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ABSTRACT

We present PROCAB, an efficient method for Probabilisti-
cally Reasoning from Observed Context-Aware Behavior. It
models the context-dependent utilities and underlying rea-
sons that people take different actions. The model gen-
eralizes to unseen situations and scales to incorporate rich
contextual information. We train our model using the route
preferences of 25 taxi drivers demonstrated in over 100,000
miles of collected data, and demonstrate the performance of
our model by inferring: (1) decision at next intersection, (2)
route to known destination, and (3) destination given par-
tially traveled route.
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INTRODUCTION

We envision future navigation devices that learn drivers’
preferences and habits, and provide valuable services by rea-
soning about driver behavior. These devices will incorporate
real-time contextual information, like accident reports, and a
detailed knowledge of the road network to help mitigate the
many unknowns drivers face every day. They will provide
context-sensitive route recommendations [19] that match a
driver’s abilities and safety requirements, driving style, and
fuel efficiency trade-offs. They will also alert drivers of
unanticipated hazards well in advance [25] – even when the
driver does not specify the intended destination, and better
optimize vehicle energy consumption using short-term turn
prediction [10]. Realizing such a vision requires new models
of non-myopic behavior capable of incorporating rich con-
textual information.
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In this paper, we present PROCAB, a method for
Probabilistically Reasoning from Observed Context-Aware
Behavior. PROCAB enables reasoning about context-
sensitive user actions, preferences, and goals – a requirement
for realizing ubiquitous computing systems that provide the
right information and services to users at the appropriate mo-
ment. Unlike other methods, which directly model action
sequences, PROCAB models the negative utility or cost of
each action as a function of contextual variables associated
with that action. This allows it to model the reasons for ac-
tions rather than the actions themselves. These reasons gen-
eralize to new situations and differing goals. In many set-
tings, reason-based modeling provides a compact model for
human behavior with fewer relationships between variables,
which can be learned more precisely. PROCAB probabilisti-
cally models a distribution over all behaviors (i.e., sequences
of actions) [27] using the principle of maximum entropy [9]
within the framework of inverse reinforcement learning [18].

In vehicle navigation, roads in the road network differ by
type (e.g., interstate vs. alleyway), number of lanes, and
speed limit. In the PROCAB model, a driver’s utility for dif-
ferent combinations of these road features is learned, rather
than the driver’s affinity for particular roads. This allows
generalization to locations where a driver has never previ-
ously visited.

Learning good context-dependent driving routes can be dif-
ficult for a driver, and mistakes can cause undesirable travel
delays and frustration [7]. Our approach is to learn driv-
ing routes from a group of experts – 25 taxi cab drivers –
who have a good knowledge of alternative routes and con-
textual influences on driving. We model context-dependent
taxi driving behavior from over 100,000 miles of collected
GPS data and then recommend routes that an efficient taxi
driver would be likely to take.

Route recommendation quality it is difficult to assess. In-
stead, we evaluate using three prediction tasks:

• Turn Prediction: What is the probability distribution
over actions at the next intersection?

• Route Prediction: What is the most likely route to a spec-
ified destination?

• Destination Prediction: What is the most probable desti-
nation given a partially traveled route?



We validate our model by comparing its prediction accuracy
on our taxi driver dataset with that of existing approaches.
We believe average drivers who will use our envisioned
smart navigation devices choose less efficient routes, but
visit fewer destinations, making route prediction somewhat
harder and destination prediction significantly easier.

In the remainder of the paper, we first discuss existing prob-
abilistic models of behavior to provide points of comparison
to PROCAB. We then present evidence that preference and
context are important in route preference modeling. Next,
we describe our PROCAB model for probabilistically mod-
eling context-sensitive behavior compactly, which allows us
to obtain a more accurate model with smaller amounts of
training data. We then describe the data we collected, our
experimental formulation, and evaluation results that illus-
trate the the PROCAB model’s ability to reason about user
behavior. Finally, we conclude and discuss extensions of our
work to other domains.

BACKGROUND

In this section, we describe existing approaches for model-
ing human actions, behavior, and activities in context-rich
domains. We then provide some illustration of the contex-
tual sensitivity of behavior in our domain of focus, modeling
vehicle route preferences.

Context-Aware Behavior Modeling

An important research theme in ubiquitous computing is the
recognition of a user’s current activities and behaviors from
sensor data. This has been explored in a large number of
domains including classifying a user’s posture [17], track-
ing and classifying user exercises [5], classifying a user’s
interruptibility [6] and detecting a variety of daily activities
within the home [26, 24]. Very little work, in comparison,
looks at how to predict what users want to do: their goals and
intentions. Most context-aware systems attempt to model
context as a proxy for user intention. For example, a sys-
tem might infer that a user wants more information about a
museum exhibit because it observes that she is standing near
it.

