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Abstract

Adopting a decision-theoretic perspective, we investi-
gate the problem of optimal testing of structured knowl-
edge – the canonical example being a qualifying exam-
ination of a graduate student. The setting is character-
ized by several factors: examinee’s knowledge struc-
tured around several inter-dependent topics, a limited
“budget” of questions available to the examiner, a de-
cision to be made (pass/fail), and an utility for good
and bad decisions. The existence of multiple profes-
sors brings up additional issues such as committee for-
mation, and the existence of multiple students brings up
issues such as fairness.

1. Introduction

At Stanford University, many different formats of quali-
fying examinations exist, varying among departments as
well as among groups within a given department. In some
cases, each student is given an oral examination by a three-
member committee for ninety minutes. In other cases, the
students are all given identical written exams, lasting about
two hours. In yet other cases, each student moves from pro-
fessor to professor for a one-on-one exam lasting eight min-
utes each. Which is the best format? We set out to tackle this
question scientifically, adopting a decision-theoretic per-
spective.

The problem is characterized by the following features:
(a) structured knowledge being tested (e.g., knowledge of
different subfields), (b) limited time of professors (and, less
critically, of students), (c) a decision (i.e., whether or not to
pass the student) in whose service the exam takes place, and
(d) a utility function associated with good and bad decisions.
Additional features have to do with the multiagent aspects of
the problem. For example, the issues of committee forma-
tion and fairness.

Some of these features are quite generic and apply in other
domains where value of information plays an important role,
including sensor networks, medical diagnosis, and market
research. We will stick to the student examination storyline,
both for concreteness and because certain features make par-
ticular sense here. Nonetheless, work in other areas is rele-
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vant, and we will review its similarities and differences after
we set up our formal model.

The paper is organized as follows. In Section 2, we
present the basic model; intuitively, it corresponds to a sin-
gle professor examining a single student via a written ex-
amination and expecting him to demonstrate knowledge of
a certain fraction of the topics. With that we’re in a position
to discuss related past work more meaningfully in Section 3.
In Section 4, we examine the difficulty of optimal question-
ing in the basic model (it is NP-hard), and its approximation
(one trivially gets a factor-2 approximation, but one can not
do any better), and then present a greedy algorithm which
is provably optimal in certain restricted models. In Section
5, we look at moving from a written examination to an oral
one and show that the latter can be maximally better. In
Section 6, we look at what happens in the model if the ba-
sic threshold utility model is replaced by a more continuous
one. Finally, in Section 7, we look at two sample problems
in the multiagent case. In the case of multiple professors,
we prove that having committees can be arbitrarily better or
worse than having none, and that deciding between the two
is NP-hard. In the case of multiple students we show that
requiring fairness can lead to the maximally possible degra-
dation of decisions regarding the individual students.

2. The Basic Model

In this section we present the basic formal model; in later
sections we will modify and extend it in different ways. It
consists of the following elements:

• U , a set of knowledge of nodes;

• S, a set of question nodes disjoint from U ;

• B, a Bayesian network over U ∪S such that for all S ∈ S,
Children(S) = ∅ and Parents(S) ⊆ U ;

• b ∈ R
+, a budget of questions;

• c : S 7→ R
+, the cost function for observing a node;

• D = {0, 1}, the set of possible decisions;

• A, a design space, defined below; and

• u : (D, V al(U)) 7→ R, a utility function defined below.

