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Abstract

We consider popular file-sharing systems such as Kazaa from a game theoretic perspective. Such systems are
inherently vulnerable to free-riding, that is, to users who download files but do not contribute in return. The result
is that these systems do not maximize the number of files exchanged; in the parlance of mechanism design, these
mechanisms do not implement the desired social choice function. In the spirit of mechanism design, we search
for alternative, more efficient mechanisms. An interesting aspect of the mechanism-design problem is that, in this
setting, mechanisms do not have the luxury of ruling out free-riding as an available strategy. More annoyingly, a
mechanism cannot distinguish between a free-rider and a good citizen who happens to not have goods to contribute.
We nonetheless manage to identify more efficient mechanisms, including one that is provably optimal within the
constraints we define.

1 Introduction

It is hard to overstate the impact file sharing systems such as Kazaa [2] and Gnutella [1] have had on electronic
commerce and on the pattern of internet usage in general. However, as wildly popular as they have been, they have
also been plagued by the problem of free-riding. It is perfectly possible for individuals to download from others but not
allow others to access their own repositories, leading to a “tragedy of the commons” [7]; and, there is ample evidence
that a significant fraction of the users do just that [3, 10]. Of course, the fact that file-sharing systems are thriving
is evidence that enough people do share, but the existence of free-riders means that the exchange of files is not as
efficient as it could be. In particular, there are additional files that would be downloaded, had the free-riders made
them available. The question we ask is whether, and to what extent, the free-riders can be incented to share their files.

Of course, we are not the first to ask this question, or to offer a solution. Specifically, micro-payment schemes
(see, e.g., [6], along with [8], which presents an escrow service that enables payments in a P2P system) and internal
currencies (such as the “mojo” of the now extinct MojoNation) have been proposed as means of incenting self-interested
users to allow downloads, and [4] calls for a comparison of how well these approaches can overcome the self-interest
of agents. Our work differs from most of the previous work in this area because we do not allow either monetary
payments (due to the unpopularity of micro-payments) or internal currencies with no monetary value (because we
focus on single-shot interactions).

While we are directly motivated by entertainment-based systems such as Kazaa and Gnutella, it should be evident
that the problem we are addressing is quite generic, and pertains to any barter-like system for exchanging resources.
For example, in distributed storage systems that invite individuals to store redundant copies of others’ files, the question
is how to incent people to accept these files. Similarly, in inter-domain routing, the question is how to incent one
network operator to accommodate the packets of another domain. However, both for concreteness and because each
application exhibits some special properties, we will be couching the discussion specifically in terms of Kazaa- and
Gnutella-style file-sharing systems.

1This work was supported in part by DARPA grant F30602-00-2-0598.
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To understand such a system we need a formal model. We will give our model in the next section, but here is
the intuition. We posit two types of users: one that enjoys having others download his songs (the altruistic type) and
one that does not (the selfish type). Now imagine a one-shot interaction between two agents. In existing file-sharing
systems, each agent has two options – to share (by placing the files in a particular folder) or not. Without being too
precise about the game theoretic setting (we will be precise later), one can imagine this giving rise to the following
normal-form game structure:

Share Free-ride
Share

Free-ride

Table 1: Structure of a file-sharing game.

To analyze this game we need to be precise about the payoffs as well as the probabilities involved. However,
even absent those, intuitively speaking, it is obvious that both the altruistic types and the selfish types have dominant
strategies – the altruistic types always share, and the selfish types always free-ride. The question is what mechanisms
can be created that will give rise to other games, ones in which free-riders have the incentive to allow others to download
their songs.

This mechanism design problem is interesting in several ways. First, no mechanism can eliminate free-riding from
the repertoire of player actions. The reason is that free-riding is observationally indistinguishable from sharing by a
player that happens to have nothing to share. In concrete terms, if the (e.g., music) sharing folder of a user is empty,
it might be because the user doesn’t have any songs in his file system, or because he has but has chosen to put them
in a different folder. As a result, the action space in the mechanisms we will consider will always be a superset of
{Share,Free-ride}.

The same indistinguishability of types by the mechanism gives rise to another constraint – the mechanism cannot
directly penalize a free-rider, since it cannot tell free-riders from impoverished sharers. This property, which we call
free-ride ignorance, is a critical design constraint in our setting.

