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Introduction to Combinatorial Auctions 

Peter Cramton, Yoav Shoham, and Richard Steinberg 

Combinatorial auctions are those auctions in which bidders can place bids on combinations 

of items, called “packages,” rather than just individual items. The study of combinatorial 

auctions is inherently interdisciplinary. Combinatorial auctions are in the first place auctions, a 

topic extensively studied by economists.1 Package bidding brings in operations research, 

especially techniques from combinatorial optimization and mathematical programming. Finally, 

computer science is concerned with the expressiveness of various bidding languages, and the 

algorithmic aspects of the combinatorial problem. The study of combinatorial auctions thus lies 

at the intersection of economics, operations research, and computer science. In this book, we 

look at combinatorial auctions from all three perspectives. Indeed, our contribution is to do so in 

an integrated and comprehensive way. The initial challenge in interdisciplinary research is 

defining a common language. We have made an effort to use terms consistently throughout the 

book, with the most common terms defined in the glossary. 

There are numerous examples of combinatorial auctions in practice. As is typical of many 

fields, practice precedes theory. Simple combinatorial auctions have been used for many decades 

in, for example, estate auctions. A common procedure is to auction the individual items, and 

then, at the end, to accept bids for packages of items. If a package bid exceeds the sum of the 

individual bids for the items in the package, then the items are sold as a package. In this book we 

consider a variety of much more general combinatorial auctions, but the key ingredient is the 

same as in this simple case: each bidder can submit bids on packages of items.  
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Recently, combinatorial auctions have been employed in a variety of industries. For 

example, they have been used for truckload transportation, bus routes, and industrial 

procurement, and have been proposed for airport arrival and departure slots, as well as for 

allocating radio spectrum for wireless communications services. Combinatorial auctions for 

radio spectrum have been conducted in both the United States and Nigeria. In each case, the 

compelling motivation for the use of a combinatorial auction is the presence of 

complementarities among the items which differ across bidders. For example, a trucker's cost of 

handling shipments in one lane depends on its loads in other lanes. Similarly, a mobile phone 

operator may value licenses in two adjacent cities more than the sum of the individual license 

values, since the operator’s customers value roaming between cities. 

1 Basic auction theory 

Auction theory is among the most influential and widely studied topics in economics of the 

last forty years. Auctions ask and answer the most fundamental questions in economics: who 

should get the goods and at what prices? In answering these questions, auctions provide the 

micro-foundation of markets. Indeed, many modern markets are organized as auctions. 

To understand the role of combinatorial auctions, it is useful to step back and think about 

auctions in general. Some auction types are familiar, such as the ascending-bid English auction 

used in many online consumer auctions, or the first-price sealed-bid auction used in many public 

procurements. More fundamentally, auctions are distinguished not only by the rules of the 

auction, such as ascending versus sealed-bid, but by the auction environment. These 

combinatorial auctions can be studied in a wide range of auction environments. Important 

features, including the numbers of sellers and buyers, the number of items being traded, the 
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preferences of the parties, and the form of the private information participants have about 

preferences, all determine the auction environment. 

The benchmark environment is the private value model, introduced by Vickrey (1961), 

which is discussed here in detail by Ausubel and Milgrom in Chapter 1. In the private value 

model, each bidder has a value for each package of items and these values do not depend on the 

private information of the other bidders. Each bidder knows his values, but not the values of the 

other bidders. Vickrey’s seminal paper, mentioned in his 1996 Nobel Prize in economics, 

introduced the independent private value model, demonstrated equilibrium bidding behavior in a 

first-price auction, and then showed that truthful bidding could be induced as a dominant strategy 

by modifying the pricing rule: let each bidder pay the social opportunity cost of his winnings, 

rather than his bid. Finally, he showed in an example what would later be proven generally as the 

revenue equivalence theorem: different auction mechanisms that result in the same allocation of 

goods yield the same revenue to the seller.  

