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A terminating algorithm is developed for the problem of finding the point of smallest 
Euclidean norm in the convex hull of a given finite point set in Euclidean n-space, or 
equivalently for finding an "optimal" hyperplane separating a given point from a given finite 
point set. Its efficiency and accuracy are investigated, and its extension to the separation of two 
sets and other convex programming problems described. 

1. Introduction 

We develop here a numerical algorithm for finding that point of a given polytope 
in Euclidean n-space which has smallest Euclidean norm. A polytope is the 
convex hull of a given point set P = {P1 . . . . .  P,,}; algebraically, we are required to 
minimize ]XI 2= X T X  for all X of the form 

X =  ~ Pkwk, ~ Wk = 1, for all wk I>0. (1.1) 
k = l  k = l  

The point X is thus the nearest point to the origin in the polytope. Solving the 
problem for P = {P1 - Y, . . . .  P m -  Y} yields X + Y as the nearest point to Y; for 
simplicity we keep Y = 0 throughout. 

That problem, or its dual, arises in many contexts. We have encountered it in 
the optimization of nondifferentiable functions, in approximation theory, and in 
pattern recognition, and have felt the need for an efficient and reasonably 
foolproof way of solving it. We offer what follows as an approximation to that 
goal. 

The problem is, of course, a problem of quadratic programming, for which there 
are several excellent general algorithms; but the special nature of our problem lets 
us improve on them. The central feature of our approach is that the representation 
(1.1) of X is explicitly used, and the set of such X viewed as a polytope, while the 
usual general algorithm concentrates on the constraints w ~> 0, taking the descrip- 
tion of the set as a polyhedron (the intersection of halfspaces) as fundamental. 
The algorithm to be described has been trimmed to the present problem; we think 
it improves on the general-purpose algorithms in computational effort, storage, 
and roundoff error. Other procedures we have seen (e.g., [2, 9]) are convergent,  
non-terminating methods, and cannot be properly compared with the present 
scheme. 

The next section presents some elementary notions required to set the problem. 
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The algorithm is described in purely geometr ic  terms in Section 3, and the 
corresponding algebraic description given in Sections 4 and 5. Section 6 presents  
results f rom tests on easily generated problems of several  kinds, while Section 7 
considers some possible improvements  on the method.  Section 8 studies the 
accuracy  of the solution. Section 9 mentions some handy ways  to use the method 
when a problem already solved is modified, and Section 10 describes the use of the 
algorithm to find "good"  or "opt imal"  separating hyperplanes.  Finally, Section 11 
discusses some natural extensions of the algorithm to other constraint  sets and 
object ive functions.  

We are indebted to Daniel Chazan for suggesting this study, and to him, Harlan 
Crowder,  G.W. Stewart ,  and Christoph Witzgall for  many  helpful suggestions. 

2. Preliminaries 

Let  P = {P~ . . . . .  Pro} be a finite point set in a Euclidean space of dimension n. The 
smallest  fiat (translation of a linear subspace)  containing P is called the ajOine hull 
of P, 

A ( P ) = { X : X = ~ P j w j , ~  wj = 1}. (2.1) 
] = 1  i 

The smallest  convex  body containing P is the convex hull of P, 

C(P) = {X: (2.1) holds for  some w/> 0}. 

In both cases,  the vector  w = (Wl . . . . .  win) consti tutes the weights, or barycentr ic  
coordinates,  of the point X in P. 

Letting the set P be represented (without ambiguity) by the n-by-m matrix P 
whose columns are the points Pj, we may  write 

A ( P )  = {X: X = Pw, eTw = 1}, 

C(P) = {X: X = Pw, eTw = 1, W />0}, 

where e is the column vector  (1, 1 . . . . .  1) T. (Throughout,  the number  of compo-  
nents of vectors  such as e and w is to be inferred f rom the context.  In this case, it 
is m for  both. An inequality relating two vectors  is unders tood to hold simultane- 
ously for  each component . )  

A point set (or matrix) Q is a1~nely independent if no point of Q belongs to the 
affine hull of the remaining points. In that case, the weights expressing the point 
X = Qw, eTw = 1 as a member  of A ( Q )  are uniquely determined.  Affine depen- 
dence is equivalent  to the proper ty  that the (n + 1)-by-k matrix 

(where k is the number  of points of Q) has rank k, as well as to the proper ty  that 
the symmetr ic  matrix of order k + 1 
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have rank k + 1, that is, be nonsingular. The sets A ( Q )  and C(Q)  then have 
dimension k -  1, and C(Q)  is a nondegenerate simplex whose vertices are the 
points of Q, while all the faces of dimension p of that simplex are the convex hulls 
of all the subsets of p + 1 points of Q. The relative interior of C(Q)  (relative to the 
smallest affine set, A (Q), containing it) is just the set of points whose weights in Q 
are all positive, and for any X E C(Q)  there is a unique face having X in its 
relative interior: its vertices are those points for  which the weight of X in Q is 
positive. 

When Q is affinely independent,  we can easily minimize IXI on A(Q) ,  that is, 
solve the problem 

Minimize IX] 2= wTQTQw, 
subject to eTw = 1. 

Forming the Lagrangian wTQTQw + 22, (eTw -- 1) and differentiating, we have the 
necessary conditions 

eTw = 1, 
eA + Q T Q w  = 0, (2.3) 

which have a unique solution owing to the nonsingularity of their matrix (2.2). 
Since the minimand is convex these conditions are also sufficient; X = Qw 
minimizes IXI on A(Q) .  

Our algorithm will repeatedly produce such points X for selected sets Q. If it 
happens that w I> 0, then of course X belongs to C(Q)  and minimizes IX I there; 
and if Q c_ P has been suitably chosen, X may even minimize over C(P) ,  and 
solve the original problem. The test for  that, given below, amounts to determining 
whether  the hyperplane 

H ( x )  = {x:  xTx = Ix l  2} (2.4)  

is a supporting hyperplane of P, and hence of C(P) .  Since [X] ~ is strictly convex,  
the point which minimizes IxI over c ( P )  is unique. We refer to it as 

Nr P. 

Theorem 2.1 (Optimality). X E C(P)  is Nr P if and only if 

XTpj >1 IX[ 2 for  all j. 

