
Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel pabbeel@cs.stanford.edu

Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

We consider learning in a Markov decision
process where we are not explicitly given a re-
ward function, but where instead we can ob-
serve an expert demonstrating the task that
we want to learn to perform. This setting
is useful in applications (such as the task of
driving) where it may be difficult to write
down an explicit reward function specifying
exactly how different desiderata should be
traded off. We think of the expert as try-
ing to maximize a reward function that is ex-
pressible as a linear combination of known
features, and give an algorithm for learning
the task demonstrated by the expert. Our al-
gorithm is based on using “inverse reinforce-
ment learning” to try to recover the unknown
reward function. We show that our algorithm
terminates in a small number of iterations,
and that even though we may never recover
the expert’s reward function, the policy out-
put by the algorithm will attain performance
close to that of the expert, where here per-
formance is measured with respect to the ex-
pert’s unknown reward function.

1. Introduction
Given a sequential decision making problem posed in
the Markov decision process (MDP) formalism, a num-
ber of standard algorithms exist for finding an optimal
or near-optimal policy. In the MDP setting, we typi-
cally assume that a reward function is given. Given a
reward function and the MDPs state transition prob-
abilities, the value function and optimal policy are ex-
actly determined.

The MDP formalism is useful for many problems be-
cause it is often easier to specify the reward function
than to directly specify the value function (and/or op-
timal policy). However, we believe that even the re-
ward function is frequently difficult to specify manu-
ally. Consider, for example, the task of highway driv-
ing. When driving, we typically trade off many dif-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

ferent desiderata, such as maintaining safe following
distance, keeping away from the curb, staying far from
any pedestrians, maintaining a reasonable speed, per-
haps a slight preference for driving in the middle lane,
not changing lanes too often, and so on To specify
a reward function for the driving task, we would have
to assign a set of weights stating exactly how we would
like to trade off these different factors. Despite being
able to drive competently, the authors do not believe
they can confidently specify a specific reward function
for the task of “driving well.”1

In practice, this means that the reward function is of-
ten manually tweaked (cf. reward shaping, Ng et al.,
1999) until the desired behavior is obtained. From con-
versations with engineers in industry and our own ex-
perience in applying reinforcement learning algorithms
to several robots, we believe that, for many problems,
the difficulty of manually specifying a reward function
represents a significant barrier to the broader appli-
cability of reinforcement learning and optimal control
algorithms.

When teaching a young adult to drive, rather than
telling them what the reward function is, it is much
easier and more natural to demonstrate driving to
them, and have them learn from the demonstration.
The task of learning from an expert is called appren-
ticeship learning (also learning by watching, imitation
learning, or learning from demonstration).

A number of approaches have been proposed for ap-
prenticeship learning in various applications. Most of
these methods try to directly mimic the demonstrator
by applying a supervised learning algorithm to learn a
direct mapping from the states to the actions. This
literature is too wide to survey here, but some ex-
amples include Sammut et al. (1992); Kuniyoshi et
al. (1994); Demiris & Hayes (1994); Amit & Mataric
(2002); Pomerleau (1989). One notable exception is
given in Atkeson & Schaal (1997). They considered the

1We note that this is true even though the reward func-
tion may often be easy to state in English. For instance,
the “true” reward function that we are trying to maximize
when driving is, perhaps, our “personal happiness.” The
practical problem however is how to model this (i.e., our
happiness) explicitly as a function of the problems’ states,
so that a reinforcement learning algorithm can be applied.

problem of having a robot arm follow a demonstrated
trajectory, and used a reward function that quadrat-
ically penalizes deviation from the desired trajectory.
Note however, that this method is applicable only to
problems where the task is to mimic the expert’s tra-
jectory. For highway driving, blindly following the ex-
pert’s trajectory would not work, because the pattern
of traffic encountered is different each time.