More sophisticated work in context-awareness has focused
on the problem of predicting where someone is going or go-
ing to be. Bhattacharya and Das used Markov predictors
to develop a probability distribution of transitions from one
GSM cell to another [3]. Ashbrook and Starner take a simi-
lar approach to develop a distribution of transitions between
learned significant locations from GPS data [2]. Patterson et
al. used a Bayesian model of a mobile user conditioned on
the mode of transportation to predict the users future loca-
tion [20]. Mayrhofer extends this existing work in location
prediction to that of context prediction, or predicting what
situation a user will be in, by developing a supporting gen-
eral architecture that uses a neural gas approach [15]. In
the Neural Network House, a smart home observed the be-
haviors and paths of an occupant and learned to anticipate
his needs with respect to temperature and lighting control.
The occupant was tracked by motion detectors and a neural
network was used to predict the next room the person was

going to enter along with the time at which he would enter
and leave the home [16].

However, all of these approaches are limited in their ability
to learn or predict from only small variations in user behav-
ior. In contrast, the PROCAB approach is specifically de-
signed to learn and predict from small amounts of observed
user data, much of which is expected to contain context-
dependent and preference-dependent variations. In the next
section, we discuss the importance of these variations in un-
derstanding route desirability.

Understanding Route Preference

Previous research on predicting the route preferences of
drivers found that only 35% of the 2,517 routes taken by
102 different drivers were the “fastest” route, as defined by
a popular commercial route planning application [13]. Dis-
agreements between route planning software and empirical
routes were attributed to contextual factors, like the time of
day, and differences in personal preferences between drivers.

We conducted a survey of 21 college students who drive reg-
ularly in our city to help understand the variability of route
preference as well as the personal and contextual factors that
influence route choice. We presented each participant with
4 different maps labeled with a familiar start and destina-
tion point. In each map we labeled a number of different
potentially preferable routes. Participants selected their pre-
ferred route from the set of provided routes under 6 differ-
ent contextual situations for each endpoint pair. The contex-
tual situations we considered were: early weekday morning,
morning rush hour, noon on Saturday, evening rush hour,
immediately after snow fall, and at night.

Route
Context A B C D E F G

Early morning 6 6 4 1 2 2 0
Morning rush hour 8 4 5 0 1 2 1

Saturday noon 7 5 4 0 1 2 2
Evening rush hour 8 4 5 0 0 3 1

After snow 7 4 4 3 2 1 0
Midnight 6 4 4 2 1 4 0

Table 1. Context-dependent route preference survey results for one
particular pair of endpoints

The routing problem most familiar to our participants had
the most variance of preference. The number of participants
who most preferred each route under each of the contex-
tual situations for this particular routing problem is shown
in Table 1. Of the 7 available routes to choose from (A-
G) under 6 different contexts, the route with highest agree-
ment was only preferred by 8 people (38%). In addition
to route choice being dependent on personal preferences,
route choice was often context-dependent. Of the 21 partic-
ipants, only 6 had route choices that were context-invariant.
11 participants used two different routes depending on the
context, and 4 participants employed three different context-
dependent routes.



Our participants were not the only ones in disagreement
over the best route for this particular endpoint pair. We
generated route recommendations from four major commer-
cial mapping and direction services for the same endpoints
to compare against. The resulting route recommendations
also demonstrated significant variation, though all services
are context- and preference-independent. Google Maps and
Microsoft’s MapPoint both chose route E, while MapQuest
generated route D, and Yahoo! Maps provided route A.

Participants additionally provided their preference towards
different driving situations on a five-point Likert scale (see
Table 2). The scale was defined as: (1) very strong dislike,
avoid at all costs; (2) dislike, sometimes avoid; (3) don’t
care, doesn’t affect route choice; (4) like, sometimes prefer;
(5) very strong like, always prefer.

Preference
Situation 1 2 3 4 5

Interstate/highway 0 0 3 14 4
Excess of speed limit 1 4 5 10 1

Exploring unfamiliar area 1 8 4 7 1
Stuck behind slow driver 8 10 3 0 0

Longer routes with no stops 0 4 3 13 1

Table 2. Situational preference survey results

While some situations, like driving on the interstate are dis-
liked by no one and being stuck behind a slow driver are
preferred by no one, other situations have a wide range of
preference with only a small number of people expressing
indifference. For example, the number of drivers who pre-
fer routes that explore unfamiliar areas is roughly the same
as the number of drivers with the opposite preference, and
while the majority prefer to drive in excess of the speed limit
and take longer routes with no stops, there were a number
of others with differing preferences. We expect that a pop-
ulation covering all ranges of age and driving ability will
possess an even larger preference variance than the more ho-
mogeneous participants in our surveys.

The results of our formative research strongly suggest that
drivers’ choices of routes vary greatly and are highly depen-
dent on personal preferences and contextual factors.

PROCAB: CONTEXT-AWARE BEHAVIOR MODELING

The variability of route preference from person to person
and from situation to situation makes perfectly predicting
every route choice for a group of drivers extremely difficult.
We adopt the more modest goal of developing a probabilis-
tic model that assigns as much probability as possible to the
routes the drivers prefer. Some of the variability from per-
sonal preference and situation is explained by incorporating
contextual variables within our probabilistic model. The re-
maining variability in the probabilistic model stems from in-
fluences on route choices that are unobserved by our model.