The intended interpretation of these elements is as fol-
lows. B represents the student’s knowledge of the various



subareas and the various questions he can be asked. The
nodes – both knowledge and question nodes – are assumed
to be binary, so there are no degrees of knowledge, and an-
swers to questions are either correct or incorrect. The design
space A is simply all the possible sets of questions the pro-
fessor can ask whose combined cost does not exceed b. This
models a written exam, which can be thought of as a pro-
fessor asking a set of questions, and then receiving the set of
answers in parallel. We will therefore refer to this as the par-
allel mechanism. After asking a set of questions and seeing
the student’s response, the professor can then make a deci-
sion, here assumed to be binary (pass/fail). The utility for
making a decision is the threshold function, parameterized
by 0 ≤ θ ≤ 1 1:

uθ(d, u) =

{

1 if d = 1 & |{x ∈ u : x = 1}| ≥ θ | U |
1 if d = 0 & |{x ∈ u : x = 1}| < θ | U |
0 otherwise

Given the basic model, there are two possible problems to
tackle: what are the questions to ask, and based on the an-
swers what is the decision to take so as to maximize utility?
The answer to the second one is well known in the literature.
For a binary decision D based on a binary hypothesis H (in
this case, if the student knows at least θU areas, or not), it
is shown by Heckerman et al. in (Heckerman, Horvitz, and
Middleton 1993) what the decision point p′ is such that for
P (H|Observations) ≥ p′ we will decide one way, and for
values less than p′ we will decide the other way. For our
uθ(·), p′ = .5. For a more in-depth background, see (De-
groot 2004). This leaves the problem of what questions to
ask. We return to this question after we discuss related work.

3. Related Work

The literature that is potentially relevant to our problem is
vast. It can be crudely divided into three classes. The lit-
erature on computer adaptive testing is closest in terms of
the motivating application but rather different in terms of
the models and problems studied. The literature in sensor
nets (and related work in social networks) on optimal subset
selection is closest technically, but its model makes a key
assumption that does not apply in our domain. In addition,
it does not ask as wide a set of questions as we do here. Fi-
nally, there is the much broader literature on value of infor-
mation. It provides valuable insights on which we build but
does not address the specific questions we ask. We discuss
each of these in more detail below.

Most directly related to our model and application is the
field of computer adaptive testing. Almond and Mislevy
have proposed models based on Bayesian networks for ed-
ucational testing in (Madigan and Almond 1993), (Robert
J. Mislevy and Steinberg 1999), (Almond et al. 2002), and
(Mislevy 2003) to make approximate inferences about hid-
den proficiency variables using Markov Chain Monte Carlo
and also to provide feedback to the student. They focus
on maximizing the expected weight of evidence instead of

1We note that when θ = 1, we have positive utility for passing
the student only when the AND of the U nodes equals 1.

working directly with the utility function as we do in this
paper and don’t consider the complexity of the problem.

Recent work in AI has looked at finding optimal subsets
to target in sensor and social networks. Guestrin has shown
a (1− 1/e− ǫ) approximation algorithm for observing sub-
sets of sensors in (Krause and Guestrin 2005a) and optimal
selection algorithms for restricted networks in (Krause and
Guestrin 2005b). Unfortunately, this work leverages the fact
that they are maximizing a submodular function (informa-
tion gain of the U nodes) to produce their results. Our utility
functions are not submodular so we are not able to use their
approximation. Kempe studies related subset selection prob-
lems in (D. Kempe and Tardos 2003) and argues for explic-
itly modeling utility for sensor networks in (Bian, Kempe,
and Govindan 2006), though their model is substantially dif-
ferent from ours.

On a more basic level, we are solving a value of infor-
mation problem. These problems have been studied for
some time with early work being done by (Quinlan 1986) on
greedily (myopically) building decision trees. Sequentiality
was discussed in (Pearl 1988) but he approached the prob-
lem by using heuristics to maximize quasi-utility functions
like entropy and didn’t focus on the computability of the
problem. (Gaag 1993) outlined a framework covering selec-
tion of observations for diagnostic applications. In (Heck-
erman, Horvitz, and Middleton 1993), the problem of non-
myopically selecting optimal observations was studied and a
heuristic to select such observations was proposed, but with-
out any guarantees. Jensen presented a means of calculat-
ing myopic value of information in influence diagrams in
(Dittmer and Jensen 1997). In our case, influence diagrams
quickly become unwieldy even for small networks. (Zubek
and Dietterich 2005) takes a completely different approach
and studies learning diagnostic policies from training data.