Proof. Let  Y E C ( P ) ,  0~<0~<1; then X + 0 ( Y - X ) @ C ( P )  and IX+  
O ( Y - - X ) [ 2 = [ X r + 2 0 ( X T Y - - X T X ) + O 2 [ Y - - X I  z, which is less than [X] 2 for 
small 0 unless X T Y  >1 x T x .  It follows that X = Nr P if and only if X T Y  >! X T X  
for all Y E C(P) ,  from which the theorem follows. 

The next  result is convenient  for testing the quality of an approximation to 
Nr P. 
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Theorem 2.2 (Estimation). I f  0 ~ X E C ( P ) ,  then 

bxI/> INrPI ~MinjX~P~/IXI. (2.5) 

Proof. Let  Nr  P = Y~ AjPj, Z~ A; = 1, all A~ ~> 0. Then 

Min xTp,/IxI <- ~, A,XTp,/IXI : XT(Nr P)/IxI <-INr PI. 
J i 

The second inequality of (2.5) of course holds for any X ¢  0. Theorem 2.2 states 
just the useful  part  of a duality theorem for our problem, which we can state in 
greater  generali ty for  the discussion in Section 10. 

Let  I'[ denote  any norm (a posi t ive-homogeneous  finite-valued convex  function 
vanishing only at the origin) on E", and ]'l* its dual norm 

lY [* -- Max{y Tx: Ix l ~< 1}. (2.6) 
Let  

g(y)  = Min yrpj. (2.7) 
J 

The problems 

Min{lxl: x E C(P)}, (2.8) 

Max{g(y): lY[* ~< 1} (2.9) 

are dual: 
(i) g(y)<~lxl for  all x E C(P) ,  lyl*~ 1; 

(ii) the ex t rema (2.8), (2.9) are equal; 
(iii) among the solutions of the two problems are found all the saddlepoints of 

yrx, that  is, all pairs x, y such that  y r$  ~< y r$  ~< yT x for  all x E C(P) ,  lY[* ~< I. 
(This duality is well known in approximat ion theory,  but its first appearance  

eludes us.) 
For  the Euclidean norm we have the simplification that  lY[*= [Y I, and (2.5) 

follows f rom the fact  that the saddlepoint (iii) is given by ~ = Nr P and y = $/15] if 
Nr  P ~ 0, and by  • = y = 0 otherwise.  

3. The algorithm: geometry 

We call an affinely independent  subset  Q of P a corral if Nr  Q is in its relative 
interior. Note  that any singleton is a corral. There is a corral whose convex  hull 
contains the solution of the smallest-norm problem over  P, and our algorithm will 
find it. 

The algorithm consists of a finite number  of major cycles, each of which may  
involve some number  of minor cycles. At the start  of each major  cycle we have a 
corral Q and the point Nr  Q. The cycle consists in choosing a new point, 
adjoining it to Q, and determining whether  the result is a corral. If  so, the cycle is 
finished; if not, a minor cycle is begun. At the start  of a minor cycle we have just  
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some affinely independent set Q and some point X E C(Q). Each minor cycle 
removes one selected point from Q and alters X. Minor cycles are repeated until a 
corral is found and X = Nr Q, terminating the major cycle. 

The initial corral is the singleton given by Step 0 below. Subsequently each 
major cycle begins at Step 1; the minor cycles, if any, in a major cycle constitute 
repetititions of Steps 3 and 2. Following the algorithm here we show how it works 
on the example of Fig. 1. 

Pl = (0,2) 

pa=(3,o) 
Fig. 1. Example. 

Step O. Find a point of P of minimal norm. Let X be that point and Q = {X}. 
Step 1. If X = 0 or if H(X) separates P from the origin, stop. Otherwise 

choose  Pj E P on the near side of H(X) and replace Q by Qu{PJ}. 
Step 2. Let Y be the point of smallest norm in A(Q). If Y is in the relative 

interior of C(Q), replace X by Y and return to Step 1. Otherwise 
Step 3. Let Z be the nearest point to Y on the line segment C(Q)nXY(thus a 

boundary point of C(Q)). Delete from Q one of the points not on the face of 
C(Q) in which Z lies, and replace X by Z. Go to Step 2. 

Fig. 1 and Table 1 illustrate the algorithm in a simple problem, giving the current 
Q, X, and Y at the end of each step. 

We must show that the algorithm terminates in a solution of the problem. First, 

Table 1 
Solution of the example 

Step X Q Y 

0 Pt P~ 
1 P~ P~,P2 
2 R do. 
I R P , ,  P~, P3 
2 R do. 
3 S P2, P3 
2 T do. 
1 STOP 

R 

0 

T 

R = (0.923, 1.385) is the nearest point to 0 on PIP2. 
S = (0.353, 0.529) is the intersection of OR and P2P3. 
T = (0.115, 0.577) is the answer. 
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observe that Q is always affinely independent: it changes only by the deletion of 
single points or by the adjunction of P~ in Step 1. Now the line OX is normal to 
A(Q),  since IX I is minimal there; thus A(Q)  C H(X) .  Since P ~  H(X) ,  we know 
P s ~  A(Q) ,  so Qu{P~} is affinely independent if Q is. Next, there can be no more 
minor cycles in a major cycle beginning with a given Q than the dimension of 
C(Q), for when Q is a singleton, Step 2 returns us to Step 1 (indeed, the total 
number of minor cycles that have been performed from the beginning cannot 
exceed the number of major cycles). Every time Step 1 is followed by the 
replacement in Step 2 (the major cycle has no minor cycle) the value of [X I is 
reduced, since the segment X Y  intersects the interior of C(Qu{P~}) and [XI 
strictly decreases along that segment. For the same reason the first minor cycle, if 
any, of a major cycle also reduces [X I, and subsequent minor cycles cannot 
increase it. Thus IX/ is reduced in each major cycle. Since X is uniquely 
determined by the corral on hand at Step 1, no corral can enter the algorithm more 
than once. Since there is but a finite number of corrals the algorithm must 
terminate, and it can only do so when the problem is solved. 

The reader familiar with the Simplex Method for linear programming will notice 
its close relationship to our algorithm. More is said about this in Section 11. 