With this as background, here is a synopsis of the rest of the paper. We first present a formal model of the situation.
Certain properties of this model to keep in mind are the following:

1. We are only modelling a one-shot interaction between two randomly chosen users. Of course one wants
ultimately to reason about the repeated interaction among numerous, randomly matched individuals. We make
some remarks about this at the end of the paper, but the formal analysis is for the single interaction.

2. We focus on mechanisms that allow users, once told the transaction that will occur (which specifies, in each
direction, whether a song will be transferred), to accept or reject the entire transaction. The rationale behind
this restriction is that a user can alter his client (or download a modified version) that would disconnect from the
server when an unfavorable transaction begins. In the parlance of game theory, by doing so we ensure ex post
individual rationality.

After defining the formal model, we consider a sequence of three games. The first is of the form given above,
and serves as the baseline. We next add the action “Trade”, in which an agent offers to transfer a song (if required
by his opponent) in order to get a song in return. This action allows selfish agents to swap songs with each other
while still free-riding off of altruistic agents who play “Share”. However, this game has the undesirable property that
altruistic agents may now have incentive to play “Trade” instead of “Share”, in order to extract a song from a selfish
agent playing “Trade”. For this reason, we then a fourth action, “Conditional-Share”, which allows an altruistic to
give away songs as if he were playing “Share”, but also allows him to extract songs from selfish agents as if he were
playing “Trade”. In each game, we characterize the set of all equilibria. We prove that the third game maximizes the
expected number of transfers. We then discuss the fact that a game with this property must have other equilibria that
yield a lower number of expected transfers, and present a possible means of steering the system towards the desired
equilibrium.

2 Problem Formulation

The problem formulation consists of two parts: the setting, which defines the agents and the possible outcomes, and
the mechanism, which defines how the agents will interact to arrive at an outcome. We now formally define these two
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components. Good introductions to game theory and mechanism design can be found in [5] and [9], respectively.

2.1 Setting

Formally, the setting is defined by the tuple〈N, Θ, Ps, O, T, u(·), p, u(·)〉.
• N: The set of agents isN = {a1, a2}. When referring to an arbitrary agentai, we will usea−i to refer to the

other agent.

• Θ: Each agentai is characterized by a typeθi ∈ Θ, where a type is defined by the tuple:〈vi, ci〉. An agent
gains a value ofvi if it receives a desired item from the other agent, and incurs a cost ofci if it delivers an
item to the other agent. In general, we expectvi to be significantly greater than the absolute value ofci. While
vi will always be positive,ci can either be positive or negative. A positive cost results from the actual cost of
delivering the good (e.g., the bandwidth used to upload a song), while a negative cost results from utility gained
from contributing to the system. The type defines the utility function of the agent, as described below.

For expositional purposes, we will only consider two possible types:Θ = (θa
i , θs

i ). For both types,vi = v and
|ci| = c, wherev andc are positive constants. The difference is thatci = c for θs

i andci = −c for θa
i . In the

sequel we will refer to agents with typeθs
i as selfish and those with typeθa

i as altruistic.

• Ps: For each agentai, θi = θs
i with probabilityPs, andθi = θa

i with probability1 − Ps. Each agent’s type is
drawn independently according to this probability. We assume that probability for each type is greater than zero
(0 < Pr < 1).

In general, if we do not limit consideration to these two types, the type of an agent is drawn from a probability
density functionPr overΘ. We will use this more general notation for convenience in later definitions.

• O: The set of possible outcomes isO = {(←⊥,→⊥), (←⊥,→1), (←⊥,→1,2), (←2,→⊥), (←2,→1),
(←2,→1,2), (←1,2,→⊥), (←1,2,→1), (←1,2,→1,2)} to represent the nine different combinations of trading
possibilities. The left and right arrows represent an item transferred from agent 2 to 1 and from agent 1 to 2,
respectively. The subscript on the arrow denotes the agents that must own an item that the other agent desires
in order for the transfer to occur, with “⊥” denoting that the transfer never occurs. For example,(←1,2,→1)
means that both agents must have an item that the other desires in order for agent 2 to transfer an item to agent
1, but that agent 1 will transfer an item desired by agent 2 even if agent 2 does not have an item for agent 1.

LetPrereq(o,←) andPrereq(o,→) denote the prerequisites for transferring a file in the direction of the arrow.
For example,Prereq((←2,→1,2),←) = {2}.