Also related is the field of probabilistic diagnosis studied
in (Rish et al. 2004) and (Rish et al. 2005) (among oth-
ers) where they attempt to find the location of a fault in, for
example, a distributed system of computers with noisy ob-
servations. However, their focus is on fault detection and lo-
calization and not directly applicable to our binary decision
problem. (Zheng, Rish, and Beygelzimer 2005) uses entropy
as a cost function and shows how to efficiently compute ap-
proximate marginal conditional entropy using an algorithm
based on loopy belief propagation. Our paper focuses on the
orthogonal direction of selecting a set of observations when
inference is tractable, instead of on the inference itself and
approximately computing the next best myopic observation.

4. Analyzing the Basic Model
Even when modeling a single professor writing a test for a
single student, the model exhibits many complexities. We
will examine the hardness of selecting a set in the basic
model, and how to solve the problem in a restricted setting
with a greedy algorithm when approximation turns out to be
difficult.

Complexity

As we noted in Section 2, making an optimal decision after
making our observation in the parallel mechanism is not dif-



P_1

P_2 P_3

v_1 v_2 v_3 v_4

Figure 1: Set Cover

S_3S_2S_1

U_4U_3U_2U_1

Figure 2: Network for reduction from SET-COVER

ficult. Now we can ask how hard is it to compute the optimal
observation set. The answer is that, in general, it is hard:

Theorem 1. Choosing an action under the parallel mecha-
nism that has at least expected utility w, with θ = 1, is NP-
Hard even if inference can be performed efficiently through
a belief update oracle.

Proof. We prove this by a reduction from SET-COVER.
In SET-COVER, you are given a set V , subsets
P1, P2, . . . , Pm, and a budget k. The goal is to find at
most k sets Pi such that their union equals V . We will
convert an instance of SET-COVER as shown in Figure 1
to an instance of our problem as show in Figure 2. For
each element vi ∈ V create a node Ui whose value is
drawn uniformly at random from {0, 1}. We create nodes
S1, S2, . . . , Sm that correspond to the sets P1, P2, . . . , Pm.
If the set Pi = {va1

, va2
, . . . , va|Pi|

}, then the node Si =
Ua1

∧ Ua2
∧ . . . ∧ Ua|Pi|

.

Suppose we have an efficient algorithm to compute if a
subset A exists with expected utility of w. Let R be de-
fined as R = U1 ∧ U2 ∧ . . . ∧ U|U |. If we let w = 1, then
our algorithm will select a set with expected utility equal to
∑

a∈V al(A) P (a)Max(P (R|a), 1 − P (R|a)) = 1. If we

observed any zeros at all, then 1 − P (R|a) = 0 no mat-
ter which nodes we observed. Let α be the number of U
nodes where we didn’t observe any of their children. If we
observe all ones, P (R|a) = 2−α. Therefore, to have utility
of one, every Ui must have an observed Sj as a child and
consequently

⋃

i:Si∈APi = U and we have a solution for
SET-COVER.

Although we proved NP-Hardness for the specific value
θ = 1, we can expand the proof to any θ.

Corollary 2. For any θ ∈ (0, 1], choosing a set of questions
A with expected utility w is NP-Hard even if inference can
be performed efficiently through a belief update oracle.

Proof. The proof is very similar to the proof of Theorem 1
and follows from a reduction from set cover. See the full
version of this paper for more details.

Approximation

Given the NP-hardness of the problem, the natural next
question is whether the optimal solution can be approxi-
mated within some constant. We first note that the technique

used in (Krause and Guestrin 2005a) does not apply, since
it relies on the assumption of submodularity, which fails in
our case:

Claim 3. In a network with θ = 1, maximizing the expected
utility is not submodular.

Proof. See the full version for a simple network where sub-
modularity doesn’t hold.