Thus, when auctioning a single item to n bidders, whose payoffs are linear in the bidder’s 

valuation of the item and money (ui = vi – p, where ui is bidder i’s utility, vi is i’s the value of the 

item, and p is the price paid for the item) and where each value is drawn independently from the 

same probability distribution, both the first-price and second-price auction award the item to the 

bidder with the highest value and yield the seller the same expected revenue.  

Most of the chapters in this book use Vickrey’s private value model and many make use of 

the Vickrey pricing rule, at least as a benchmark for comparison with alternative mechanisms. 

Wilson (1969) took auction theory in a new direction. He introduced the common value 

auction model, in which items have the same value to all bidders, but this value is uncertain and 
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depends on the private information of all bidders. He derived the first analysis of equilibrium 

bidding with common values, demonstrating the importance of conditioning one’s bid on the 

negative information winning implies, and thus avoiding what would later be called the winner’s 

curse—the tendency for bidders, who do not understand that winning is bad news about one’s 

estimate of value, to pay more than the item is worth.  

Milgrom extended Wilson’s early papers in several ways. Most importantly, he introduced 

an auction model with both private value and common value elements. The private value model 

of Vickrey and common value model of Wilson represent two extreme cases. These extreme 

models are useful in deriving strong theoretical results, but most practical auction environments 

have both private and common value elements. Milgrom (1981) showed the importance of the 

monotone likelihood ratio property in obtaining results in a realistic hybrid model.2 In particular 

the monotone likelihood ratio property, together with Wilson’s assumption of conditional 

independence, means that (1) bidders use monotonic bidding strategies and (2) that a monotonic 

strategy satisfying the first-order condition constitutes an equilibrium.  

Milgrom’s model led to the affiliated values model (Milgrom and Weber 1982) in which a 

bidder’s value depends directly on the private information of all the bidders. The critical 

condition here, closely related to the monotone likelihood ratio property in Milgrom (1981), is 

that the bidders’ signals, typically estimates of value, are affiliated random variables. This 

amounts to the plausible condition that if one bidder has a high signal of value, it is more likely 

that the signals of the other bidders are high. The paper shows that Vickrey’s revenue 

equivalence result no longer holds when we introduce a common value element. In particular, the 

revenues from the standard auction formats differ and can be ranked. Formats, like ascending 

auctions, in which the price is linked to more affiliated private information yield higher revenues.  
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The early work of Vickrey, Wilson, and Milgrom was largely focused on an equilibrium 

analysis and comparison of standard auction formats. Myerson led the development of 

mechanism design theory, which enables the researcher to characterize equilibrium outcomes of 

all auction mechanisms, and identify optimal mechanisms—those mechanisms that maximize 

some objective, such as seller revenues. His first application was to auctions. Myerson (1981) 

determined the revenue-maximizing auction with risk-neutral bidders and independent private 

information. He also proved a general revenue equivalence theorem that says that revenues 

depend fundamentally on how the items are assigned—any two auction formats that lead to the 

same assignment of the items yield the same revenues to the seller.  

The trick in Myerson’s analysis was recognizing that any auction can be represented as a 

direct mechanism in which bidders simultaneously report their private information and then the 

mechanism determines assignments and payments based on the vector of reports. For any 

equilibrium of any auction game, there is an equivalent direct mechanism in which bidders 

truthfully report types and agree to participate. Hence, without loss of generality we can look at 

incentive compatible and individually rational mechanisms to understand properties of all 

auction games. Incentive compatibility respects the fact that the bidders have private information 

about their values; individual rationality respects the bidders voluntary participation decision. 

This key idea is known as the revelation principle (Myerson 1979).  

Myerson and Satterthwaite (1983) use this technique to prove the general impossibility of 

efficient bargaining when it is not common knowledge that gains from trade exist; that is, when 

it is not certain that a mutually beneficial agreement is possible. This same impossibility extends 

to auctions in which both sellers and buyers possess private information, although efficiency 

becomes possible when the traders jointly own the items (Cramton, Gibbons, and Klemperer 
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1987). Likewise, if the roles of buyer and seller are not fixed ex ante, but the traders may take on 

either role depending on price, then efficient mechanisms exist (Wilson 1993). 