Many different assumptions and frameworks can be em-
ployed to probabilistically model the relationships between
contextual variables and sequences of actions. The PRO-
CAB approach is based on three principled techniques:

• Representing behavior as sequential actions in a Markov
Decision Process (MDP) with parametric cost values

• Using Inverse Reinforcement Learning to recover cost
weights for the MDP that explain observed behavior

• Employing the principle of maximum entropy to find cost
weights that have the least commitment

The resulting probabilistic model of behavior is context-
dependent, compact, and efficient to learn and reason about.
In this section, we describe the comprising techniques and
the benefits each provides. We then explain how the result-
ing model is employed to efficiently reason about context-
dependent behavior. Our previous work [27] provides a
more rigorous and general theoretical derivation and eval-
uation.

Markov Decision Process Representation

Markov Decision Processes (MDPs) [21] provide a natu-
ral framework for representing sequential decision making,
such as route planning. The agent takes a sequence of ac-
tions (a ∈ A), which transition the agent between states
(s ∈ S) and incur an action-based cost1 (c(a) ∈ ℜ). A sim-
ple deterministic MDP with 8 states and 20 actions is shown
in Figure 1.

Figure 1. A simple Markov Decision Process with action costs

The agent is trying to minimize the sum of costs while reach-
ing some destination. We call the sequence of actions a
path, ζ. For MDPs with parametric costs, a set of features
(fa ∈ ℜk) characterize each action, and the cost of the action
is a linear function of these features parameterized by a cost
weight vector (θ ∈ ℜk). Path features, fζ , are the sum of the
features of actions in the path:

∑
a∈ζ fa. The path cost is

the sum of action costs (Figure 1), or, equivalently, the cost
weight applied to the path features.

cost(ζ|θ) =
∑

a∈ζ

θ⊤fa = θ⊤fζ

The MDP formulation provides a natural framework for a
number of behavior modeling tasks relevant to ubiquitous
computing. For example, in a shopping assistant applica-
tion, shopping strategies within an MDP are generated that
optimally offset the time cost of visiting more stores with the
benefits of purchasing needed items [4].

1The negation of costs, rewards, are more common in the MDP
literature, but less intuitive for our application.



The advantage of the MDP approach is that the cost weight
is a compact set of variables representing the reasons for
preferring different behavior, and if it is assumed that the
agent acts sensibly with regard to incurred costs, the ap-
proach gerneralizes to previously unseen situations.

Inverse Reinforcement Learning

Much research on MDPs focuses on efficiently finding the
optimal behavior for an agent given its cost weight [21]. In
our work, we focus on the inverse problem, that of find-
ing an agent’s cost weight given demonstrated behavior (i.e.,
traversed driving routes). Recent research in Inverse Rein-
forcement Learning [18, 1] focuses on exactly this problem.
Abbeel and Ng showed that if a model of behavior matches

feature counts with demonstrated feature counts, f̃ (Equa-
tion 1), then the model’s expected cost matches the agent’s
incurred costs[1].

∑

Path ζi

P (ζi)fζi
= f̃ (1)

This constraint has an intuitive appeal. If a driver uses
136.3 miles of interstate and crosses 12 bridges in a month’s
worth of trips, the model should also use 136.3 miles of in-
terstate and 12 bridges in expectation for those same start-
destination pairs, along with matching other features of sig-
nificance. By incorporating many relevant features to match,
the model will begin to behave similarly to the agent. How-
ever, many distributions over paths can match feature counts,
and some will be very different from observed behavior. In
our simple example, the model could produce plans that
avoid the interstate and bridges for all routes except one,
which drives in circles on the interstate for 136 miles and
crosses 12 bridges.

Maximum Entropy Principle

If we only care about matching feature counts, and many
different distributions can accomplish that, it is not sensible
to choose a distribution that shows preference towards other
factors that we do not care about. We employ the mathemat-
ical formulation of this intuition, the principle of maximum
entropy [9], to select a distribution over behaviors. The prob-
ability distribution over paths that maximizes Shannon’s in-
formation entropy while satisfying constraints (Equation 1)
has the least commitment possible to other non-influential
factors. For our problem, this means the model will show no
more preference for routes containing specific streets than
is required to match feature counts. In our previous exam-
ple, avoiding all 136 miles of interstate and 12 bridge cross-
ings except for one single trip is a very low entropy distribu-
tion over behavior. The maximum entropy principle much
more evenly assigns the probability of interstate driving and
bridge crossing to many different trips from the set. The re-
sulting distribution is shown in Equation 2.

P (ζ|θ) =
e−cost(ζ|θ)

∑
path ζ′ e−cost(ζ′|θ)

(2)

Low-cost paths are strongly preferred by the model, and
paths with equal cost have equal probability.

Compactness Advantage

Many different probabilistic models can represent the same
dependencies between variables that pertain to behavior –
context, actions, preference, and goal. The main advantage
of the PROCAB distribution is that of compactness. In a
more compact model, fewer parameters need to be learned
so a more accurate model can be obtained from smaller
amounts of training data.

All Context

Action 1 Action 2 Action 3 Action N

Preference Goal

...