4. The algorithm: algebra 

We describe the algorithm of Section 3 algebraically. The points Pj are the 
columns of the n-by-m matrix P. The matrix for the corral Q is not explicitly 
formed; rather, we maintain the set of indices S C_ {1 . . . . .  m} designating those 
columns of P constituting Q. By P[S] we mean the submatrix of P consisting of 
those columns, so that Q = P[S]. Note that w is a vector of varying length (one, 
in Step 0). The "notes"  at the end of this section should be consulted. 

Step O. Defining J by [P~r = Min{lPj[2,] = 1 . . . . .  m}, set S = {J} and w = (1). 
Step 1. (a) Set X = P [ S ] w .  

(b) Define J by XTPj = Min{XTpj, all ]} (Note 1). 
(c) If XTp~ > X T X - Z 1  Max{[P,]2, Max,~s[pj[2}, STOP. (Notes 2,7). 
(d) If J E S, then STOP (Note 3). 
(e) If not stopped above, then replace S by Su{J} and w by (w, 0). 

Step 2. (a) Solve the equations 

eTv = 1, eA +P[S]TP[S]v = 0  (4.1) 

for v. (Section 5 is devoted to that task.) 
(b) If v >Z2e  (Note 4), set w = v and go to Step 1. Otherwise, 

Step 3. (a) Let  POS be the set of indices i ~ S for which w, - v, > Z3 (Note 5). 
(b) Set 0 = Min{1, Min{w,/(wl - v,): i E POS}}. 
(c) Replace w by Ow + ( 1 - O ) v .  
(d) Replace by zero all elements of w not greater than Z2 (Note 6). 
(e) Delete from w some zero component, and from S the correspond- 

ing index. Go to Step 2. 
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Notes. 1. This rule for choosing J is the handiest, and keeps the number of cycles 
low, as well as making approximate affine dependence of Pj on P IS] unlikely. For  
large-scale problems there are likely better rules: See Section 7. 

2. The term subtracted from X ~ X  is intended to make due allowance for 
roundoff error in the whole procedure.  When Z, = 0 we have the optimality test of 
Theorem 1, Section 2. Calculating with sixteen-digit precision we use the generous 
value Z1 = 10 -12. Without some such provision, the optimality test might never be 
passed. 

At the stop in l (c) ,  X is N r P ,  P/S] is the corral which holds it, and w its 
barycentric coordinates in P/S]. 

3. Stopping in l (d)  signals temporary disaster: X is so inaccurate that the 
relation XTPi = x T x ,  which should hold for all ] E S, fails to more than the degree 
measured by Z1. We have encountered this when P contained some nearly 
identical points, and generally find than that the stop l (c)  would have occurred if a 
modestly larger value of Z1 had been used. That  is a happy ending; see Section 8 
regarding the effect of Z1 on the final answer. 

Some work would be saved by using only j ~  S in l(b) and omitting this step, 
but then some other kind of guard shou!d be kept  on the affine independence of Q. 
The check is also a fine trap for programming errors. 

4. Another precaution. We use Z2 = 10 -1°. 
5. We use Z3 = 10 -1°. 
6. The value of 0 given by 3(b) is the smaller of 1 and the largest value for 

which all components  of Ow + (1 - O)v are nonnegative. If 0 < 1, then at least one 
of those components  will vanish. The replacement of 3(d) makes that vanishing 
decisive. We use the tolerance Z2 here for consistency with Step 2(b). 

7. Answers to well-formed optimization problems are subject to checks which 
are usually so easy it would be a sin to forgo them. Necessary  and sufficient (and 
redundant) conditions that X, S, and w i> 0 solve our problem are the vanishing of 
these four numbers: 

(a) 1 - eTw, 

(b) Ix-P[S]wl, 
(c) Max IX~P, - X~Xl, 

(d) Min X T p i  - x T x  
i 

(whose connection with the accuracy of the final solution is discussed in Section 
8). If they do not approximate zero to a plausible degree, the algorithm has 
blundered. A possible fix would be to repeat  the calculation, using instead of the 
matrix P just P [S ] ,  and perform the tests again. We have had no experience with 
unsatisfactory performance when using the methods recommended in the next  
section. 

8. A sometimes most useful feature of the algorithm is that after step 0 the 
point set P is consulted only in Step l(b), and that step requires only one point Pj 
achieving Min{XTpj}. The set P may well be presented in some form other than 
that of a simple list, yet  permit the step to be executed efficiently. An important 
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case occurs when P is actually the sum of two other sets: P = C + D  = 
{c + d : c E C, d @ D}. Although the number of points in P is the product  of those 
in C and D, it is only necessary to look at each point of C and D once, for the 
desired member  of P is just g + d, where ~, d minimize X ~ P  for p E C and 
p E D, respectively. The problem of finding the shortest distance between two 
convex hulls allows such a formulation, which we exploit in Section 10; and some 
of the extensions of this algorithm considered in Section 11 likewise depend on 
such a "decomposi t ion"  of P. 

5. Solving the equations 

We have worked with the four ways A - D  below of handling the equations (4.1), 
and concluded that D is the best. Let  s be the number of indices of S - that is, the 
number of points in the current  corral. By "opera t ion"  below we mean the 
execution of one floating multiply and one floating add. In making estimates, we 
give only the leading term of the polynomial constituting the accurate value. 
Storage estimates assume that symmetric matrices are stored without redun- 
dancy. 

Method A. Maintain in storage the inverse E of the matrix of equations (4.1), 
modifying it when S changes. Initially 

When S is increased in Step 1, E is replaced by 

E + Y Y ~ / t  - Y / t ]  
- Y / t  l / t  J '  

where Y = EQTpj  and t = P ~ P ~ -  p T Q y .  (The "p ivot"  t is easily shown to be 
positive [W2]. It is the square of the distance of Ps from A(P[S]) . )  When S is 
decreased in Step 3, the appropriate column C and diagonal entry d of E are used 
to form E - Cd- IC T, from which the new inverse results by dropping the same 
row and column. The solution of the equations is just the top row of E. 