These early papers led to the rapid development of auction theory in the 1980s and 1990s. In 

addition, large empirical and experimental literatures have sprung from the theory. This work is 

summarized in a number of articles and books, for example, McAfee and McMillan (1987), 

Kagel and Roth (1995), Klemperer (2000, 2004), Krishna (2002), and Milgrom (2004). 

2 Combinatorial auctions 

A shortcoming of most of the work mentioned above (Milgrom 2004 is an exception) is the 

failure to recognize that in many auction environments bidders care in complex ways about the 

packages of items they win. The advantage of combinatorial auctions (CAs) is that the bidder can 

more fully express his preferences. This is particular important when items are complements. 

Items are complements when a set of items has greater utility than the sum of the utilities for the 

individual items (for example, a pair of shoes is worth more than the value of a left shoe alone 

plus the value of a right shoe alone). The auction designer also derives value from CAs. 

Allowing bidders more fully to express preferences often leads to improved economic efficiency 

(allocating the items to those who value them most) and greater auction revenues. 

However, alongside their advantages, CAs raise a host of questions and challenges. This 

book is devoted to discussing these questions, as well as the considerable progress made in 

answering them. 
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3 Types of combinatorial auctions 

The book begins in Part I with a description and analysis of various combinatorial auction 

mechanisms.  

The most famous combinatorial auction is the combinatorial generalization of the Vickrey 

auction already mentioned, the Vickrey-Clarke-Groves (VCG) mechanism. Ausubel and 

Milgrom (Chapter 1) explore the question of why the Vickrey auction with its appealing 

theoretical properties is seen so little in practice. In a VCG auction (also called a Vickrey 

auction), bidders report their valuations for all packages; items are allocated efficiently to 

maximize total value. Each winner pays the opportunity cost of his winnings: the incremental 

value that would be derived by assigning the bidder’s items according to their next best use 

among the other bidders. In this way, a winning bidder achieves a profit equal to his incremental 

contribution to total value, and it is a dominant strategy for the bidder to truthfully report his 

values. Achieving efficiency in truth-dominant strategies is remarkable. Nonetheless, there are 

serious shortcomings. Most importantly, bidders are asked to express values for all packages 

without the aid of any information about prices. Also, when goods are not substitutes, seller 

revenues can be too low;3 adding bidders or increasing bidder values can reduce seller revenue; 

other limitations of the Vickrey auction are discussed. 

In Chapter 2, Parkes examines iterative combinatorial auctions. A major motivation for an 

iterative process is to help the bidders express their preferences by providing provisional pricing 

and allocation information. This information helps the bidders focus their valuation efforts on 

options that are most relevant. 
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In Chapter 3, Ausubel and Milgrom consider the ascending proxy auction (Ausubel and 

Milgrom 2002) as an alternative to the Vickrey auction. Each bidder submits valuation 

information to a proxy agent. The proxy agents bid iteratively, bidding on the most profitable 

package, whenever the proxy agent is not a provisional winner. The auction ends when no proxy 

agent who is not a provisional winner has a profitable bid. The ascending proxy auction allows 

for bidders to have budget constraints. In the absence of budget constraints, and when goods are 

substitutes for all bidders, the ascending proxy auction yields the same outcome as the Vickrey 

auction. More generally, the ascending proxy auction finds a bidder-optimal point in the core 

with respect to the reported preferences. Moreover, all bidder-optimal core points are Nash 

equilibria in the auction game, if we assume full information about values (each bidder knows 

the values of the other bidders). The ascending proxy auction addresses many of the drawbacks 

of the Vickrey auction in environments with some complements. 

The simultaneous ascending auction (SAA) is studied by Cramton in Chapter 4. The SAA is 

not a combinatorial auction, since bids in a SAA are placed for individual items, rather than 

packages of items. Yet the SAA has proven to be a highly effective method of auctioning many 

related items (see Cramton 1998, 2002 and Milgrom 2004). Simultaneous sale and ascending 

bids enables price discovery, which helps bidders build desirable packages of items. The SAA 

remains a useful benchmark for comparison with true combinatorial auctions. 