Figure 2. Directed graphical model of sequential context-sensitive,
goal-oriented, preference-dependent actions

Directly modeling the probability of each action given all
other relevant information is difficult when incorporating
context, because a non-myopic action choice depends not
only on the context directly associated with that action (e.g.,
whether the next road is congested), but context associated
with all future actions as well (e.g., whether the roads that a
road leads to are congested). This approach corresponds to a
directed graphical model (Figure 2) [22, 14] where the prob-
ability of each action is dependent on all contextual informa-
tion, the intended destination, and personal preferences. If
there are a large number of possible destinations and a rich
set of contextual variables, these conditional action proba-
bility distributions will require an inordinate amount of ob-
served data to accurately model.

Context 1
Features 1

Action 1

Preference

Context 2
Features 2

Action 2

Context 3
Features 3

Action 3

Context N
Features N

Action N...

Goal

Figure 3. Undirected graphical model of sequential context-sensitive,
goal-oriented, personalized actions

The PROCAB approach assumes drivers imperfectly mini-
mize the cost of their route to some destination (Equation
2). The cost of each road depends only on the contextual in-
formation directly associated with that road. This model cor-
responds to an undirected graphical model (Figure 3), where
cliques (e.g., “Action 1,” “Context 1,” and “Preference”) de-
fine road costs, and the model forms a distribution over paths
based on those costs. If a road becomes congested, its cost
will increase and other alternative routes will become more
probable in the model without requiring any other road costs
to change. This independence is why the PROCAB model



is more compact and can be more accurately learned using
more reasonable amounts of data.

Probabilistic Inference

We would like to predict future behavior using our PRO-
CAB model, but first we must train the model by finding the
parameter values that best explain previously demonstrated
behavior. Both prediction and training require probabilis-
tic inference within the model. We focus on the inference of
computing the expected number of times a certain action will
be taken given known origin, goal state, and cost weights2.
A simple approach is to enumerate all paths and probabilis-
tically count the number of paths and times in each path the
particular state is visited.

Algorithm 1 Expected Action Frequency Calculation

Inputs: cost weight θ, initial state so, and goal state sg

Output: expected action visitation frequencies Dai,j

Backward pass

1. Set Zsi
= 1 for valid goal states, 0 otherwise

2. Recursively compute for T iterations

Zai,j
= e−cost(ai,j |θ)Zs:ai,j

Zsi
=

∑

actions ai,j of si

Zai,j

Forward pass

3. Set Z ′
si

= 1 for initial state, 0 otherwise

4. Recursively compute for T iterations

Z ′
ai,j

= Z ′
si

e−cost(ai,j |θ)

Z ′
si

=
∑

actions aj,i to si

Z ′
aj,i

Summing frequencies

5. Dai,j
=

Z ′
si

e−cost(ai,j |θ)Zsj

Zsinitial

Algorithm 1 employs a more tractable approach by finding
the probabilistic weight of all paths from the origin (o) to a

specific action (a), Z ′
a =

∑
ζo→a

e−cost(ζ), all paths from the

action to the goal (g)3, Za =
∑

ζa→g
e−cost(ζ) and all paths

from the origin to the goal, Zo = Z ′
g =

∑
ζo→g

e−cost(ζ). Ex-

pected action frequencies are obtained by combining these
results (Equation 3).

Da =
ZaZ ′

ae−cost(a)

Zo

(3)

Using dynamic programming to compute the required Z val-
ues is exponentially more efficient than path enumeration.

2Other inferences, like probabilities of sequence of actions or one
specific action are obtained using the same approach.
3In practice, we use a finite T , which considers a set of paths of
limited length.

Cost Weight Learning

We train our model by finding the parameters that maxi-
mize the [log] probability of (and best explain) previously
observed behavior.

θ∗ = argmax
θ

log
∏

i

e−cost(ζ̃i|θ)

∑
path ζj

e−cost(ζj |θ)
(4)

Algorithm 2 Learn Cost Weights from Data

Stochastic Exponentiated Gradient Ascent

Initialize random θ ∈ ℜk, γ > 0

For t = 1 to T :

For random example, compute Da for all actions a

(using Algorithm 1)

Compute gradient, ∇F from Da (Equation 5)

θ ← θe
γ
t
∇F

We employ a gradient-based method (Algorithm 2) for this
convex optimization. The gradient is simply the difference
between the demonstrated behavior feature counts and the
model’s expected feature counts, so at the optima these fea-
ture counts match. We use the action frequency expecta-
tions, Da, to more efficiently compute the gradient (Equa-
tion 5).

f̃−
∑

Path ζi

P (ζi)fζi
= f̃−

∑

a

Dafa (5)

The algorithm raises the cost of features that the model is
over-predicting so that they will be avoided more and lowers
the cost of features that the model is under-predicting until
convergence near the optima.

TAXI DRIVER ROUTE PREFERENCE DATA

Now that we have described our model for probabilistically
reasoning from observed context-aware behavior, we will
describe the data we collected to evaluate this model. We
recruited 25 Yellow Cab taxi drivers to collect data from.
Their experience as taxi drivers in the city ranged from 1
month to 40 years. The average and median were 12.9 years
and 9 years respectively. All participants reported living in
the area for at least 15 years.

