Discriminative Clustering for Image Co-segmentation

Armand Joulin1,2 \quad Francis Bach1,2 \quad Jean Ponce2

1INRIA \quad 2Ecole Normale Supérieure

January 15, 2010
Introduction
problem: dividing simultaneously q images in k different regions (segments)

when $k = 2$, this reduces to dividing images into foreground and background regions.

Our approach solves simultaneously the object recognition problem and the segmentation
Introduction

- Our framework: unsupervised discriminative clustering.
- It is well-adapted to segmentation problems for 2 reasons:
 - it allows to re-use existing features for supervised classification or detection
 - it allows to easily introduce spatial and local color-consistency constraints.
Problem Notations

- q images. Each image i is reduced to a subsampled grid of n_i pixels.
- For the j-th pixel, we denote by:
 - $c^j \in \mathbb{R}^3$ its color,
 - $p^j \in \mathbb{R}^2$ its position within the corresponding image,
 - x^j an additional k-dimensional feature vector.
- As $k = 2$, we note y the vector such as $y_j = 1$ if the i-th pixel is in the foreground and -1 otherwise.
Local consistency and discriminative clustering

- co-segmenting images to find a common object relies on two tasks:
 - maximizing the separability of two classes between different images
 - maximizing spatial and appearance consistency within a particular image
Local consistency

- Spatial consistency within an image i is enforced through a similarity matrix W^i
 - W^i is based on color features (c^j) and spatial position (p^j) through a Gaussian model
 - The similarity between two pixels l and m within an image i is thus:
 \[W^i_{lm} = \exp(-\lambda_p\|p^m - p^l\|^2 - \lambda_c\|c^m - c^l\|^2), \]
 (1)

- Finally, consider the Laplacian matrix L based on the block-diagonal matrix W (with W_i on its diagonal):
 \[L = I_n - D^{-1/2}WD^{-1/2} \]
 (2)
Discriminative clustering

- Our discriminative clustering framework is based on positive definite kernels.
- Our features are histograms therefore we use a kernel matrix K based on the χ^2-distance:

$$K_{lm} = \exp \left(-\lambda_h \sum_{d=1}^{k} \frac{(x^l_d - x^m_d)^2}{x^l_d + x^m_d} \right), \quad (3)$$

- It is equivalent to mapping each of our n k-dimensional vectors x^j, $j = 1, \ldots, n$ into a high-dimensional Hilbert space \mathcal{F} through a feature map Φ, so that $K_{ml} = \Phi(x^m)^T \Phi(x^l)$.
Discriminative clustering

We aim to fit a linear model of Φ to the labels y:

$$g(y) = \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^T \Phi(x^j) + b) + \lambda_k \|f\|^2,$$ \hspace{1cm} (4)

where ℓ is a loss function.

Taking a square loss function ($\ell(a, b) = (a - b)^2$), the solution of the problem above leads to a close-form formulation:

$$g(y) = \text{tr}(Ay y^T)$$

where $A = \lambda_k (I_n - \frac{1}{n} 1_n 1_n^T)(n \lambda_k I_n + K)^{-1}(I_n - \frac{1}{n} 1_n 1_n^T)$.

Putting all pixels into a single class leads to perfect separation. Therefore, we add constraints on the number of elements in each class. We constrain the number of elements of each class in each image to be upper bounded by λ_1 and lower bounded by λ_0. We note $\delta_i \in \mathbb{R}^n$ is the indicator vector of the i-th image.
Combining the spatial consistency through Laplacian matrix L, the discriminative cost through the matrix A and the cluster size constraints, we obtain the following problem:

$$\min_{y \in \{-1,1\}^n} \text{tr}(y^T (A + \frac{\mu}{n} L) y),$$

subject to $\forall i, \lambda_0 1_n \leq (yy^T + 1_n 1_n^T) \delta_i \leq \lambda_1 1_n$.

(5)
We can reparameterize our problem with $Y = yy^T$. Y is usually referred to as the equivalence matrix.

Y is symmetric, positive semidefinite, with diagonal equal to one, and unit rank.
if we denote by \mathcal{E} the \textit{elliptope}, i.e., the convex set defined by:

$$\mathcal{E} = \{ Y \in \mathbb{R}^{n \times n}, \ Y = Y^T, \ \text{diag}(Y) = 1_n, \ Y \succeq 0 \},$$

Our optimization problem becomes:

$$\min_{Y \in \mathcal{E}} \text{tr}(Y (A + \frac{\mu}{n} L)),$$

subject to \ \forall i, \ \lambda_0 1_n \leq (Y + 1_n 1_n^T) \delta_i \leq \lambda_1 1_n$$

Because of the rank constraint, this is not a convex optimization problem. The convex relaxation of our problem is to remove the rank constraint.
Optimization

- We optimize a convex problem over positive definite matrices, usually referred to as a semidefinite program (SDP).
- Without using the structure of this problem, general purpose toolboxes would solve this problem in $O(n^7)$.
- Bach and Harchaoui [?] (2007) consider a partial dualization technique that scales up to thousands of data points.
- To gain another order of magnitude, we consider the optimization through low-rank matrices considered by Journée et al. (2008).
Efficient low-rank optimization