In Chapter 5, Ausubel, Cramton, and Milgrom propose the clock-proxy auction as a 

practical combinatorial design. A clock auction phase is followed by a best-and-final proxy 

round. The approach combines the simple and transparent price discovery of the clock auction 

with the efficiency of the proxy auction. Linear pricing is maintained as long as possible, but 

then is abandoned in the proxy round to improve efficiency and enhance seller revenues. The 
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approach has many advantages over the simultaneous ascending auction. In particular, the clock-

proxy auction has no exposure problem, eliminates incentives for demand reduction, and 

prevents most collusive bidding strategies. Without the best-and-final proxy round, the authors 

present an iterative combinatorial auction that can be implemented as a simple clock auction, 

avoiding all computational complexity issues in a process with highly useful price discovery 

(Ausubel and Cramton 2004). This auction format recently has been used in over two dozen 

high-stake auctions in several countries and several industries. 

Chapter 6 discusses a combinatorial auction procedure called PAUSE, proposed by Frank 

Kelly and Richard Steinberg, which relieves the auctioneer of having to face the “winner 

determination problem,” discussed below, a computationally intractable problem. Under 

PAUSE, the burden of evaluating a combinatorial bid is transferred to the bidder making the bid; 

the auctioneer need only confirm the bid's validity, a computationally tractable problem. As a 

consequence, although PAUSE permits all combinatorial bids, the procedure is both 

computationally tractable for the auctioneer and transparent to the bidders. In their chapter, Land, 

Powell, and Steinberg focus specifically on bidder behavior under PAUSE. 

4 Bidding and efficiency 

As mentioned above, combinatorial auctions give rise to a host of interesting questions and 

challenges. To begin with, there is the question of what should be the bidding language. 

Different choices vary in expressiveness and in simplicity. A bid in an auction is an expression 

of the bidder's preference for various outcomes. The most direct way of capturing such a 

preference is to have a bidder attach a monetary value to each possible allocation. This allows 

one to express all possible preferences, but it is not simple. Given n bidders and m items, it 
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requires a bidder to submit a bid of size nm. If we assume no externalities, so that each bidder 

cares only about the items he himself receives, the complexity drops to 2m, which is still 

impractical for all but small m. 

Part II of the book addresses both bidding languages and questions of efficiency. Auction 

theory generally assumes a fixed number of bidders with each bidder acting independently 

according to the rules of the auction. One simple deviation from this model is for a single bidder 

to act as multiple bidders. Such pseudonymous bidding is the subject of Chapter 7. Yokoo shows 

that the Vickrey auction is not immune to this problem, unless a bidder submodularity condition 

is satisfied. And indeed all efficient auctions suffer from this problem. It sometimes is profitable 

for a bidder to bid as multiple bidders, rather than one, and this undermines efficiency. 

In Chapter 8, Bikhchandani and Ostroy examine the connection between efficient auctions 

for many items, and duality theory. The Vickrey auction can be thought of as an efficient pricing 

equilibrium, which corresponds to the optimal solution of a particular linear programming (LP) 

problem and its dual. A “buyers are substitutes” condition is necessary and sufficient for the 

pricing equilibrium to yield the Vickrey outcome. Thus, when buyers are substitutes, an efficient 

pricing equilibrium can be obtained with any LP algorithm. The simplex algorithm can be 

thought of as static approach to determining the Vickrey outcome. Alternatively, the primal-dual 

algorithm can be thought of as a decentralized and dynamic method of determine the pricing 

equilibrium, as in the ascending proxy auction of Chapter 3. 

In Chapter 9, Nisan examines a variety of bidding languages and their properties. For 

example, we see there that OR (“additive-or”) bids, which allow the bidder to make non-

exclusive offers on bundles, can capture all, and only, the super-additive valuations. In contrast, 
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XOR (“exclusive-or”) bids, which allow the bidder to make exclusive offers on bundles, can 

capture all valuations, though they may require an exponentially longer expression than the OR 

bids. However, asking an agent to disclose a full valuation function is often not necessary, since 

many parts of it might be irrelevant for computing the allocation. 