Collected Position Data

We collected location traces from our study participants over
a 3 month period using global positioning system (GPS) de-
vices that log locations over time. Each participant was pro-
vided one of these devices4, which records a reading roughly
every 6 to 10 seconds while in motion. The data collection
yielded a dataset of over 100,000 miles of travel collected
from over 3,000 hours of driving. It covers a large area sur-
rounding our city (Figure 4). Note that no map is being over-
laid in this figure. Repeated travel over the same roads leaves
the appearance of the road network itself.

4In a few cases where two participants who shared a taxi also
shared a GPS logging device



Figure 4. The collected GPS datapoints

Road Network Representation

The deterministic action-state representation of the corre-
sponding road network contains over 300,000 states (i.e.,
road segments) and over 900,000 actions (i.e., available tran-
sitions between road segments). There are characteristics de-
scribing the speed categorization, functionality categoriza-
tion, and lane categorization of roads. Additionally we can
use geographic information to obtain road lengths and turn
types at intersection (e.g., straight, right, left).

Fitting to the Road Network and Segmenting

To address noise in the GPS data, we fit it to the road network
using a particle filter. A particle filter simulates a large num-
ber of vehicles traversing over the road network, focusing its
attention on particles that best match the GPS readings. A
motion model is employed to simulate the movement of the
vehicle and an observation model is employed to express the
relationship between the true location of the vehicle and the
GPS reading of the vehicle. We use a motion model based on
the empirical distribution of changes in speed and a Laplace
distribution for our observation model.

Once fitted to the road network, we segmented our GPS
traces into distinct trips. Our segmentation is based on time-
thresholds. Vehicles with a small velocity for a period of
time are considered to be at the end of one trip and the begin-
ning of a new trip. We note that this problem is particularly
difficult for taxi driver data, because these drivers may often
stop only long enough to let out a passenger and this can be
difficult to distinguish from stopping at a long stoplight. We
discard trips that are too short, too noisy, and too cyclic.

MODELING ROUTE PREFERENCES

In this section, we describe the features that we employed to
model the utilities of different road segments in our model,
and machine learning techniques employed to learn good
cost weights for the model.

Feature Sets and Context-Awareness

As mentioned, we have characteristics of the road network
that describe speed, functionality, lanes, and turns. These
combine to form path-level features that describe a path
as numbers of different turn type along the path and road
mileage at different speed categories, functionality cate-
gories, and numbers of lanes. To form these path features,

we combine the comprising road segments’ features for each
of their characteristics weighted by the road segment length
or intersection transition count.

Feature Value

Highway 3.3 miles
Major Streets 2.0 miles
Local Streets 0.3 miles
Above 55mph 4.0 miles

35-54mph 1.1 miles
25-34 mph 0.5 miles

Below 24mph 0 miles
3+ Lanes 0.5 miles
2 Lanes 3.3 miles
1 Lane 1.8 miles

Feature Value

Hard left turn 1
Soft left turn 3

Soft right turn 5
Hard right turn 0

No turn 25
U-turn 0

Table 3. Example feature counts for a driver’s demonstrated route(s)

The PROCAB model finds the cost weight for different fea-
tures so that the model’s feature counts will match (in expec-
tation) those demonstrated by a driver (e.g., as shown in Ta-
ble 3). when planning for the same starting point and desti-
nation. Additionally, unobserved features may make certain
road segments more or less desirable. To model these un-
observable features, we add unique features associated with
each road segment to our model. This allows the cost of each
road segment to vary independently.

We conducted a survey of our taxi drivers to help identify the
main contextual factors that impact their route choices. The
perceived influences (with average response) on a 5-point
Likert Scale ranging from “no influence” (1) to “strong influ-
ence” (5) are: Accidents (4.50), Construction (4.42), Time of
Day (4.31), Sporting Events (4.27), and Weather (3.62). We
model some of these influences by adding real-time features
to our road segments for Accident, Congestion, and Closures
(Road and Lane) according to traffic data collected every 15
minutes from Yahoo’s traffic service.

We incorporate sensitivity to time of day and day of week by
adding duplicate features that are only active during certain
times of day and days of week. We use morning rush hour,
day time, evening rush hour, evening, and night as our time
of day categories, and weekday and weekend as day of week
categories. Using these features, the model tries to not only
match the total number of e.g., interstate miles, but it also
tries to get the right amount of interstate miles under each
time of day category. For example, if our taxi drivers try to
avoid the interstate during rush hour, the PROCAB model
assigns a higher weight to the joint interstate and rush hour
feature. It is then less likely to prefer routes on the interstate
during rush hour given that higher weight.

Matching all possible contextual feature counts highly con-
strains the model’s predictions. In fact, given enough con-
textual features, the model may exactly predict the actual
demonstrated behavior and overfit to the training data. We
avoid this problem using regularization, a technique that
relaxes the feature matching constraint by introducing a
penalty term (−

∑
i λiθ

2
i ) to the optimization. This penalty



prevents cost weights corresponding to highly specialized
features from becoming large enough to force the model to
perfectly fit observed behavior.