- We use the procedure developed in Journée et al (2008).
- However this procedure cannot deal with our cluster size inequalities.
- Therefore we use a augmented Lagrangian method to transform these constraints into penalties
- for each inequality constraint \(h(Y) \), we add a a twice differentiable convex penalty term to the objective function, in our case \(\nu \max\{0, h(Y)^3\} \).
Efficient low-rank optimization

- We are now faced with the optimization of a convex function \(f(Y) \) on the elliptope \(\mathcal{E} \).
- It leads to low-rank solutions.
- If the rank of the solution \(r \) is not known, Journée et al. (2008) have designed an adaptive procedure.
- We optimize the function \(g_d : y \mapsto f(y y^\top) \) defined for \(y \in \mathbb{R}^{n \times d} \) such that \(\text{diag}(y y^\top) = 1 \).
first notice that the cost g_d is invariant by right-multiplication of y by a $d \times d$ orthogonal matrix.

Therefore we perform our minimization on the quotient space $\tilde{\mathcal{E}}_d = \mathcal{E}_d / \mathcal{O}_d$, where $\mathcal{E}_d = \{Y \in \mathcal{E}, \text{rank}(Y) = d\}$, where $\mathcal{E}_d = \{Y \in \mathcal{E}, \text{rank}(Y) = d\}$ and $\mathcal{O}_d = \{P \in \mathbb{R}^{d \times d} | PP^T = I_d\}$.

It is a Riemannian manifold.

In order to find a local minimum on this quotient space, we can thus use a trust-region method for such manifolds.
Preclustering

- Since our cost function f uses a full $n \times n$ matrix $A + (\mu/n)L$, our algorithm may require too much memory for storing it.
- To reduce the total number of pixels, we use superpixels obtained from an oversegmentation of our images.
In order to retrieve $y \in \{-1, 1\}$, from our relaxed solution, we compute the largest eigenvector $e \in \mathbb{R}^n$ of Y.

Then our final clustering is $y = \text{sign}(e)$.
method overview

Figure: Illustrating the co-segmentation process on two bear images; from left to right: input images, over-segmentations, scores obtained by our algorithm and co-segmentations. $\mu = 0.1$.
Results

results on two different problems:

- we first consider images with foreground objects which are identical or very similar in appearance and with few images to co-segment,
- Then, we consider images whose foreground objects exhibit higher appearance variations and with more images to co-segment (up to 30).
Results - similar object
Results - similar object
Results - similar object
Results - similar class of object

Figure: Faces. On the bottom right, an example on which the algorithm fails.
Figure: Cows. On the bottom right, an example on which the algorithm fails.
Results - similar class of object

Figure: Horses. On the bottom right, an example on which the algorithm fails.
Results - similar class of object

Figure: Cats. On the bottom right, an example on which the algorithm fails.
Results - similar class of object

Figure: Bikes. On the bottom right, an example on which the algorithm fails.
Results - similar class of object

Figure: Planes. On the bottom right, an example on which the algorithm fails.
Comparison with N-cut

<table>
<thead>
<tr>
<th>class</th>
<th>images</th>
<th>cosegmentation</th>
<th>independent</th>
<th>Ncut</th>
<th>uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars (front)</td>
<td>6</td>
<td>87.65 ±0.1</td>
<td>89.6 ±0.1</td>
<td>51.4 ±1.8</td>
<td>64.0 ±0.1</td>
</tr>
<tr>
<td>Cars (back)</td>
<td>6</td>
<td>85.1 ±0.2</td>
<td>83.7 ±0.5</td>
<td>54.1 ±0.8</td>
<td>71.3 ±0.2</td>
</tr>
<tr>
<td>Face</td>
<td>30</td>
<td>84.3 ±0.7</td>
<td>72.4 ±1.3</td>
<td>67.7 ±1.2</td>
<td>60.4 ±0.7</td>
</tr>
<tr>
<td>Cow</td>
<td>30</td>
<td>81.6 ±1.4</td>
<td>78.5 ±1.8</td>
<td>60.1 ±2.6</td>
<td>66.3 ±1.7</td>
</tr>
<tr>
<td>Horse</td>
<td>30</td>
<td>80.1 ±0.7</td>
<td>77.5 ±1.9</td>
<td>50.1 ±0.9</td>
<td>68.6 ±1.9</td>
</tr>
<tr>
<td>Cat</td>
<td>24</td>
<td>74.4 ±2.8</td>
<td>71.3 ±1.3</td>
<td>59.8 ±2.0</td>
<td>59.2 ±2.0</td>
</tr>
<tr>
<td>Plane</td>
<td>30</td>
<td>73.8 ±0.9</td>
<td>62.5 ±1.9</td>
<td>51.9 ±0.5</td>
<td>75.9 ±2.0</td>
</tr>
<tr>
<td>Bike</td>
<td>30</td>
<td>63.3 ±0.5</td>
<td>61.1 ±0.4</td>
<td>60.7 ±2.6</td>
<td>59.0 ±0.6</td>
</tr>
</tbody>
</table>

Table: Segmentation accuracies on the Weizman horses and MSRC databases.
Comparison with N-cut

Figure: Comparing co-segmentation with independent segmentations; from left to right: original image, multiscale normalized cut, our algorithm on a single image, our algorithm on 30 images.
Perspective

- Consider more than 2 classes
- feature selection
- scale up to hundred of thousands
- change the loss function