Method B. Maintain in storage the " tableau" for the quadratic programming 
problem (1.1). The tableau will contain E above and all the other data of the 
problem, suitably transformed by E. This approach has been discussed elsewhere 
[W14] for its pedagogical value, but  its storage (½m 2) and arithmetic requirements 
ira2 operations per cycle) rule it out unless m ~ n, which is rare. Since it suffers 

f rom roundoff  error even more than Method A, which is already in agony (see 
Section 8), we will not pursue it further. 

For  both procedures below it is efficient to find v of (4.1) by using these 
equations: 

(ee T + P[S]rP[S] )u  = e, (5.1) 

v = u/e~'u, (5.2) 
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whose equivalence with (4.1) is easily checked. The order of the system (5.1) is 
one less than that of (4.1), and the normalization e~v = 1 is almost perfect ly 
achieved. 

Method C. The system (5.1) constitutes the normal equations A TAu = A Tb for 
the least-square solution of the equations Au  = b, taking 

A = P / S ]  

and b = (1,0 . . . . .  0) T. In the interpretive language APL/360 the "domino"  
operator  provides such a solution, and (5.1) is solved as 

u ~ - - ' b ~ A .  

This method is of course the most convenient  to use in an APL  program, and 
about as accurate as Method D below; in fact, the machine-language implementa- 
tion of "domino"  uses the arithmetic of Method D to compute u. Interestingly, in 
APL  Method C is much quicker than D, although each time C is called, a number 
of D steps are taken; and it also uses slightly less time than Method A. 

Method D. We maintain the matrix of the equations (5.1) in the form RTR, 
where R is an upper triangular matrix, doing the arithmetic in the manner 
suggested by Golub and Saunders '  t reatment  of the least-squares problem [6]. 

We have always 

R TR = ee T + p [ S ]Tp [ S ], (5 .2)  

and the solution of (5.1) is the result of solving the two systems 

{R T~ = e 
Ru a. (5.3) 

R must be altered whenever  S is. The required work changes the algorithm of 
Section 4 as follows: 

(i) Add to Step 0: Le t  R be the 1-by-1 matrix [(1 + IPjI2)1[21. 
(ii) Add to Step 1: 

(f) Solve for r the system 

RTr = e + P[S]Tpj. (5.4) 

(g) Adjoin to R, on the right, the column [rp] T, where 

= P s  J - • p (1 + T p  r T / . ) l / 2  

(iii) Delete "Go to Step 2" from 3(e), and add to Step 3: 
(f) Let  I be the position of the component  deleted in (e); delete the I ~ 

column of R. 
(g) If I exceeds the number of columns of (the new) R, go to Step 2. 

Otherwise let 

a = R~,I, b = R,+I,I, c = (a 2+ b 2)1/2; 

replace R~,. (row I of R)  by (aR~,.+bR~+l,)/c and R~+I. by (-bR~,.+ 
aRi+l,.)[c; increase I by one, and repeat this step. 
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It is easy to check that (ii) above and (f) of (iii) maintain the relation (5.2). Step 
2(g) uses plane rotations to restore R to upper triangular form after 2(f) has 
damaged it. 

The storage needed for this scheme is the same as for  A above. Solving a 
triangular system of s equations takes ½s 2 operations, so (5.3) takes s 2. Equations 
(5.4) take ½s 2, while the rotations of 3(g) take 2(s - 1 )  2, which has the expected 
value ~s 2 if I is randomly, uniformly chosen. Thus when S is increased 
(decreased), ~s 2(~s 2) operations are done, for  an average of 19s12 2 in the long run. 

We find that with this procedure there is virtually no accumulation of roundoff 
error,  unlike A (see Section 8). Since the difference of ~s 2 in the average operation 
counts of the two methods is swamped by the m n  operations taken by Step l(b) in 
the typical problem, we prefer  D. 

6. Experience 

Although the amount  of computational work done in a single step of the algorithm 
is well determined (see Section 5), we do not know how to estimate the number of 
iterations required. That  number is of course bounded by the number of 
possible corrals in P, which is in turn bounded by the number of subsets of P 
having no more than n + 1 elements, a calculable number;  but the result is 
preposterously large. As with linear programming, we must resort  to experiment  
to determine when the method is practical. 

We have tested the algorithm on four types of problem. All of them start with a 
set po of m points chosen at random, uniformly distributed over an n-cube of side 
2 centered at the origin. (Draw m n  integers at random without replacement  f rom 
1, 2 . . . . .  104, divide by 5000 and subtract 1.) 

Type 0: P = po. 
Type 1: The point X ° is chosen randomly from 2P °, and Pj = X ° + po for all j. 
Type 2: po is compressed by 10 3, and then displaced one unit, along the xl 

axis: 

P = {(1 + 10 3x~, x z  . . . . .  x,): (xl, x2 . . . . .  x , )  ~ po}. 

Type 3: Like Type  2, but displaced by 0.01 instead: 

P ={(10 2+ 10 3 x l ,  x 2  . . . . .  x,): (xl . . . . .  x,)  E P°}. 

For  a problem of Type 0, Nr P = 0 is almost certain while for  Type 1, Nr P # 0 
is. Both problems are very easy; Type 0 since the origin is well-centered in P, 
Type 1 since the origin is likely to be near a "corner"  of P and require only a few 
points of P to determine the solution. When m > n a Type 0 problem almost 
always terminates in n + 1 major, and no minor, cycles: the first corral of 
dimension n + 1 constructed contains the origin. Table 6.1 gives the number of 
major and minor cycles for  Type 1 problems of various size. In each case, the 
number is the average for a sample of ten problems. 

Table 6.2 gives the same data for  Type 3 problems. We omit the corresponding 
data for  Type  2, since they can be generally described as requiring about 20% 
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fewer major cycles than do Type 3, and like Type 3 generally have terminal 
corrals of maximal size. 

Note  that the sum of the number of major and minor cycles is the total number 
of times a system of equations is solved. The difference of those numbers is the 
number of points in the terminal corral. The number of minor cycles can be 
viewed as a count of the "mistakes" made by the algorithm: the number of points 
selected which do not wind up in the terminal corral. When that number is zero, 
the amount of work the algorithm does in equation-solving in the updating 
versions A,B,D is simply what would be required to determine the weights w if the 
terminal corral were known in advance. The results tend to support our hunch that 
for large m the number of cycles increases roughly as log m. 