However, in our case we observe that we obtain “for free”
a simple approximation. For an instantiation u of the U
nodes, let the expression #(u) denote |{x ∈ u : x = 1}|.
If the prior on #(u) ≥ θ|U| is σ ∈ [0, 1] then observe that
the simple rule that passes the student iff σ ≥ .5, yields
an expected utility that of Max{σ, 1 − σ}, giving us a 2-
approximation in the worst case. This leaves open the ques-
tion whether one can achieve an even better approximation,
which we answer now.

Theorem 4. For any θ ∈ (0, 1), choosing a set of observa-
tions A under the parallel mechanism is not approximable in
polynomial time within a factor better than 2 unless P=NP.

Proof. We take any instance of 3-SC (Garey and John-
son 1990) (SET-COVER where all sets are of size at most
three) as shown in Figure 1 and convert it to a network G
where, if we are able to select a set of observations that ap-
proximates the optimal expected utility closer than a factor
of two in polynomial time, we will have solved the gen-
erating 3-SC instance. For each element vi ∈ V , cre-
ate a node Ui whose value is drawn uniformly at random
from {0, 1}. We create nodes S1, S2, . . . , Sm that corre-
spond to the sets P1, P2, . . . , Pm and whose parents are
nodes Uj such that vj ∈ Pj . In addition we create nodes
Sm+1, Sm+2, . . . , Sm+l that correspond to the non-empty
proper subsets of each set in P1, P2, . . . , Pm and whose par-
ents correspond to the nodes in that subset of Pj . Since in
instances of 3-SC our sets are at most size three, then for
each set Pi we will add at most seven S nodes. Let each
S node be the exclusive or of its parents. In addition, we
add a node labeled XOR that is the exclusive or of all the
U nodes. The XOR node has

max(θ,1−θ)|V |
1−max(θ,1−θ) FILL nodes

as children, whose values are deterministically equal to the
value of the XOR node itself. The U , FILL, and XOR
nodes are all the members of U .

First, we note that a set-cover exists if and only if there is a
set A ⊆ S, |A| < b, where the union of A’s parents equals U
and the pairwise intersection between the parents of any two
sets in A is empty. Also note that P (XOR = 0|A) = .5 un-
less we exactly know the exclusive or of the XOR node’s
parents in which case P (XOR = 0|A) = 0 or 1. Be-
cause the value of the XOR node (and all of the FILL
nodes with the same value) uniquely determines if #(u) ≥
θ|U|, the expected utility given any possible valid set A,
max(P (#(u) ≥ θ|U| |A), P (#(u) < θ|U| |A)), can only
take on the values 1 and .5. If the expected utility is 1,
this must mean that we have observed the XOR node, and
thus have observed a set of nodes that exactly reveals XOR,
which must be a set that corresponds to a set cover in our
original problem. Since any approximation algorithm with



a ratio better than two would have to guarantee an expected
utility of 1, which also corresponds to exactly solving the
3-SC instance, there is no such algorithm unless P=NP.

A Greedy Algorithm

Even in the face of this approximation result, we find that
by restricting the networks, we are able to find an optimal
greedy algorithm.

There will be three restrictions on networks, which we
will call a simple networks. First, the U nodes will have no
edges to other U nodes. Second, every node in U will have
one and exactly one node in S as a descendant and every S
node will have exactly one parent. The value of the nodes in
S will always be deterministically equal to the value of its
parent. Finally, our utility function will have θ = 1.

Our greedy algorithm is also easy to define. At every step,
it will add the node x, where x = argmaxu∈(U/A)P (u = 0)
until the budget is used up and where x is not already in
our selected set A. Let E[u(A)] be the expected utility of
choosing set A and then following our optimal decision rule
based on our observed values over the possible instantiations
of the nodes in the network.

Theorem 5. In a simple network, the greedy algorithm is
optimal.

Proof. Although this claim might seem intuitively straight-
forward, the proof is surprisingly involved. See the full ver-
sion.