Learned Cost Weights

We learn the cost weights that best explain a set of demon-
strated routes using Algorithm 2. Using this approach, we
can obtain cost weights for each driver or a collective cost
weight for a group of drivers. In this paper, we group the
routes gathered from all 25 taxi drivers together and learn a
single cost weight using a training set of 80% of those routes.
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Figure 5. Speed categorization and road type cost factors normalized
to seconds assuming 65mph driving on fastest and largest roads

Figure 5 shows how road type and speed categorization in-
fluence the road’s cost in our learned model.

NAVIGATION APPLICATIONS AND EVALUATION

We now focus on the applications that our route preference
model enables. We evaluate our model on a number of pre-
diction tasks needed for those applications. We compare the
PROCAB model’s performance with other state of the art
methods on these tasks using the remaining 20% of the taxi
route dataset to evaluate.

Turn Prediction

We first consider the problem of predicting the action at the
next intersection given a known final destination. This prob-
lem is important for applications such as automatic turn sig-
naling and fuel consumption optimization when the destina-
tion is either specified by the driver or can be inferred from
his or her normal driving habits. We compare PROCAB’s
ability to predict 55,725 decisions at intersections with mul-
tiple options5 to approaches based on Markov Models.

We measure the accuracy of each model’s predictions (i.e.,
percentage of predictions that are correct) and the average
log likelihood, 1

#decisions

∑
decision d log Pmodel(d) of the ac-

tual actions in the model. This latter metric evaluates the
model’s ability to probabilistically model the distribution of
decisions. Values closer to 0 are closer to perfectly mod-
eling the data. As a baseline, guessing uniformly at random
(without U-turns) yields an accuracy of 46.4% and a log like-
lihood of −0.781 for our dataset.
5Previous Markov Model evaluations include “intersections” with
only one available decision, which comprise 95% [22] and 28%
[11] of decisions depending on the road network representation.

Markov Models for Turn Prediction

We implemented two Markov Models for turn prediction. A
Markov Model predicts the next action (or road segment)
given some observed conditioning variables. Its predictions
are obtained by considering a set of previously observed de-
cisions at an intersection that match the conditioning vari-
ables. The most common action from that set can be pre-
dicted or the probability of each action can be set in pro-
portion to its frequency in the set6. For example, Liao et
al. [14] employ the destination and mode of transport for
modeling multi-modal transportation routines. We evaluate
the Markov Models employed by Krumm [11], which con-
ditions on the previous K traversed road segments, and Sim-
mons et al. [22], which conditions on the route destination.

Non-reducing Reducing
History Accu. Likel. Accu. Likel.

1 edge 85.8% −0.322 85.8% −0.322
2 edge 85.6% −0.321 86.0% −0.319
5 edge 84.8% −0.330 86.2% −0.321
10 edge 83.4% −0.347 86.1% −0.328
20 edge 81.5% −0.367 85.7% −0.337
100 edge 79.3% −0.399 85.1% −0.356

Table 4. K-order Markov Model Performance

Evaluation results of a K-order Markov Model based on road
segment histories are shown in Table 4. We consider two
variants of the model. For the Non-reducing variant, if there
are no previously observed decisions that match the K-sized
history, a random guess is made. In the Reducing variant,
instead of guessing randomly when no matching histories
are found, the model tries to match a smaller history size
until some matching examples are found. If no matching
histories exist for K = 1 (i.e., no previous experience with
this decision), a random guess is then made.

In the non-reducing model we notice a performance degrada-
tion as the history size, K, increases. The reduction strategy
for history matching helps to greatly diminish the degrada-
tion of having a larger history, but still we still find a small
performance degradation as the history size increases be-
yond 5 edges.

Destinations Accuracy Likelihood

1x1 grid 85.8% −0.322
2x2 grid 85.1% −0.319
5x5 grid 84.1% −0.327
10x10 grid 83.5% −0.327
40x40 grid 78.6% −0.365
100x100 grid 73.1% −0.416
2000x2000 grid 59.3% −0.551

Table 5. Destination Markov Model Performance

We present the evaluation of the Markov Model conditioned
on a known destination in Table 5. We approximate each
unique destination with a grid of destination cells, starting
from a single cell (1x1) covering the entire map, all the way

6Some chance of selecting previously untaken actions is added by
smoothing the distribution.



up to 4 million cells (2000x2000). As the grid dimensions
grow to infinity, the treats each destination as unique. We
find empirically that using finer grid cells actually degrades
accuracy, and knowing the destination provides no advan-
tage over the history-based Markov Model for this task.

Both of these results show the inherent problem of data spar-
sity for directed graphical models in these types of domains.
With an infinite amount of previously observed data avail-
able to construct a model, having more information (i.e., a
larger history or a finer grid resolution) can never degrade
the model’s performance. However, with finite amounts of
data there will often be few or no examples with matching
conditional variables, providing a poor estimate of the true
conditional distribution, which leads to lower performance
in applications of the model.