The graphs in Figs. 6.1-6.3 show the convergence of IXk[ and the dual objective 
g (X k) (see Section 2) toward their common value d = INr P I, as a function of the 
major cycle number k, for three problems having 80 points in E 2°. Each of the 
problems 0,2,3 is of the corresponding type, built from the same P°. The numbers 
of major cycles to termination were respectively 21,41,54, and minor cycles 
0,21,34. The calculations were done using Method C of the previous section in a 
APL\360 routine on an IBM 360 Model 91. The CPU times required were 1.70, 
4.63, and 6.63 seconds.  

It appears that the convergence of IXkl to d is roughly linear, as is that of g(X k) 
when d > 0. (Note that the plotted points are subject to a discretization error of 
the width of one dot, and that since the terminal values of !'1 and g were within 
10 -15 of d, those points are omitted from the logarithmic graphs.) 

Table 6.1. 
Cycles for 

n\m 20 

3.3 
10 

0.0 

4.2 
2O 

0.1 

4.9 
30 

0.1 

Type 1 problems (major above minor) 

40 60 80 100 120 140 160 

3.5 4.2 4.1 
0.2 0.2 0.2 

5.1 5.2 4.6 
0.2 0.1 0.1 

5.7 

0.0 

5.4 4.2 4.7 5.0 

0.1 0.1 0.2 0.6 

Table 6.2. 
Cycles for Type 3 problems 

n \ m 20 40 60 80 100 120 140 160 

10 

20 

30 

14.6 20.2 24.1 25.5 26.0 

5.1 10.2 14.1 15.5 16.0 

14.5 29.8 29.6 50.0 
1.3 10.6 19.6 30.0 

16.2 27.1 
1.1 3.3 

28.8 30.5 30.7 

18.8 20.5 20.7 
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7. Possible improvements 

For  a problem having a very large number m of points, almost all the computing 
time this algorithm requires will be taken in finding the new point P j  in Step l(b). 
There are several possibilities for  changing the selection criterion given in Section 
4 to improve matters. 

The first possibility considered is that the criterion used could be improved so 
that the number of major cycles might be reduced. Step l(b) as given chooses Pj 
as that point on the same side of the separating hyperplane X T x  = X T X  as the 
origin which has greatest distance from the hyperplane. We could, instead, either 
(i) determine how much reduction in IX[ would ensue in adjoining any Pi, (ii) 
estimate the latter quantity by finding the distance from the origin to the segment 
X P i  for  all P~, or more crudely (iii) choose Pi so as to maximize the angle between 
X and P~ - X. We deem (i) as too hard to be worthwhile, (ii) as interesting, and (iii) 
as easy enough to try out quickly, which is what we have done. The results, even 
for problems with n = 5, m = 100, were uniformly negative: there was a reduction 
of a few percent  in the number of major cycles, but the extra calculation required 
almost doubled the total CPU time. A cheap approximation to this is (iv): Choose 
J to minimize X T ( p i  - X)/[Pj[ ,  having calculated IP, I once and for all. The amount  
of work is about the same as for the original method, but so is the number of 
iterations, on the average, for our problems. 

We have not yet  tried out the other two ideas worth mentioning, although their 
analogues have proved successful for linear programming problems with very 
large numbers of variables. 

"Cyclic pricing": Only a portion of the points of P are examined before  
choosing Pj and performing the rest of the algorithm; then another portion is 
treated the same way; and so on, beginning again when all of P has been 
examined. Ultimately no candidate will be found in P, and we are done. 

"Suboptimization":  A small number of points of P are chosen after examining 
all of them - for  instance, the points having the ten lowest values for x T p i  -- and 
the problem is completely solved on that subset; and this is done repeatedly. 

Both procedures above are almost certain to increase the number of major 
cycles required by the algorithm, but hold promise of greatly decreasing the total 
work. At this time we have no more specific recommendat ion as to how to carry 
them out. 

8. Accuracy 

In most applications not much accuracy is required of the solution of our problem; 
but the answer obtained is quite accurate anyway. Here we show that the problem 
of finding Nr P is well-posed, and examine the round-off error in its solution. 

The problem is well-posed if small changes in its data lead to small changes in its 
answer - i.e. if Nr  P is continuous in P. That  is the content  of the Theorem below, 
due to G.W. Stewart. 
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Theorem 8.1. Suppose  that  X = Nr  P, 3( = Nr/5 ,  and 

IP, - P,I < 8 for  all j. 

Then 

II£f -  Ixll < 8 

and 

IX -- X[  < (41X[8 ~- ~2)1[2. 

Proof.  Wri te  X = Pw,  ) (  =/5}0, with e~w = 1, 
I/srvf<-- l/swl ~ lPwl + l(/5 - P)w[ < lxl + & and 
proves  (8.1). 

(8.1) 

(8.2) 

e ~  = 1, w, ~ / > 0 .  Then  ])(I = 
similarly [X I < I1(] + & which  

Fo r  all j, x T p j  >t X r X ,  w h e n c e  X r f f  j >~ X ~ X  - ~lxl; thus X ~ f f  >i X T X  - 6IX[. 
Consequen t ly  IX - X/2 = I~12- 2x~R + I x l  2 < ( IXl  + 8)  2 -  2(Ixl =- 8 I x l )  + rx[  2 = 

41x[8 + ~ ,  completing the proof. 

is not  bad. We set 
P2/(1 + 6/r) .  Then  
1/52- P21 = 6, and 
[2lxi81(1 + 8/ Ix[ ) ]  ''2. 

The bound  (8.1) is obv ious ly  sharp,  and the example  of  Fig. 8.l  shows that  (8.2) 
IP,l=r, P,P2±P, ,  IP2l=r+8; P , = ( I + ~ / r ) P , ,  P2= 
X = N r { P , ,  P2} = P1, X = Nr{P1,  P2} =/~2,  I/~, - PI[ = 

IX - X I = 2r  sin ½0 = [2r2(1 - cos 0)] '/2 = [2r28/(r + 8)] 1/2 = 

0 

Fig. 8.1. Perturbation of P. 