• T: An outcome does not specify which transfers will occur– it only defines the condition for both transfers, based
on whether each agent has a song for the other agent. The four possible transactions areT = {−,←,→,↔},
to represent, respectively: no transfers, a transfer from agent 2 to 1 only, a transfer from agent 1 to 2 only, and a
transfer in both directions.

• u(·): An agent’s valuation for particular transactions are defined by the functionui : T → <, which is specified
in Table 2.

• p: With probabilityp, an arbitrary agentai has an item desired by the other agent,a−i. The probability that
a−i has an item thatai desires is identical and independent. Together with an outcomeo ∈ O, this probability
induces a lottery over transactions. We will usep(t|o) to denote the probability of transactiont occurring, given
outcomeo.

A potential extension of this setting would also include two more terms in the type of an agent: one that models
observing the set of items owned by an agent (from which the agent computes a posterior probability that it
owns an item that the other agent desires), and another that models observing the set of items that the agent
itself desires (from which it computes a posterior probability that it desires an item owned by the other agent).
However, while this extension would create a more realistic setting, it would not change the nature of our results.

• u(·): The utility function for an agent,ui : O × Θ → <, maps each outcome and agent type to an expected
value, as specified by Table 3. We assume that each agent is rational, in that it aims to maximize its expected
utility. Thus, an agent’s utility for a lottery is simply the expected value ofui(t), taken overp(t|o).
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Transactiont ∈ T Valuationui(t, θi)
− 0
← vi

→ −ci

↔ vi − ci

Table 2: Utility to agentai for each possible transaction.

Outcomeo ∈ O Lottery Over Transactions Utility ui(o, θi)
p(−|o) p(← |o) p(→ |o) p(↔ |o)

(←⊥,→⊥) 1 0 0 0 0
(←⊥,→1) 1− p 0 p 0 −ci · p
(←⊥,→1,2) 1− p2 0 p2 0 −ci · p2

(←2,→⊥) 1− p p 0 0 vi · p
(←2,→1) (1− p)2 p · (1− p) p · (1− p) p2 vi · p− ci · p
(←2,→1,2) 1− p p · (1− p) 0 p2 vi · p− ci · p2

(←1,2,→⊥) 1− p2 p2 0 0 vi · p2

(←1,2,→1) 1− p 0 p · (1− p) p2 vi · p2 − ci · p
(←1,2,→1,2) 1− p2 0 0 p2 vi · p2 − ci · p2

Table 3: Utility to agentai for each possible outcome.

2.2 Mechanism

The mechanism defines the protocol for interaction between the agents and the center that culminates with the selection
of an outcome. It is formally defined by a tupleΓ = (A, g(·)), whereA is the action space of each agent, and
g : A2 → O maps the actions of both agents to an outcomeo ∈ O. As the mechanism designer, we specify bothA
andg(·), subject to the constraints below.

The setting and the mechanism are common knowledge among the agents. A mechanismΓ, combined with the
setting, induces a Bayesian game between the two agents. In this game, each agent first privately observes its true type
θi, drawn according toPs. Then, it selects an action based on this type. Thus, we will speak more generally of an
agent’s (mixed) strategysi : Θ → ∆A, which maps each of its possible types to a distribution over the action that it
will take in the game. We will usesi(θi, a) to denote the probability assigned to actiona ∈ A by the strategysi(θi),
and we will usesi(θi) = a to denote the (pure) strategy in which all probability is assigned to actiona.

We will represent a Bayesian game in a compact way as a single payoff matrix for the row player (see, for example,
Table 4), even though there are two different possible types for both the row and column player. First, note that since
the game is symmetric, we only need to list the payoffs for one of the players. Second, we do not need a separate
matrix for both possible types of the column player, because only the action of the column player affects the payoff of
the row player. Finally, we list the utility to the row player in terms ofvi andci so that it is not specific to a single type.

The expected utility,EUi(s) of agentai for a strategy profiles = (s1, s2) is computed by taking the expectation
over the possible instantiations of agent types and actions.

EUi(s) =
∑

θi,θ−i∈Θ

∑

ai,a−i∈A

Pr(θi) · Pr(θ−i) · si(θi, ai) · s−i(θ−i, a−i) · ui(g(ai, a−i), θi)

Because each agent is self-interested, a strategy profile is not “stable” unless each agent maximizes its utility. The
condition for stability we strive for here is that of Bayes-Nash equilibrium.