PROCAB Turn Prediction

The PROCAB model predicts turns by reasoning about paths
to the destination. Each path has some probability within the
model and many different paths share the same first actions.
An action’s probability is obtained by summing up all path
probabilities that start with that action. The PROCAB model
provides a compact representation over destination, context,
and action sequences, so the exact destination and rich con-
textual information can be incorporated without leading to
data sparsity degradations like the Markov Model.

Accuracy Likelihood

Random guess 46.4% −0.781
Best History MM 86.2% −0.319
Best Destination MM 85.8% −0.319
PROCAB (no context) 91.0% −0.240
PROCAB (context) 93.2% −0.201

Table 6. Baseline and PROCAB turn prediction performance

We summarize the best comparison models’ results for turn
prediction and present the PROCAB turn prediction perfor-
mance in Table 6. The PROCAB approach provides a large
improvement over the other models in both prediction accu-
racy and log likelihood. Additionally, incorporating time of
day, day of week, and traffic report contextual information
provides improved performance. We include this additional
contextual information in the remainder of our experiments.

Route Prediction

We now focus on route prediction, where the origin and des-
tination of a route are known, but the route between the two
is not and must be predicted. Two important applications of
this problem are route recommendation, where a driver re-
quests a desirable route connecting two specified points, and
unanticipated hazard warning, where an application that can
predict the driver will encounter some hazard he is unaware
of and warn him beforehand.

We evaluate the prediction quality based on the amount of
matching distance between the predicted route and the ac-
tual route, and the percentage of predictions that match,
where we consider all routes that share 90% of distance as

Model Dist. Match 90%Match

Markov (1x1) 62.4% 30.1%
Markov (3x3) 62.5% 30.1%
Markov (5x5) 62.5% 29.9%
Markov (10x10) 62.4% 29.6%
Markov (30x30) 62.2% 29.4%
Travel Time 72.5% 44.0%
PROCAB 82.6% 61.0%

Table 7. Evaluation results for Markov Model with various grid sizes,
time-based model, and PROCAB model

matches. This final measure ignores minor route differences,
like those caused by noise in GPS data. We evaluate a previ-
ously described Markov Model, a model based on estimated
travel time, and our PROCAB model.

Markov Model Route Planning

We employ route planning using the previously described
destination-conditioned Markov Model [22]. The model rec-
ommends the most probable route satisfying origin and des-
tination constraints. The results (Table 7, Markov) are fairly
uniform regardless of the number of grid cells employed,
though there is a subtle degradation with more grid cells.

Travel Time-Based Planning

A number of approaches for vehicle route recommendation
are based on estimating the travel time of each route and
recommending the fastest route. Commercial route recom-
mendation systems, for example, try to provide the fastest
route. The Cartel Project [8] works to better estimate the
travel times of different road segments in near real-time us-
ing fleets of instrumented vehicles. One approach to route
prediction is to assume the driver will also try to take this
most expedient route.

We use the distance and speed categorization of each road
segment to estimate travel times, and then provide route pre-
dictions using the fastest route between origin and destina-
tion. The results (Table 7, Travel Time) show a large im-
provement over the Markov Model. We believe this is due
to data sparsity in the Markov Model and the Travel time
model’s ability to generalize to previously unseen situations
(e.g., new origin-destination pairs).

PROCAB Route Prediction

Our view of route prediction and recommendation is funda-
mentally different than those based solely on travel time es-
timates. Earlier research [13] and our own study have shown
that there is a great deal of variability in route preference
between drivers. Rather than assume drivers are trying to
optimize one particular metric and more accurately estimate
that metric in the road network, we implicitly learn the met-
ric that the driver is actually trying to optimize in practice.
This allows other factors on route choice, such as fuel ef-
ficiency, safety, reduced stress, and familiarity, to be mod-
eled. While the model does not explicitly understand that
one route is more stressful than another, it does learn to imi-
tate a driver’s avoidance of more stressful routes and features
associated with those routes. The PROCAB model provides



Percentage of trip observed
Model 10% 20% 40% 60% 80% 90%

MM 5x5 9.61 9.24 8.75 8.65 8.34 8.17
MM 10x10 9.31 8.50 7.91 7.58 7.09 6.74
MM 20x20 9.69 8.99 8.23 7.66 6.94 6.40
MM 30x30 10.5 9.94 9.14 8.66 7.95 7.59
Pre 40x40 MAP 7.98 7.74 6.10 5.42 4.59 4.24
Pre 40x40 Mean 7.74 7.53 5.77 4.83 4.12 3.79
Pre 80x80 MAP 11.02 7.26 5.17 4.86 4.21 3.88
Pre 80x80 Mean 8.69 7.27 5.28 4.46 3.95 3.69
PRO MAP 11.18 8.63 6.63 5.44 3.99 3.13
PRO Mean 6.70 5.81 5.01 4.70 3.98 3.32

Table 8. Prediction error of Markov, Predestination, and PROCAB
models in kilometers

increased performance over both the Markov Model and the
model based on travel time estimates, as shown in Table 7.
This is because it is able to better estimate the utilities of the
road segments than the feature-based travel time estimates.