The theo rem above  permits  us to make  a simple a posteriori error  analysis.  
Suppose  the compu ta t i on  has finished in Step l(c), as it should,  with X ~  0. Le t  

B = MaxslPjl. Define 

e a = ] e T w - - l [ ,  

eb = IX - P t S ] w l / B ,  
(8.3) 

ec = MaxlXTPj - X T X I I B  [XI, 
j~s 

ed = IMin X r P i  - X T X I [ B  [X I, 
J 

T h e o r e m  8.2 shows the role of  these quanti t ies in a b a c k w a r d  er ror  analysis,  
which  is a posteriori  because  we do not  k n o w  h ow to give a priori  bounds  for  eo 
and ed. 
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Theorem 8.2. L e t  P, S, etc. be as above,  with 
e = Max{e~, ea}. 

There is a po in t  s e t / 5  such  that  X = Nr/5  and 

w > 0 ,  X #  O, and e~< 1. Se t  

Maxl/sj - E I  < B (2e~ + 2eb + e). 
i 

Proof. Let  T be the set of all indices j belonging to S or such that x T p j  -- X T X  < 
0. Set 

where 

/sj = p i e T w  q- X - P w  - Xaj,  

aj = x T ( p j e T w  -- P w ) I X T X ,  

for all/" ~ T, and /Sj = p~ for all other L (The required P is readily deduced by 
altering w, and then P, so as to make the quantities of (8.3) vanish - in the order of 
their writing.) Le t  ~ = w[eTw.  Then ~ > 0 ,  eTr~ = 1, Z ~jaj = 0, X = / 5 [ S ] ~ ,  and 
x T f i j  -- X T X  = 0 for j E T are all easily checked,  showing that X = Nr/5. 

Now for  j ~ T, 

[X[2aj = X T P j ( e T w  - 1) + x T ( p j  -- X )  + X T ( X  - P w ) ,  

so [XI " lajl ~ [Pjlea + Be  + Beb. Further,  for  j ~ T 

/sj - Pj = P~ (e  T w  -- 1) q- X - P w  - Xaj ,  

so  

IE -P,I  ~< IP, le~+ Beb+ IX[ .  la~l, 

f rom which the conclusion follows. 
In practice the errors ea, eb are trifling compared  with e, and ec is small if the 

equations of the problem are well handled, so that ea = eb = 0, e = ed closely 
represents  the normal situation. If  the computat ion for  the stop rule l(c) has been 
done with reasonable accuracy  we should have Min~ x T p j  - - X T X  <~ Z I B  2, so that 
e <~ZIB/IX[ .  By Theorem 8.2 the hypotheses  of Theorem 8.1 hold with 6 = 
Z1B2/[XI; we conclude that, where  X*  is the exact  solution of the problem,  

IIx*l -  Ix[I ~< Z,B2/IXI 
and 

IX* - X] ~ 2BZI/2 

(ignoring the term 6 2 of (8.2)). 
As mentioned in Section 4, something like the quantities of (8.3) should always 

be checked before  a solution is accepted.  In our routines the calculation of ea and 
eb is actually fallacious: eb vanishes because  the same arithmetic is used to fo rm 
X = P [S]w  as to check it, and calculating e~ amounts  largely to determining how 
accurately the machine represents  number  close to l(in our case, to within about  
10-16). 

Problems 2 and 3 of Section 6 have been run by Methods A and D, as well as by 
C used in Section 6. The terminal valfies of ec and ed are given in Table 8.1. 
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Table  8 . 1  

do, ed 

Prob l e m M e thod  A D 

2 1 . 5 x 1 0  -1°, - 1 . 5 x 1 0  -1° 9 . 7 x 1 0  16, _9 .7x10-16  
3 abandoned  9.6 x 10 -16, - 8 . 2  x 10 -16 

Problem 3 did not terminate properly with Method A. At major cycle 48 the 
algorithm was abandoned when it calculated a negative pivot t. (Mathematically, 
t > 0; t < 0 is disaster, since the less inaccurate value t = 0 destroys the logic of 
the algorithm. We might try to recalculate a better inverse, but there is no 
guarantee that we could do so using the Method A scheme.) At that point B IXlec 
was 1 .9x10  5 a b a d  value. 

Fig. 8.2 plots log~o(B ISleo) for  the runs of Table 8.1. Method D seems to entail 
no growth of roundoff error, while Method A, probably in its minor cycles, 
undergoes exponential growth after a series of good cycles mostly having no 
minor cycles. 
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Fig. 8.2. E r ro r  in equa t ion  solving: loglo Maxj IXTPj --XrXI. 

9. Convenience features 

In some applications the algorithm for Nr P is used repetitively: after a problem 
has been solved, P is altered by the adjunction or deletion of some points. It will 
not normally be necessary to go through the whole algorithm with the new set to 
solve the new problem, provided the data S and w are retained, as well as 
whatever  information is maintained for the solution of the equations. 

The routine we use can be entered in any of five modes, three of which are 
concerned with changing P. Modes 2-5 below assume the problem to have been 
solved, with S and w at their terminal values. 
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Mode 1. The entire problem is solved. The routine returns Nr P. 
Mode 2. Points are adjoined to P. Here we need only begin the algorithm again 

at Step l(a) (or at l(b) if X has also been retained), and proceed as in Mode 1. 
Mode 3. Points not in the terminal corral (i.e., whose indices are not in S) are 

deleted. Here we discard those points from P and alter appropriately the 
identifying tags of S;  Nr P is unchanged. 

Mode 4. Points in the terminal corral are deleted. If there are many such points 
it might be best to start the problem again from scratch. If not, then the existing 
information can be utilized by replacing S by S* (those indices of S retained) and 
w by w*, obtained from w by discarding the components  in S\S* and 
normalizing the result. The algorithm is then entered at Step 2 for method C of 
handling the equations; likewise for D, after deleting columns of R and restoring 
triangular form by rotations. 

Mode 5. The quantities (a-d) of Note 7, Section 4 are calculated and returned 
for inspection of the errors. 

10. Separating hyperplanes 

As Theorem 2.1 shows, a nearest-point algorithm solves the dual problem of 
finding a hyperplane separating a point f rom a given finite set. (Hereafter  the word 
"plane"  will be used for "hyperplane".)  Our procedure may be a fine way to 
construct  planes, but many proposals have been made for that p r o b l e m - b o t h  
iterative, nonterminating methods (e.g. [2, 9]) and finite methods using linear or 
quadratic programming [3, 8 ] - a n d  we have not at tempted any comparisons;  so 
we will deal with the subject only briefly. 