In Chapter 10, Sandholm and Boutilier look at ways in which the valuation function of 

agents can be elicited piecemeal, as needed by the auctioneer. One of the questions there is what 

form the queries may take. Sandholm and Boutilier consider several primary forms; these include 

queries about absolute bundle values, queries about differences between two bundle values, a 

simple ordering on bundle values, and several others. Among the experimental results they show 

is the fact in practice only a small fraction of the preferences need to be revealed in practice. 

Among the theoretical results presented are some natural valuation classes where preferences can 

be elicited with a polynomial number of queries even in the worst case; the fact that even if the 

real preferences only fall approximately into these classes, an approximation can be found with a 

polynomial number of queries; and the fact that there can be super-exponential power in 

interleaving queries across agents (i.e., deciding what to ask an agent based on what others have 

revealed). 

Segal in Chapter 11 asks how many bits of information are required to compute an efficient 

allocation, regardless of the protocol used and disregarding issues of incentives. One result states 

that any mechanism that is guaranteed to compute an efficient allocation must necessarily also 

discover supporting prices (though these will in general be neither anonymous nor linear). The 

main question addressed by Segal is how one can trade off the extent of communication required 

with the economic surplus gained. For example, the trivial protocol in which bidders 

communicate their value for the entire set of goods, which is allocated to the highest bidder 
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(again, ignoring the issue of incentives), guarantees 1/n of the available surplus (where n is the 

number of bidders) while requiring a single bid from each bidder. A more elaborate mechanism 

yields 1
m  of the available surplus, where m is the number of goods. Interestingly, this is also a 

lower bound for any protocol whose running time is polynomial in m. 

5 Complexity and algorithmic considerations 

Once the bidding language is fixed, the question remains as to how to compute the 

allocation, given a set of bids. This problem, called the winner determination problem (WDP) 

has received considerable attention in the literature, and is the primary focus of Part III. 

In Chapter 12, Lehmann, Müller and Sandholm provide a precise formulation of the problem 

and explore its basic complexity properties. The problem is this: Given a set of bids in a 

combinatorial auction, find an allocation of items to bidders, including the possibility that the 

auctioneer retains some items, that maximizes the auctioneer's revenue. The problem, which is 

most naturally represented as an integer program (IP), is inherently complex. Specifically, it is 

NP-complete, meaning that there does not exist a polynomial-time algorithm that is guaranteed 

to compute the optimal allocation. Even worse, the problem is not uniformly approximable, in 

the following sense: there does not exist a polynomial-time algorithm and a constant d that, for 

all inputs, the algorithm produces an answer that is at least 1/d of the correct optimal answer. 

We then follow this sobering introduction to the WDP with some good news. First, in 

Chapter 13, Müller explores some constraints on the set of bids that ensure that a polynomial-

time solution does exist. One such condition is for the constraint matrix to be totally unimodular. 

A special case of this is of linear goods; for example, if each bid is for some contiguous stretch 
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of time on a shared machine, the problem can be solved in quadratic time. Then, in Chapter 14, 

Sandholm looks at algorithms for solving the general problem. While we know that in the worst 

case any algorithm will run in exponential time, there exist rules of thumb for searching the 

space of allocations that in practice allow us to solve large problems (for example, with hundreds 

of thousands of bids and tens of thousands of items). Sandholm concentrates on complete 

heuristics, ones that guarantee that an optimal solution is found but do not guarantee the running 

time. 

The discussion of the WDP in Chapters 12, 13, and 14 ignores issues of incentives. The 

optimization is assumed to be inherited from some mechanism, such as the VCG mechanism, but 

solved without regard to the originating mechanism. As discussed, these problems are 

computationally hard, and sometime admit only sub-optimal solutions. In Chapter 15, Ronen 

looks at the impact of such sub-optimal optimization on the incentive properties of mechanisms. 