Definition 1 A strategy profiles∗ = (s∗1, s
∗
2) is a Bayes-Nash equilibrium of mechanismΓ if the following condition

holds for alli, s′i:
EUi(s∗i , s

∗
−i) ≥ EUi(s′i, s

∗
−i)

An equivalent formulation of the condition is that, for each typeθi, agenti must not be able to increase its expected
utility (taken overθ−i) by deviating from playings∗(θi), holding constant the other agent’s strategy ass∗−i.
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We will restrict consideration to symmetric equilibria (that is, equilibria in whichs1 = s2), and represent them
using a single strategys∗i . We make this assumption because our symmetric Bayesian game is intended to model a
single interaction between two agents randomly drawn from a large population. Under this model, one interpretation
of s∗i (θi, ai) is as the fraction of agents in the population of typeθi who play the pure strategyai. Because of the fact
that, when two agents are paired up to play the game, there is no notion of which one isa1 or a2, their strategies cannot
differ depending on which role they take.

For the Bayesian games we analyze below, it will often be the case that for a particular typeθi, there exists an
actiona which always yields at least as high of a utility as any other actiona′, regardless of the action played by the
other agent. If it is also the case that, for each alternative actiona′, there exists an action by the opponent such that
actiona yields a strictly higher utility thana′, then actiona is called a weakly dominant strategy for that type.

Definition 2 An actiona ∈ A is a weakly dominant strategy for typeθi, if ∀a′, (∀b ∈ A, ui(a, b) ≥ ui(a′, b))∧(∃c ∈
A, ui(a, c) > ui(a′, c)).

If it is the case thata yields a higher expected utility for all actions by the opponent, then it is also a strictly
dominant strategy.

Definition 3 An actiona ∈ A is a strictly dominant strategy for typeθi, if ∀a′, (∀b ∈ A, ui(a, b) > ui(a′, b)).

While it is natural to expect a rational agent to play according to a weakly dominant strategies if it exists, the fact
that the inequality is not necessarily strict for possible actions by your opponent means that it can be rational to play
another action.

2.2.1 Implementation

A social choice functionf : Θ2 → O maps every profile of agent types to an outcome. Our goal as mechanism
designer is to implement a social function that maximizes some objective function. A mechanismΓ = (A, g(·))
implements the social choice functionf(·) in Bayes-Nash equilibrium if there exists a Bayes-Nash equilibriums∗ of
Γ such thatg(s∗(θ)) = f(θ) for all θ ∈ Θ. That is, if each agent plays according to its equilibrium strategy, then,
for every possible profile of types, the outcome of the mechanism will be the outcome of the social choice function.
Intuitively, if a social choice function is implemented, then the mechanism has overcome its lack of knowledge of the
agents’ private information.

Note that implementation only requires existence, and not uniqueness, of an equilibrium with the desired property.
It turns out that the social choice function we implement cannot be implemented under the additional requirement of
uniqueness, and later we will address the issue of how agents may converge to the desired equilibrium.

The objective functionz(f(·)) we use to evaluate an implemented social choice functionf(·) is the expected
number of transfers, which is computed using the following equation.

z(f(·)) =
∑

θ1,θ2∈Θ

Pr(θ1) · Pr(θ2) · [p(← |f(θ1, θ2)) + p(→ |f(θ1, θ2)) + 2 · p(↔ |f(θ1, θ2))]

2.2.2 Mechanism Requirements

The setting we model imposes two important constraints on our mechanism: one on the set of social choice functions
that we can implement, and another on which sets of actionsA are valid.

The first restriction is due to the fact that agents can choose to reject the transaction that results from the mechanism,
instead achieving the baseline utility of zero. For example, a selfish agent who is told to transfer a song to the other
agent while he is not receiving one in return would choose to stop uploading the file. Only if he were receiving a
song in return (which we assume occurs simultaneously, so that an agent who stops uploading would not be allowed
to complete the download), would he accept the transaction.

Thus, we require that the social choice function we implement always yield an agent a valuation of at least zero.
Formally, this requirement is called ex post individual rationality.

Definition 4 A social choice functionf(·) satisfies ex post individual rationality (ex post IR) if for allθ, i:

@t ∈ T, (p(t|f(θ)) > 0) ∧ (ui(t, θi) < 0)
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It is common to discuss individual rationality as a property of a mechanism instead of the social choice function.
A mechanismΓ satisfies ex post IR if it implements a social choice function that satisfies ex post IR. However, we
require that the social choice function we implement satisfy this requirement instead of just the mechanism, because
a mechanism can implement multiple social choice functions. Thus, the fact that a mechanism implements a social
choice functionf(·) and is ex post IR does not imply thatf(·) satisfies ex post IR.