Recall the dual objective function (2.7) g(y) = Mini yTpi. We take lY l* -- 1. The 
plane 

G(y) = {x: yTX = g(y)} 

separates C(P) from the origin when g(y)>-O, and strictly separates when 
g(y)  > 0. The distance from the origin to G(y) is 

Min{Ixl: yTx = g(y)} = Min{[xl: yTx t> g(y)} 

= Min{r: yrxr >~g(y) for some lxl-- l} 
= Min{r: lY [*r >I g(y)} = g(y), 

so the solution of the dual problem (2.9) Max{g(y): ly l*~  < 1} gives the "bes t"  
separation. 

There are only two norms one would want to compute much with other than the 
Euclidean: 

IXll = E Ix~l and [xl~ = Max [x,[. 
i i 

They are dual to each other I'l*  = ] ' l  1), and using either of them our 
primal and dual problems can be stated as the same pair of dual linear 
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programming problems. Computationally, then, there is essentially one linear 
programming problem to be solved, and the simplex method is the right way to do 
that. Properly organized, the resulting algorithm looks much like that for the 
Euclidean norm. 

We suspect that a good measure of difficulty, in number of cycles required, for 
the problem of finding a single (not the best) separating hyperplane,  when one 
exists, is D/d, where D is the diameter of the projection along Nr P of C(P) and 
d = ]Nr PI. In the experiments reported in Section 6, D was about 2(n - 1)1/2; for  
problems 1,2,3 (n = 20) such D/d has the values 2.1, 8.7, 1300; the actual numbers 
k at which g(x k) > 0 first happened were 1, 3, 33. 

A common use of planes is in determining the separability of two point sets. We 
follow Canon and Cullum [3] in reducing that problem to a nearest-point problem, 
using these observations: (i) If two closed, compact  convex sets C~, C2 are 
disjoint, then points X E C1 and Y E C2 can be found such that I Y - X  I is 
minimal, and any plane normal to Y -  X may be translated to separate the two 
sets; (ii) Such X, Y may be found as the resolution Z = Y - X  of the point 
Z = Nr [Cz - Cx]. (Note that C 2 -  C1 is defined as {y - x : x E C1, y @ C2}, and that 
for any sets Q , R , C ( Q ) - C ( R ) =  C ( Q - R ) .  This reduction of the two-set 
problem to a one-set problem has been attributed to Caratheodory,  but we have no 
citation.) 

Let  Q and R be two finite point sets. It is required to determine whether  their 
convex hulls intersect and, if not, to find a well-separating hyperplane - that is, to 
find a vector  X and numbers a, b such that XTQj >1 b for  all Qj ~ Q, XTR~ <- a for  
all R~ E R, and a < b, with a and b well-separated in the sense that (b - a)/IX I is 
large. 

Let  g(y)  = Mini yVQj - Max~ yTR, If g (y)  > 0, then y is the normal of a plane 
separating Q from R, and the maximum of g for lY[ ~< 1 will give the best 
separation. Since 

g(y)  = Min yr(Qj _ R,), 
i,j 

it is the dual objective for the problem Nr P, setting 

P = { Q j - R ~ :  all i,]}. 

Write 

N r P = Y ~ ( Q j - R i ) w i i ,  w~j>>-O, ~ wij = 1. 
id i,j 

It is easy to check that 

Xo = ~ Q~w,j ~ C(Q), XR = ~, R~w~ E C(R) 
id id 

are the points of C(Q) ,  C(R) for  which [XQ-XR] is minimized. X = N r P  = 
XQ - X R  is the common normal to the two planes G(X/[X]), G(-X/[X[) ,  which 
constitute the best separation of Q from R. 

To apply the algorithm of this paper to the present  problem efficiently one 
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avoids finding the set P explicitly, but works only with Q and R, as foreshadowed 
above (Section 4, Note 8). For  Step 0 of the algorithm of Section 4 we choose a 
point of Q, find that point of R nearest it, then that point of Q nearest the chosen 
point of R, and so on. When no new points arise, P1 is set to the difference of the 
last member of Q and the last member of R found. (This does not find Min [P], but 
that is a hard task.) Throughout,  the set S is a set of index-pairs (i , /) ;  the first pair 
identifies the members of Q and R just chosen. In Step l(b) we find Qj minimizing 
XTQj and Ri maximizing XTRi, forming the new member of P as Q~ - Ri. The rest 
of the algorithm is essentially unchanged. 

When Method C of Section 5 is used, it is appropriate to retain those members 
of P that have been constructed as long as they have positive weights w, and to 
discard them when their weights vanish in 3(d). In Method D it is not necessary to 
retain them at all once the inverse has been updated, so the storage requirements 
are the same as for the problem NrQuR.  A few experiments support our intuition 
that when Q is separable from R the number of steps to find a separating plane is 
measured by D / d  as above, and that the number to find the best plane is about the 
total required by the separate problems Nr Q, Nr R. 

11. Variants and extensions 

In this section we point out the relationship of our algorithm to the simplex 
method for linear programming and to the Frank-Wolfe  method for convex 
programming, and how it can be extended to various types of constraint set and 
objective function. 

The description of the algorithm in Section 3 parallels quite closely Dantzig's 
"Simplex interpretation of the simplex method"  [4, Section 7.3], a visualization of 
his procedure for the linear programming problem Min{cTw: W ~ 0 ,  eTw = 1, 
AW = b} in the space of the vectors Pj = [cj; Aj], where {Aj} are the columns of 
A. A "basis"  for the linear programming problem corresponds to our corral, and a 
"change of basis" to a complete major cycle containing just one minor cycle. 
There are differences in detail, of course: unlike our problem, a basis must have n 
points in order to define a hyperplane by means of which the solution can either be 
improved or shown to be optimal; and in case of degeneracy a major cycle may 
not reduce the objective, so special provision must be made to avoid repetition of 
bases. Our experience has been that the two methods take similar numbers of 
steps to solve problems of the same size. 