5. From Written to Oral Exams

The other situation we will model is an interview where the
professor hears the answer to each question before asking
the next one. Formally our new sequential mechanism pro-
ceeds as follows. One node is observed. After updating the
observation in the network, inference can be performed and
the next node will be selected. Once the budget has been
reached, inference can be performed again and the optimal
decision will be selected. This is just a change in the design
space A from the parallel space used in the basic model to a
sequential space.

Separation

The expected utility under the sequential mechanism is at
least as good as the expected utility under the parallel mech-
anism. This is easily seen since in the worst case, the se-
quential mechanism can mirror the node selection of par-
allel mechanism. Given this, the natural question is how
much better might the separation be? Recall that the util-
ity is ∈ [.5, 1] under our optimal decision rule, so the upper
bound on the separation is .5. The following theorem shows
how close we can approach the maximal separation.

Theorem 6. For any θ ∈ (0, 1) and any budget b, the differ-
ence in expected utility between the sequential and parallel
mechanisms can be at least .5 − 1

2b

Proof. See the full version for a class of networks with this
large separation.

Complexity

The same reduction used for the parallel mechanism applies
here as the U nodes in Theorem 1 are all independent of each
other, so the sequentiality will make no difference.

6. A Smoother Utility Model

It might seem that the specific form of our threshold utility
function underlies the difficulty of the problem, but now we
will show that this phenomenon is more general by defining
a new class of symmetric monotonic utility functions.

Definition 7. Let fθ(d, u) be a symmetric monotonic util-
ity function when it satisfies the following restriction:
fθ(Pass, u) ≥ fθ(Fail, u) for all u ∈ V al(U) such that
|{x ∈ u : x = 1}| ≥ θ|U| and otherwise fθ(Pass, u) <
fθ(Fail, u).

It is easy to see that uθ(·) is a member of this class of
utility functions, however there are many others. We now
show that our hardness result still holds for any member of
this class.

Theorem 8. Choosing observations under the parallel and
sequential mechanisms that has at least expected utility w as
measured by any monotonic utility function fθ(d, u), is NP-
Hard even if inference can be performed efficiently through
a belief update oracle.

Proof. Due to space constraints, we present a proof sketch
here. We reduce from SET-COVER by generating the same
network we did in the proof of Theorem 1. The maximum
utility we can receive if we made all correct decisions is
umax =

∑

u∈V al(U) P (u)max(fθ(0, u), fθ(1, u)). After

observing a set A with observations a, our optimal decision
d∗(a) = argmaxd∈D(P (#(u) ≥ (θ|U|)|a), P (#(u) <
(θ|U|)|a)). Then the utility of observing a set A is
∑

a∈V al(A),u∈V al(U) P (a, u)fθ(d
∗(a), u). If we had an al-

gorithm to efficiently select A, we could set w = umax. In
our network, the only way we can achieve umax is if we find
a set cover.

This is a powerful result since most reasonable utility
functions can be expected to be symmetric monotonic. In
fact, there is also an analog of our hardness of approxima-
tion in the space of symmetric monotonic utility functions.

For the theorem, we define the following constants: let
β = min(θ, 1 − theta)|U|,
FailLow = maxu∈V al(U):(|{x∈u:x=1}|≤β)(fθ(0, u)),
FailHigh = maxu∈V al(U):(|{x∈u:x=1}|≥|U|−β)(fθ(0, u)),
PassLow = maxu∈V al(U):(|{x∈u:x=1}|≤β)(fθ(1, u)),
PassHigh = maxu∈V al(U):(|{x∈u:x=1}|≥|U|−β)(fθ(1, u)),

and z = max( 1
2FailLow + 1

2FailHigh, 1
2PassLow +

1
2PassHigh).

Theorem 9. For any symmetric monotonic utility function
fθ(·) with θ ∈ (0, 1), choosing a set of observations A under
the parallel mechanism is not approximable in polynomial
time within a factor better than umax

z unless P=NP

We can see that by applying this bound to our threshold
utility function we get that it is NP-hard to approximate with
a ratio better than 2.



