dure under consideration).

2. Successful learning of an opponent’s strategy (or opponents’ strategies).

3. Obtaining payoffs that exceed a specified threshold.

Each of these types comes in many flavors; here are some examples. The
first type is perhaps the most common in the literature, in both game theory
and AI. For example, while fictitious play does not in general converge to a
Nash equilibrium of the stage game, the distribution of its play can be shown to
converge to an equilibrium in zero-sum games, 2x2 games with generic payoffs, or
games that can be solved by iterated elimination of strictly dominated strategies.
Similarly in AI, minimax-Q learning is proven to converge in the limit to the
correct Q-values for any zero-sum game, guaranteeing convergence to a Nash
equilibrium in self-play. This result makes the standard assumptions of infinite
exploration and the conditions on learning rates used in proofs of convergence
for single-agent Q-learning.

Rational learning exemplifies results of the second type. The convergence
shown is to correct beliefs about the opponent’s repeated game strategy; thus it
follows that, since each agent adopts a best response to their beliefs about the
other agent, in the limit the agents will converge to a Nash equilibrium of the
repeated game. This is an impressive result, but it is limited by two factors; the
convergence depends on a very strong assumption of absolute continuity, and
the beliefs converged to are only correct with respect to the aspects of history
that are observable given the strategies of the agents. This is an involved topic,
and the reader is referred to the literature for more details.
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The literature on no-regret learning provides an example of the third type
of result, and has perhaps been the most explicit about criteria for evaluating
learning rules. For example, one pair of criteria that have been suggested is as
follows. The first criterion is that the learning rule be ‘safe’, which is defined
as the requirement that the learning rule guarantee at least the minimax payoff
of the game. (The minimax payoff is the maximum expected value a player
can guarantee against any possible opponent.) The second criterion is that the
rule should be ‘consistent’. In order to be ‘consistent’, the learning rule must
guarantee that it does at least as well as the best response to the empirical
distribution of play when playing against an opponent whose play is governed
by independent draws from a fixed distribution. ‘Universal consistency’ is then
defined as the requirement that a learning rule do at least as well as the best
response to the empirical distribution regardless of the actual strategy the oppo-
nent is employing (this implies both safety and consistency). The requirement
of ‘universal consistency’ is in fact equivalent to requiring that an algorithm
exhibit no-regret, generally defined as follows, against all opponents.

∀ε > 0, (limt→inf [
1
t

max
aj∈Ai

rt
i(aj , si|s−i)] < ε)

In both game theory and artificial intelligence, a large number of algorithms
have been show to satisfy universal consistency or no-regret requirements.

4 Recommended reading

Requisite background in game theory can be obtained from the many introduc-
tory texts, and most compactly from [Leyton-Brown and Shoham, 2008]. Game
theoretic work on multiagent learning is covered in [Fudenberg and Levine, 1998]
and [Young, 2004]. An expanded discussion of the problems addressed under
the header of MAL cab be found in [Shoham et al., 2007], and the responses
to it in [Vohra and (eds.), 2007]. Discussion of MAL algorithms, both tradi-
tional and more novel ones, can be found in the above references, as well as in
[Greenwald and (Eds.), 2007].
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