The second restriction is imposed by our assumption that an agent can undetectably “sabotage” its chances of
matching an item it owns with an item that the other agent desires. This assumption means that an agent can play each
action in the Bayesian game without the possibility of transferring an item to the other agent, and without preventing
a transfer from the other agent if that agent is willing to transfer the item without receiving one in return. Of course, if
the other agent does demand an item in return, then the free-riding agent has no chance of receiving the item.

There are two possible ways to model this restriction. One option is to expand the action space of an agent so that
it can privately set the probability of having an item that the other agent desires to be 0 orp (while the agent may
in fact be able to set the probability to any value between 0 andp, he will never have incentive to do so, because his
utility varies linearly with this probability). A second option, and the one we will use, is to constrain the mechanism
to include a “free-ride” variant of each action. Under this option, an agent essentially declares to the mechanism that
it is free-riding when he plays such a variant. However, we do not allow the mechanism to exploit this knowledge,
because the action is actually a proxy for “free-riding” while playing a different action.

The formal construction of a “free-riding” varianta′ of each actiona is specified by the following definition.

Definition 5 A mechanismΓ satisfies free-ride ignorance if∀a ∈ A, ∃a′ ∈ A,∀b ∈ A, the following conditions hold:

• (Prereq(g(a′, b),→) = {⊥})
• (Prereq(g(a, b),←) = {2}) =⇒ (Prereq(g(a′, b),←) = {2})
• (Prereq(g(a, b),←) = {1, 2}) ∨ (Prereq(g(a, b),←) = {⊥}) =⇒ (Prereq(g(a′, b),←) = {⊥})

3 Initial Game

We begin by examining mechanismΓSF , which has two actions, share (S) and free-ride (F ), and induces the game
specified in Table 4. In our setting, this is the most basic game one could examine: one action allows agents to share
files, while the other is a consequence of the requirement that the mechanism satisfy free-ride ignorance.

Share (S) Free-ride (F )
Share vi · p− ci · p −ci · p
(S) (←2,→1) (←⊥,→1)

Free-ride vi · p 0
(F ) (←2,→⊥) (←⊥,→⊥)

Table 4: Outcomes, along with the utilities of the row playerai, in the game induced by mechanismΓSF .

As was anticipated in the Introduction, in this game it is indeed a strictly dominant strategy for altruistic agents to
playS and for selfish agents to playF . Thus, the unique Bayes-Nash equilibrium is for both agents to play according
to the strategys∗i (θ

a
i ) = S ands∗i (θ

s
i ) = F .

4 Step I: Promoting Trades

In order to induce selfish agents not to free-ride, we add the action Trade (T ). This action is similar toF , and it is
equivalent to this action (for both directions of a possible transfer) when played against an agent who plays eitherS
or F . However, when both agents playT , and when both agents have an item that the other desires, a trade occurs.
Intuitively, an agent who playsT is only willing to transfer an item if doing so is necessary in order to receive one
in return, an offer which is consistent with our expectation thatvi > |ci|. The game induced by this mechanism,
which we labelΓSTF , is specified by Table 5. Note that this mechanism satisfies free-ride ignorance, becauseF is the
free-ride variant ofT .
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Share (S) Trade (T ) Free-ride (F )
Share vi · p− ci · p −ci · p −ci · p
(S) (←2,→1) (←⊥,→1) (←⊥,→1)

Trade vi · p (vi − ci) · p2 0
(T ) (←2,→⊥) (←1,2,→1,2) (←⊥,→⊥)

Free-ride vi · p 0 0
(F ) (←2,→⊥) (←⊥,→⊥) (←⊥,→⊥)

Table 5: Outcomes, along with the utilities of the row playerai, in the game induced by mechanismΓSTF .

Now, it is no longer a strictly dominant strategy for selfish agents to playF , and in fact it is a weakly dominant
strategy for them to playT . However, depending on bothp andPs, it may also no longer be a dominant strategy for
altruistic agents to playS. Specifically, an altruistic agent may have incentive to playT in order to have a chance of
extracting an item from an opponent who playsT , even though playing this action may prevent him from giving away
an item.