Proof. We take any instance of 3-SC and convert it to a net-
work B where, if we are able select a set of observations
that approximates the optimal expected utility closer than a
factor of umax

z in polynomial time, we will have solved the
generating 3-SC instance. We follow the reduction in the
proof of Theorem 4 to generate B.

First, we note that a set-cover exists if and only if there is
a set A ⊆ S, |A| < b, where the union of A’s parents equals
U and the pairwise intersection between the parents of any
two sets in A is empty. Also note that P (XOR = 0|A) = .5
unless we exactly know the exclusive or of the XOR node’s
parents in which case P (XOR = 0|A) = 0 or 1.

Now let us partition the possible solutions our algorithm
can return into two groups. First, where we know XOR (i.e.,
P (XOR = 0|A) = 0 or 1), and second, where we don’t
know XOR (i.e., P (XOR = 0|A) = .5). If we have a solu-
tion where we know XOR , then we must have also returned
a set cover.

If we don’t know XOR, then our utility will be bounded
by a constant dependent on our utility function. Let the max-
imum utility we can receive if we made all correct decisions
be, umax =

∑

u∈V al(U) P (u)max(fθ(0, u), fθ(1, u)). Be-

cause our set of FILL nodes take up a max(θ, 1 − θ) frac-
tion of our total U nodes, then for any u ∈ V al(U) such that
P (u) 6= 0, |{x ∈ u : x = 1}| ≤ β when XOR = 0 and
|{x ∈ u : x = 1}| ≥ |U| − β when XOR = 1. This, along
with the fact that we have P (XOR = 1) = .5 implies,

∑

u∈V al(U):(|{x∈u:x=1}|≤β)

P (u)

=
∑

u∈V al(U):(|{x∈u:x=1}|≥|U|−β)

P (u)

= P (XOR = 1) = P (XOR = 0) = .5 (1)

Thus, if we don’t know XOR, then our utility
will be bounded above by z = max( 1

2FailLow +
1
2FailHigh, 1

2PassLow + 1
2PassHigh). Since any ap-

proximation algorithm with a ratio better than umax

z would
have to produce an expected utility of umax, which also cor-
responds to exactly solving the 3-SC instance, there is no
such algorithm unless P=NP.

7. The Multiagent Case

The multiagent setting is varied, and here we study it under
the threshold utility function uθ(·). We can have multiple
professors, multiple students, or both. We discuss a sample
problem that arises in each of these settings: committees
in the multiple professor case and fairness in the multiple
student case. The case of having multiples of both does not
appear to add much to our model.

Multiple Professors

Once we introduce multiple professors to the model, there
are many factors that we can consider – sequentiality and
committees among others. We have found that the sequential
multiagent model with committees and two extreme forms
of it are the most interesting cases, and that is what we will
focus on in this section.

We capture these multiagent models by duplicating each
node in S as many times as there are professors, attaching a
separate distribution to each node, and assigning each copy
to a distinct professor. All the nodes duplicated from the
same original node will be said to form a question group.
This represents a question that any of the professors could
ask, but that they each draw different conclusions from.
Each professor has a budget of b

|P | , where P is the set of

professors.
A partition of the set of professors captures our notion of

committees, with the professors in the same partition work-
ing together. All the committees operate independently and
in parallel. Inside each committee, observations must be
made by question group, not by individual node, i.e., all the
nodes in the same question group that belong to professors
inside the committee must be observed simultaneously, or
none observed at all. A committee will observe question
groups until its budget is exhausted. After all the nodes in a
particular question group have been observed, the choice of
the next question group may be conditioned on the results of
previous observations by the same committee. The results of
all observations are then used to make a pass/fail decision.

The trade-off between using large committees that select
the next question better, and fewer committees that query
more question groups is our focus. In order to quantify the
power of committees, we examine two settings–one where
every professor is a member of a singleton committee and
the other where we have a single grand committee consist-
ing of all the professors. It is surprising that no setting is
uniformly better; in fact, the difference can be maximally
large:

Theorem 10.