For example, it is shown that with sub-optimal procedures, the VCG mechanism is no longer 

individually rational, nor is it incentive compatible. However, a modification of VCG is 

presented that restores individual rationality and, to a certain extent, incentive compatibility. The 

chapter covers several other topics, including a non-VCG mechanism that is computationally 

easy and incentive compatible, whose economic efficiency, in a restricted domain, is bounded 

from below by 1
m  where m is the number of goods. 

In the final chapter of Part III, Chapter 16, Pekeč and Rothkopf consider appropriate ways to 

reduce or avoid computational difficulties in combinatorial auctions. The authors briefly review 

the computational issues in combinatorial auction design, the context of auction design including 

the information available to the designer, and properties that the auction designer must trade off 
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in selecting the auction format and procedures. The major part of their chapter discuss 

opportunities for mitigating computational problems at four points in the auction: before bid 

submission, at the time of bid submission, after bid submission but before the announcement of a 

tentative set of winning bids, and after the announcement of a tentative set of winning bids. 

6 Testing and implementation 

In Part IV, we pick up the question of how to test experimentally the various proposed 

solutions to the WDP as well as how best to test and implement mechanisms from Part I. 

In Chapter 17, Hoffman, Menon, van den Heever, and Wilson consider how best to 

implement the ascending proxy auction of Chapter 3. Three approaches for accelerating the 

algorithm are considered. The first involves working backward from the efficient allocation and 

starting with the Vickrey prices, which provide a lower bound on prices. The second approach, 

increment scaling, solves the problem with large bid increments and then backs up and solves the 

problem again with reduced increments until the desired accuracy is obtained. The third 

approach combines the previous two. These three approaches each dramatically reduce the 

number of iterations needed to determine the ascending proxy outcome. 

In Chapter 18, Leyton-Brown and Shoham present the Combinatorial Auction Test Suite 

(CATS). CATS is a publicly available software package that generates a variety of winner 

determination problems. Specifically, it implements several parameterized families of bid 

distributions, some based on real-world applications (such as transportation networks), and some 

on historical distributions used by researchers in the field. The goal of CATS is to serve as a 

uniform test suite for WDP algorithms, and it has been used widely in this capacity. 
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In Chapter 19, Leyton-Brown, Nudelman and Shoham use CATS to predict the running 

times of algorithms for the winner determination problem. The difficulty is that, since the 

problem is NP-complete, even the best heuristic procedures will take exponential time for some 

instances. In many applications, it is important to know in advance how long a given algorithm 

will run on a given instance (for example, an auction for energy production tomorrow needs to 

determine a schedule of operation well in advance of tomorrow). The authors describe how 

machine learning techniques can be used to predict this running time reliably, and which features 

of a given instance are most predictive of this running time. As a bonus, they also describe a 

portfolio approach to the WDP, whereby several competing algorithms are pressed into service, 

and for each instance the algorithm that is predicted to perform best is chosen. 

7 Combinatorial auctions in practice 

In their seminal paper on combinatorial auctions, Rassenti, Smith, and Bulfin (1982) present 

a sealed-bid combinatorial auction for the allocation of airport time slots (i.e., takeoff and 

landing slots) to competing airlines. 4 Even if landing slots are bundled with takeoff slots (much 

like left and right shoes are bundled), the need for a combinatorial auction follows from the 

differing ways that airlines value packages of slots: some are substitutes, some are complements, 

and the valuations vary across airlines. Although auctions, combinatorial or otherwise, have yet 

to be used to allocate scarce runway capacity, congestion at many major airports is becoming an 

increasingly difficult problem. The Federal Aviation Administration is now evaluating a 

combinatorial auction approach for New York’s LaGuardia airport. 