The characterize all Bayes-Nash equilibria, we first analyze the case in which all selfish agents play their weakly
dominant strategyT . SinceF is a strictly dominated strategy for an altruistic agent, we can restrict consideration toS
andT for this type of agent.

In this case, the actionT yields a strictly higher expected utility thanS for an altruistic agent, regardless of the
strategy adopted by the opposing agent for its altruistic type, if the following condition holds:

v · p · (1− Ps) + (v + c) · p2 · Ps > (v + c) · p · (1− Ps) + c · p · Ps

(v + c) · p2 · Ps > c · p
p >

c

(v + c) · Ps

By examining the payoffs for(S, T ) and(T, T ), we find that the condition for the actionS to be a strictly dominant
strategy for an altruistic agent is thatp < c

v+c .
For all other values ofp, there exist two pure strategy Bayes-Nash equilibria: one in which altruistic agents playS,

and another in which they playT . Also, there exists a mixed strategy equilibrium in which altruistic agents randomize
between these two actions. The condition for these two actions to yield an equal expected utility for an altruistic agents
is as follows:

v · p · (1− Ps) · s∗i (θa
i , S) + (v + c) · p2 · [Ps + (1− Ps) · (1− s∗i (θ

a
i , S))] =

(v + c) · p · (1− Ps) · s∗i (θa
i , S) + c · p · [Ps + (1− Ps) · (1− s∗i (θ

a
i , S))]

(v + c) · p · [1− (1− Ps) · s∗i (θa
i , S)] = c · (1− Ps) · s∗i (θa

i , S) + c · [1− (1− Ps) · s∗i (θa
i , S)]

(v + c) · p− (v + c) · p · (1− Ps) · s∗i (θa
i , S) = c

s∗i (θ
a
i , S) =

(v + c) · p− c

(v + c) · p · (1− Ps)

To complete the characterization of the equilibria, we note that selfish agents will never playS, since it is strictly
dominated for them, and that there cannot exist a mixed strategy equilibrium in which they mix betweenT andF ,
because, if there is any possibility that the opponent of a selfish agent playsT , then playingT himself yields a strictly
higher expected utility than playingF . Thus, the only other equilibrium is the one from the previous game. Table 6
summarizes these results, characterizing all Bayes-Nash equilibria for each region of a partition of the parameter space
for our setting.

5 Step II: Maximizing Transfers

In this section, we address the problem we created in the previous section– namely, that altruistic agents may no longer
have incentive to share their items. To do this, we add a fourth action, “Conditional-Share” (C), which allows an agent
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Condition All Bayes-Nash Equilibria
p < c

v+c (1) s∗i (θ
a
i ) = S ands∗i (θ

s
i ) = T

(2) s∗i (θ
a
i ) = S ands∗i (θ

s
i ) = F

(1) s∗i (θ
a
i ) = S ands∗i (θ

s
i ) = T

c
v+c ≤ p ≤ c

(v+c)·Ps
(2) s∗i (θ

a
i ) = T ands∗i (θ

s
i ) = T

(3) s∗i (θ
a
i ) = [S : (v+c)·p−c

(v+c)·p·(1−Ps) ;T : 1− (v+c)·p−c
(v+c)·p·(1−Ps) ] ands∗i (θ

s
i ) = T

(4) s∗i (θ
a
i ) = S ands∗i (θ

s
i ) = F

p > c
(v+c)·Ps

(1) s∗i (θ
a
i ) = T ands∗i (θ

s
i ) = T

(2) s∗i (θ
a
i ) = S ands∗i (θ

s
i ) = F

Table 6: A characterization of the Bayes-Nash equilibria for the game induced by mechanismΓSTF . A mixed strategy
si(θi) is specified in the form of a lottery,[a : si(θi, a); a′ : si(θi, a

′); . . .], where each action that is played with
positive probability is followed by its associated probability.

to give away an item whenever possible, but demands an item in return if he transfers an item to the other agent and
the other agent has an item he desires. Of course, if the other agent free-rides, then an agent who playsC will give
away an item if possible and never get one in return, because it appears to him that the other agent simply did not have
an item for him. However, an opponent who playsT must, if possible, give him an item in return for receiving one.
Thus, an agent who playsC extracts an item from his opponent under the exact same conditions as an agent who plays
T does, but has a greater chance of giving away an item for each action of his opponent. The game induced by this
mechanism, which we callΓSCTF , is specified by Table 7. Note that this mechanism also satisfies free-ride ignorance,
becauseF is the free-ride variant ofC.