Destination Prediction

Finally, we evaluate models for destination prediction. In sit-
uations where a driver has not entered her destination into an
in-car navigation system, accurately predicting her destina-
tion would be useful for proactively providing an alternative
route. Given the difficulty that users have in entering desti-
nations [23], destination prediction can be particularly use-
ful. It can also be used in conjunction with our model’s route
prediction and turn prediction to deal with settings where the
destination is unknown.

In this setting, a partial route of the driver is observed and the
final destination of the driver is predicted. This application is
especially difficult given our set of drivers, who visit a much
wider range of destinations than typical drivers. We com-
pare PROCAB’s ability to predict destination to two other
models, in settings where the set of possible destinations is
not fully known beforehand.

We evaluate our models using 1881 withheld routes and al-
low our model to observe various amounts of the route from
10% to 90%. The model is provided no knowledge of how
much of the trip has been completed. Each model provides
a single point estimate for the location of the intended des-
tination and we evaluate the distance between the true desti-
nation and this predicted destination in kilometers.

Bayes’ Rule

Using Bayes’ Rule (Equation 6), route preference models
that predict route (B) given destination (A) can be employed
along with a prior on destinations, P (A), to obtain a proba-
bility distribution over destinations, P (A|B)7.

P (A|B) =
P (B|A)P (A)∑

A′ P (B|A′)P (A′)
∝ P (B|A)P (A) (6)

7Since the denominator is constant with respect to A, the probabil-
ity is often expressed as being proportionate to the numerator.
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Figure 6. The best Markov Model, Predestination, and PROCAB pre-

diction errors

Markov Model Destination Prediction

We first evaluate a destination-conditioned Markov Model
for predicting destination region in a grid. The model em-
ploys Bayes’ Rule to obtain a distribution over cells for the
destination based on the observed partial route. The prior
distribution over grid cells is obtained from the empirical
distribution of destinations in the training dataset. The center
point of the most probable grid cell is used as a destination
location estimate.

Evaluation results for various grid cell sizes are shown in
Table 8 (MM). We find that as more of the driver’s route
is observed, the destination is more accurately predicted. As
with the other applications of this model, we note that having
the most grid cells does not provide the best model due to
data sparsity issues.

Predestination

The Predestination sytem [12] grids the world into a number
of cells and uses the observation that the partially traveled
route is usually an efficient path through the grid to the final
destination. Using Bayes’ rule, destinations that are opposite
of the direction of travel have much lower probability than
destinations for which the partially traveled route is efficient.
Our implemention employs a prior distribution over destina-
tion grid cells conditioned on the starting location rather than
the more detailed original Predestination prior. We consider
two variants of prediction with Predestination. One predicts
the center of the most probable cell (i.e., the Maximum a
Posteriori or MAP estimate). The other, Mean, predicts the
probabilistic average over cell center beliefs. We find that
Predestination shows significant improvement (Table 8, Pre)
over the Markov Model’s performance.

PROCAB Destination Prediction

In the PROCAB model, destination prediction is also an ap-
plication of Bayes’ rule. Consider a partial path, ζA→B

from point A to point B. The destination probability is then:

P (dest|ζA→B , θ) ∝ P (ζA→B |dest, θ)P (dest)

∝

∑
ζB→dest

e−cost(ζ|θ)

∑
ζA→dest

e−cost(ζ|θ)
P (dest) (7)

We use the same prior that depends on the starting point (A)
that we employed in our Predestination implementation. The



posterior probabilities are efficiently computed by taking the
sums over paths from points A and B to each possible des-
tination (Equation 7) using the forward pass of Algorithm
1.

Table 8 (PRO) and Figure 6 show the accuracy of PROCAB
destination prediction compared with other models. Using
averaging is much more beneficial for the PROCAB model,
likely because it is more sensitive to particular road seg-
ments than models based on grid cells. We find that the
PROCAB model performs comparably to the Predestination
model given a large percentage of observed trip, and better
than the Predestination model when less of the trip is ob-
served. PROCAB’s abilities to learn non-travel time desir-
ability metrics, reason about road segments rather than grid
cells, and incorporate additional contextual information may
each contribute to this improvement.

CONCLUSIONS AND FUTURE WORK

We presented PROCAB, a novel approach for modeling
observed behavior that learns context-sensitive action util-
ities rather than directly learning action sequences. We ap-
plied this approach to vehicle route preference modeling and
showed significant performance improvements over exist-
ing models for turn and route prediction and showed simi-
lar performance to the state-of-the-art destination prediction
model. Our model has a more compact representation than
those which directly model action sequences. We attribute
our model’s improvements to its compact representation, be-
cause of an increased ability to generalize to new situations.

Though we focused on vehicle route preference modeling
and smart navigation applications, PROCAB is a general ap-
proach for modeling context-sensitive behavior that we be-
lieve it is well-suited for a number of application domains.
In addition to improving our route preference models by in-
corporating additional contextual data, we plan to model el-
der drivers and other interesting populations and we plan
to model behavior in other context-rich domains, includ-
ing modeling the movements of people throughout dynamic
work environments and the location-dependent activities of
families. We hope to demonstrate PROCAB as a domain-
general framework for modeling context-dependent user be-
havior.
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