• Given any budget b and set of professors P and any uθ

utility function, There are networks for which the grand
committee outperforms singleton committees : the grand
committee yields an expected utility of 1, the highest pos-
sible, and the singleton committees yield the expected util-

ity of .5 − |P |
2b−|P |+1 .

• Given any budget b and set of professors P and any uθ

utility function, There are networks for which singleton
committees outperform the grand committee, and do so
by the widest possible margin: the singleton committees
yield an expected utility of 1, the highest possible, and the
grand committee yields the expected utility of the trivial
mechanism which decides based on the prior.

Proof. See the full version for networks that exhibit these
separations.

Although we know that finding optimal solutions for se-
quential multiagent mechanism is NP-hard because it is a
generalization of the single agent case, we would still like
to know which one has higher optimal expected utility. This
can be thought of as a meta-decision, a decision on which
mechanism to use to make our decision on the student. We
show this even this is hard.2

2When we write EU(X), where X is a mechanism, we are refer-
ring to the maximal value of this, maxA⊆S [EU(X, A)]



Theorem 11. On a specific network with sequential ques-
tioning, deciding if
EU(grand committee) ≥ EU( singleton committees) is
NP-hard for uθ utility functions.

Proof. The proof here is fairly complicated, but is also a
reduction of SET-COVER. We construct a network so that
the sequential grand committee has expected utility of 1 if a
set cover exists and .5 otherwise. The sequential singleton
committees always have a utility slightly above .5, and thus
if we had an algorithm to decide which mechanism is bet-
ter, we would solve set cover. See the full version for more
details.
Multiple Students

It also makes sense to consider examining multiple students.
We will assume that these students are i.i.d. according to our
original network B. Our utility function is just the summa-
tion of the utility for the individual students – now equal to
the expected number of students judged correctly. A simple
way of running this mechanism would be to have each pro-
fessor spend the same amount of time on each student. In
this case it is easy to see that each student would have the
same expectation of being judged correctly. In fact, this is
our definition of fairness with multiple students.

Definition 12. If we have a network B, budget b, and n stu-
dents all drawn independently from this distribution, then
the vector of observation sets A = {A1, A2, . . . , An} where
Ai ⊆ Si is fair if for all i, j, H(Di|Ai) = H(Dj |Aj), where
H(·) computes the entropy.

This definition captures the fact that we would like every
student to know that the decision on their performance had
the same expected amount of randomness. Given that fair-
ness is well motivated, we would like to know the potential
cost of fairness, i.e., what is the difference between the opti-
mal set A with fairness and the optimal set without fairness.

Clearly, fairness can only hurt the optimal score, but by
how much can it hurt?

Theorem 13. The utility of an optimal observation set A
can be twice that of a set A that is fair.

Proof. Let B be a network where each student is represented
by a single internal node with a .5 chance of being 1 with
utility function u1(·). For b = n − 1, if A is fair, then A
must be the empty set with utility n

2 . The optimal A without
fairness has utility n− 1/2, which is asymptotically close to
twice as good as a fair A.

8. Summary

Motivated by a real-world problem of optimal testing of
structured knowledge, we have developed a precise model
in which to investigate this and related questions. Novel el-
ements of the model include the fact that the information is
geared towards making a specific decision, that utility is ex-
pressed by a wide range of prescriptive utility models, and
that observations can be made in parallel or in sequence by
individuals or groups. Among other things, we have shown
the NP-hardness of deciding on the optimal question set
even for the individual agent, the hardness of approximat-
ing this problem, and a greedy algorithm for solving it in

a restricted network. In addition, we have shown the non-
comparability between multi-agent mechanisms with and
without committees, and that it is hard to determine the op-
timal committee structure for a given network. This prob-
lem has many theoretical aspects which have yet to be ex-
plored, and being closely tied to practical problems in com-
puter adaptive testing and sensor networks, we hope to see
more work in this field in the future.
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