Share (S) Conditional-Share (C) Trade (T ) Free-ride (F )
Share vi · p− ci · p vi · p− ci · p −ci · p −ci · p
(S) (←2,→1) (←2,→1) (←⊥,→1) (←⊥,→1)

Conditional-Share vi · p− ci · p vi · p− ci · p vi · p2 − ci · p −ci · p
(C) (←2,→1) (←2,→1) (←1,2,→1) (←⊥,→1)

Trade vi · p vi · p− ci · p2 (vi − ci) · p2 0
(T ) (←2,→⊥) (←2,→1,2) (←1,2,→1,2) (←⊥,→⊥)

Free-ride vi · p vi · p 0 0
(F ) (←2,→⊥) (←2,→⊥) (←⊥,→⊥) (←⊥,→⊥)

Table 7: Outcomes, along with the utilities of the row playerai, in the game induced by mechanismΓSCTF .

Now, it is a weakly dominant strategy for an altruistic agent to playC. The disadvantage of adding this action is
that it may undo the work of addingT , because it is no longer a weakly dominant strategy for selfish agents to playT .
Instead, a selfish agent must tradeoff the possibility of needing an item to trade with another selfish agent against the
possibility of the being forced to give an item to an altruistic agent who would give him an item even if he chooses to
free-ride. However, under conditions that we consider likely to be satisfied, an optimal equilibrium exists in this game.

To characterize the set of Bayes-Nash equilibria, we first note that onlyS andC are not strictly dominated for
altruistic agents, and that onlyT andF are non strictly dominated for selfish agents.

We first find all equilibria in which selfish agents assign some probability toT . When this is true,C always yields
a higher expected utility to altruistic agents thanS, and thus we can limit consideration to strategies that in which all
altruistic agents playC. Here, it is never rational for a selfish agent to playT overF if the following condition holds:

(v · p− c · p2) · (1− Ps) + (v − c) · p2 · Ps < v · p · (1− Ps)
v · Ps − c < 0

Ps <
c

v

On the other hand, whenPs ≥ c
v holds, there exist two equilibria in which selfish agents assign some probability

to T : one in whichT is the pure strategy of the selfish agent, and another in which selfish agents mix betweenT and
F . Specifically, the expected utility for both of these actions are equal when the following condition is satisfied:
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(v · p− c · p2) · (1− Ps) + (v − c) · p2 · Ps · s∗i (θs
i , T ) = v · p · (1− Ps)

s∗i (θ
s
i , T ) =

c

v · Ps

To complete the characterization, we need to find all equilibria in which selfish agents always playF . SinceC is
equivalent toS when there is no chance that the other agent will playT , anys∗i (θ

a
i ) that assigns positive probability

only toC andS forms an equilibrium withs∗i (θ
s
i ) = F . These results are summarized in Table 8.

Condition All Bayes-Nash Equilibria
Ps < c

v (1) ∀x ∈ [0, 1], s∗i (θ
a
i ) = [S : x; C : (1− x)] ands∗i (θ

s
i ) = F

(1) s∗i (θ
a
i ) = C ands∗i (θ

s
i ) = T

Ps ≥ c
v (2) ∀x ∈ [0, 1], s∗i (θ

a
i ) = [S : x; C : (1− x)] ands∗i (θ

s
i ) = F

(3) s∗i (θ
a
i ) = C ands∗i (θ

s
i ) = [T : c

v·Ps
;F : (1− c

v·Ps
)]

Table 8: A characterization of the Bayes-Nash equilibria for the game induced by mechanismΓSCTF .

We have shown that whenPs ≥ c
v is satisfied, the strategys∗i such thats∗i (θ

a
i ) = C and s∗i (θ

s
i ) = T is an

equilibrium and, therefore,ΓSCTF implements the social choice functionfSCTF (·) specified in Table 9.

θ1 θ2 fSCTF (θ1, θ2)
θa

i θa
i (←2,→1)

θa
i θs

i (←1,2,→1)
θs

i θa
i (←2,→1,2)

θs
i θs

i (←1,2,→1,2)

Table 9: Social Choice FunctionfSCTF (·).