The procedure can also be viewed as extending the Frank-Wolfe  algorithm. 
While its original presentation dealt with the minimization of a convex function 
over a polyhedron (i.e., a set explicitly defined as the intersection of halfspaces), it 
is best conceived as working with a polytope whose vertices are generated by the 
solution of linear programming problems in case the constraint set is a polyhed- 
ron. The present algorithm reduces to the Frank-Wolfe  algorithm if the corral Q 
is required to be no more than one-dimensional. (The effect of such a restriction 
on the convergence rate is, of course, drastic.) 

Gilbert [5] extended the Frank-Wolfe  algorithm to the problem Min{Ix I: x E S}, 
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where S is any convex set for which the "support" problem Min{yTx: x E S} is 
readily solved, rather than just a polyhedron, and Barr [1] showed that relaxing 
the restriction to one dimension considerably improves matters. Barr solves a new 
quadratic programming problem each time a new point x E S is generated; it 
would seem that our algorithm should be used instead, with the support problem 
replacing our Step 1. 

The basic idea of our algorithm seems worth using for some variants of our 
problem, although we have not had occasion to implement any of them. For a set 
of vectors P = {P1 . . . . .  Pro} let 

(*) L(P)= {X: X = ~ Pjw~} 

be the linear subspace spanned by P and 

K(P) = {X: (*) holds for some w >1 0} 

be the convex cone spanned by P. An algorithm for finding that point of K(P) 
closest to a given point R E E n closely parallels the algorithm above. (Here H(X) 
denotes the hyperplane {x : (X - R)Tx = IX - R 12}.) 

For Step 0, find a ray K (PD closest to R (as Max~ R ~Pi ['[PJ 1)- Let X be the point 
of the ray closest to R, and set Q = {P~}. The rest of the algorithm is exactly as for 
Nr P i f " A  (Q)" is replaced b y " L  (Q)" a n d "  C (Q)" b y " K  (Q)" throughout. The 
algebraic algorithm for this problem is, in fact, a bit simpler than that for Nr P, but 
the numerical optimality criterion requires more thought. The resulting algorithm 
is almost exactly that introduced by Wilhelmsen [11] in connection with a certain 
approximation problem. 

The most general problem of this kind is not much worse. Any polyhedron - the 
intersection of finitely many halfspaces-has  the form C(P 1) + K(P 2) for some 
finite sets p1, p2. In order to find the nearest point to R in that, we begin by doing 
Step 0 for both the " C "  problem (when p2 is empty) and the " K "  problem (when 
p1 is empty) and adding the results. In general one has Q~ c_ P~, Q 2 c p2 (Q~u Q 2, a 
generalized corral, has at most n + 1 members), and performs Step 1 for either the 
C problem or the K problem. The remaining steps are as in the C algorithm, with 
A(Q) replaced by A(QI)+L(Q 2) and C(Q) replaced by C(Q~)+K(QZ). The 
algebraic version of this procedure will be very little different from that of the C 
algorithm, but again the numerical questions are important and unstudied. 

When a polyhedron is presented as the intersection of halfspaces it is usually an 
enormous task to determine P~, p2 of the preceding paragraph explicitly. That 
could be avoided by proceding in the spirit of the original Frank-Wolfe algorithm 
(or of the "column generation" idea [13]): for each major cycle we require only 
the solution of Minj(X -R)TP~ for i = 1 or i = 2, and such a solution will be the 
outcome of minimizing (X - R)~x over the polyhedron using the simplex method. 
Such a procedure might compete with the usual quadratic programming al- 
gorithms for problems of small dimension with many constraints, but we think 
that the following ingenious reformulation, due to Witzgall [12], is the right way to 
proceed. It rests on the fact [10, p. 55] that if K is a convex cone and K p its dual 
(or negative polar: K p = {z: yTz 40 for all y E K}), x is any point, and y and z 
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are respect ive ly  the neares t  points  to x in K and K p, then y and z are o r thogona l  
and x = y + z. In  o ther  words ,  

(**) x = x  + N r ( K - x ) + x  + N r ( K P - x )  

for  any  x. N o w  let R be the po lyhed ron  in n-space  defined by  the inequalities 
A ~ x  + b~ <<. O, k = 1 . . . . .  K.  Lett ing Bk be the (n + D-vec tor  (Ak ; bk), define the 
c o n v e x  cone in (n + 1)-space 

K = {(x ; t):  B [ ( x ;  t) <~ O, all k}; 

then R = {x : (x ; 1) E K}. If  R is n o n e m p t y  and (y ; s)  is the neares t  point  in K to 
(0 . . . . .  0; 1), it is easy  to show that  0 < s ~< 1 and that  y / s  = Nr  R. The  cone  K p is 
exac t ly  the set  of  all nonnega t ive  linear combina t ions  of  Bk, so that  our  a lgori thm 
for  cones  can be applied to find Nr  ( K  p - (0 . . . . .  0; 1)), and (**) immedia te ly  gives 
the answer  to the same problem for  K,  f rom which  Nr  R is determined.  

The  algori thm can also in principle be ex tended  to the minimizat ion of  any  
differentiable c o n v e x  func t ion  f on a poly tope .  Step 1 of  the algori thm is then the 
task of  minimizing V f ( x ) T p j ,  and the rest  of  the algori thm is the same prov ided  
one has a means  of  finding a sa t i s fac tory  approx imat ion  to the min imum of  f over  
any  affine set  A (Q).  The  required algebra is easily done  when  f is a str ict ly convex  
quadrat ic  funct ion;  the ensuing algori thm differs f rom that  of  Sect ion 4 only  in the 
equat ions  to be solved. The  general  scheme,  in connec t ion  with genera t ion  of  
vert ices of  the po ly tope  when  it is p resen ted  as a po lyhedron ,  has been  used in the 
interest ing w o r k  of  Von  H o h e n b a l k e n  [7], who  gives an algori thm, based  on the 
same ideas we have used,  fo r  the minimizat ion of  any  p s e u d o - c o n v e x  func t ion  
over  a bounded  po lyhedron .  He  has also applied the me thod  to the minimizat ion 
of  a cer tain nondifferent iable  convex  funct ion.  I t  would  be fascinat ing to k n o w  
under  wha t  condi t ions  this kind of  me thod  is compet i t ive  with o ther  schemes  for  
convex  programming.  
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