The final section of the book, Part V, considers four important applications of combinatorial 

auctions. Chapter 20 takes up the topic of auctions for airport time slots. Ball, Donohue, and 
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Hoffman provide suggestions for mechanisms for air transportation systems to both expand 

capacity and to assure that the current, limited capacity is used both safely and efficiently. The 

authors begin by providing a description of the history of the U.S. Aviation System, detail 

current procedures for allocating landing time slots, and explain how market-clearing 

mechanisms might be able to rectify many of the shortcomings of the current system. They 

include a presentation of some of the components that they believe are necessary to assure the 

success of combinatorial auctions in this setting. 

In Chapter 21, Caplice and Sheffi explore how combinatorial auctions are being used for the 

procurement of freight transportation services, focusing on those attributes of transportation that 

make combinatorial auctions especially attractive, as well as describing some of the unique 

elements of transportation auctions. They present such auctions first from the perspective of the 

auctioneer, i.e., the shipper, then from the perspective of the bidder, i.e., the carrier. This is 

followed by a discussion of the relationships between shippers and carriers, since the contracts 

that govern them have certain characteristics that distinguish them to some extent from auctions 

for other applications discussed elsewhere in the book. In fact, the types of bids used in the 

transportation are distinctive to that industry, so there is an entire section discussing them. In this 

industry, the winner determination problem is known as the “Carrier Assignment Problem,” 

which is discussed next in the chapter. Finally, the authors present lessons from practice. 

In Chapter 22, we move from the private sector to the public sector. As Cantillon and 

Pesendorfer explain, the London bus routes market provides an early example of the use of a 

combinatorial auction format in public procurement. The authority responsible for the provision 

and procurement of public transport services in the Greater London area—valued at $900 

million—was London Regional Transport (LRT). The authors present the four major issues 
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faced by LRT. First, what should be the set of contracts auctioned? Second, how should LRT 

auction these contracts? Third, who should be allowed to participate? Finally, which criteria 

should they use to award the contracts? The authors also discuss the motivations for submitting a 

package bid, a description of their data together with summary statistics, and finally their 

empirical analysis. 

The final chapter of the book, Chapter 23, discusses combinatorial auctions for industrial 

procurement, which is potentially one of the largest application domains for combinatorial 

auctions. As pointed out by the authors, Bichler, Davenport, Hohner, and Kalagnanam, CAs have 

already turned into a topic of interest for software vendors and procurement managers in the 

business-to-business domain. However, despite reports of the existence of a number of 

applications of combinatorial auctions in industrial procurement, documentation and public 

information on design details are rare—possibly because of efforts to protect proprietary 

information. This chapter describes current practice in this domain, including a case study at 

Mars, Inc. 

8 Conclusion 

Both the research and practice of combinatorial auctions have grown rapidly in the past ten 

years. This book aims to make this knowledge accessible to a broad group of researchers and 

practitioners. However, we have a more ambitious goal. Our hope is that, by integrating the work 

from the three underlying disciplines of economics, operations research, and computer science, 

progress on combinatorial auctions will be enhanced. This book lays the foundation by 

aggregating and harmonizing the research on combinatorial auctions. We are confident that the 
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profession will continue to develop the theory and application of combinatorial auctions. We 

hope that the foundation provided in this book will be instrumental in this process. 
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1 Operations researchers were also active contributors to the early work on auctions, see for 

example, Friedman (1955) and Rothkopf (1969). Indeed, most of the early work on auctions first 

appeared in operations research journals. 

2 A probability density function f satisfies the monotone likelihood ratio property if the ratio 

f(v|t)/f(v|s) is weakly increasing in v for all t > s. Typically, f(v|s) is the probability density of a 

bidder’s value v conditional on the signal s (an estimate of value). Intuitively, the likelihood of 

high values increases with the estimate of value. 

3 Goods are substitutes when increasing the price of one does not reduce demand for the 

other. 

4 This was the first major paper on combinatorial auctions. It introduced many important 

ideas, such as the mathematical programming formulation of the auctioneer's problem, the 

connection between the winner determination problem and the set packing problem as well as the 

concomitant issue of computational complexity, the use of techniques from experimental 

economics for testing combinatorial auctions, and consideration of issues of incentive 

compatibility and demand revelation in combinatorial auctions. 