Since in the real-world settings that we are modelling we expect thatv is significantly greater thanc and that selfish
agents make a large fraction of the population, we feel that the conditionPs ≥ c

v is likely to be satisfied. We now prove
that implementing this social choice function is as well as we can do, even among mechanisms that are not constrained
to satisfy free-ride ignorance.

Theorem 1There does not exist a mechanismΓ′ that implements a social choice functionf ′(·) that satisfies ex post
IR and such thatz(f ′(·)) > z(fSCTF (·)).
Proof: Assume by contradiction that there does exist a mechanismΓ′ that implements af ′(·) such thatz(f ′(·)) >
z(fSCTF (·). Then, it must be the case there exists some pair(θ1, θ2) such that the following inequality holds:

p(← |f ′(θ1, θ2)) + p(→ |f ′(θ1, θ2)) + 2 · p(↔ |f ′(θ1, θ2)) >

p(← |fSCTF (θ1, θ2)) + p(→ |fSCTF (θ1, θ2)) + 2 · p(↔ |fSCTF (θ1, θ2))

However, for each pair(θ1, θ2), fSCTF (θ1, θ2) has the property that any possible transfer from a selfish agent has
{1, 2} as the prerequisites, and any possible transfer from a altruistic agentai has{i} as the prerequisite. Thus, the
probability of a transfer from an altruistic agent is already maximal, while the probability of a transfer from a selfish
agentai can only possibly be increased by changing the prerequisites to{i}. Since this change would violate ex post
IR, we have reached a contradiction.

An unsatisfying aspect of our implementation offSCTF (·) under the conditionPs ≥ c
v is that two other social

choice functions are also implemented that yield a smaller number of expected transfers. Unfortunately, the existence
of these other two equilibria is unavoidable, given our requirement of free-ride ignorance. Informally, this is the case
because any mechanism that implements a social choice functionf ′(·) that achieves the maximal valuez(fSCTF (·))
must be based on an equilibrium in which selfish agents only randomize over actions that will yield the outcome
(←2,→1,2) when paired with an altruistic agent and(←1,2,→1,2) when paired with another selfish agent. The
“free-ride” variant of each of these actions will then yield the outcome(←2,→⊥) when paired with an altruistic agent
and(←⊥,→⊥) when paired with another selfish agent, which means that the above analysis would apply to this game
as well.
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6 Discussion

If this single interaction occurs in a broader context that satisfies certain properties, then we can suggest a way to
help the agents to converge on the desired equilibrium, when the condition for its existence is satisfied. Consider the
expanded setting of a repeated Bayesian game with randomly paired opponents from a large population, in which each
agent is myopic, in the sense that if it is selected to participate in the game for a particular round, it aims to maximize
its expected utility only for the current Bayesian game, ignoring repeated game effects. Furthermore, assume that each
agent forms its expectations over what its opponent will play based on previous rounds of the game. Then, starting
from the initial game induced byΓSF , if we switch toΓSTCF , it is unlikely that we will converge to the desired
equilibrium, because agents will expect an opponent of the selfish type to playF , the action they played in the previous
game. However, if we first switch toΓSTF , then it is likely that the agents will converge on an equilibrium for the
corresponding game in which all selfish agents playT , because it weakly dominatesF (while both actions would yield
equal utility based on expectations formed fromΓSF , all it takes is a single agent to begin the transition to all agents
playingT , and this agent could make this choice either by randomizing over best responses to its expectations or as a
best response to an expectation formed from previous play combined with a prior). If we then switch toΓSCTF , we are
more likely to converge to the desired equilibrium, becauseT is a best response for a selfish agent to the expectation
that all other selfish agents will playT and to any expectation over what fraction of altruistic agents playS as opposed
to C.

To summarize, we have formalized and studied a mechanism design problem concerning free-riding in P2P systems.
Two important properties of our setting are that the mechanism cannot distinguish a free-rider from an agent who simply
has nothing to share, and that an agent can choose to reject the transaction that results from the interaction. Starting
from the basic file-sharing game, we first added the action “Trade” to promote the trading of songs between selfish
users, and then added the action “Conditional-Share” so that there exists an equilibrium in which transfers occur
whenever possible, given the constraints imposed by our setting. We characterized the set of all Bayes-Nash equilibria
in each game. After proving the optimality of the desired equilibrium in the final game, we discussed how to possibly
avoid the undesirable equilibria that must exist in conjunction with it.
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