Given that the entire field of reinforcement learning is
founded on the presupposition that the reward func-
tion, rather than the policy or the value function, is
the most succinct, robust, and transferable definition
of the task, it seems natural to consider an approach to
apprenticeship learning whereby the reward function is
learned.2

The problem of deriving a reward function from ob-
served behavior is referred to as inverse reinforcement
learning (Ng & Russell, 2000). In this paper, we
assume that the expert is trying (without necessar-
ily succeeding) to optimize an unknown reward func-
tion that can be expressed as a linear combination of
known “features.” Even though we cannot guarantee
that our algorithms will correctly recover the expert’s
true reward function, we show that our algorithm will
nonetheless find a policy that performs as well as the
expert, where performance is measured with respect
to the expert’s unknown reward function.

2. Preliminaries
A (finite-state) Markov decision process (MDP) is a tu-
ple (S,A, T, γ,D,R), where S is a finite set of states; A
is a set of actions; T = {Psa} is a set of state transition
probabilities (here, Psa is the state transition distribu-
tion upon taking action a in state s); γ ∈ [0, 1) is a
discount factor; D is the initial-state distribution, from
which the start state s0 is drawn; and R : S 7→ A is
the reward function, which we assume to be bounded
in absolute value by 1. We let MDP\R denote an
MDP without a reward function, i.e., a tuple of the
form (S,A, T, γ,D).

We assume that there is some vector of features φ :
S → [0, 1]k over states, and that there is some “true”
reward function R∗(s) = w∗ · φ(s), where w∗ ∈ R

k. 3

2A related idea is also seen in the biomechanics and cog-
nitive science, where researchers have pointed out that sim-
ple reward functions (usually ones constructed by hand) of-
ten suffice to explain complicated behavior (policies). Ex-
amples include the minimum jerk principle to explain limb
movement in primates (Hogan, 1984), and the minimum
torque-change model to explain trajectories in human mul-
tijoint arm movement.(Uno et al., 1989) Related examples
are also found in economics and some other literatures.
(See the discussion in Ng & Russell, 2000.)

3The case of state-action rewards R(s, a) offers no ad-
ditional difficulties; using features of the form φ : S ×A →
[0, 1]k, and our algorithms still apply straightforwardly.

In order to ensure that the rewards are bounded by 1,
we also assume ‖w∗‖1 ≤ 1. In the driving domain, φ
might be a vector of features indicating the different
desiderata in driving that we would like to trade off,
such as whether we have just collided with another
car, whether we’re driving in the middle lane, and so
on. The (unknown) vector w∗ specifies the relative
weighting between these desiderata.

A policy π is a mapping from states to probability
distributions over actions. The value of a policy π is

Es0∼D[V π(s0)] = E[
∑∞

t=0 γtR(st)|π] (1)

= E[
∑∞

t=0 γtw · φ(st)|π] (2)

= w · E[
∑∞

t=0 γtφ(st)|π] (3)

Here, the expectation is taken with respect to the ran-
dom state sequence s0, s1, . . . drawn by starting from
a state s0 ∼ D, and picking actions according to π.
We define the expected discounted accumulated fea-
ture value vector µ(π), or more succinctly the feature

expectations, to be

µ(π) = E[
∑∞

t=0 γtφ(st)|π] ∈ R
k. (4)

Using this notation, the value of a policy may be writ-
ten Es0∼D[V π(s0)] = w · µ(π). Given that the reward
R is expressible as a linear combination of the fea-
tures φ, the feature expectations for a given policy π
completely determine the expected sum of discounted
rewards for acting according to that policy.

Let Π denote the set of stationary policies for an MDP.
Given two policies π1, π2 ∈ Π, we can construct a new
policy π3 by mixing them together. Specifically, imag-
ine that π3 operates by flipping a coin with bias λ, and
with probability λ picks and always acts according to
π1, and with probability 1 − λ always acts according
to π2. From linearity of expectation, clearly we have
that µ(π3) = λµ(π1) + (1 − λ)µ(π2). Note that the
randomization step selecting between π1 and π2 occurs
only once at the start of a trajectory, and not on ev-
ery step taken in the MDP. More generally, if we have
found some set of policies π1, . . . , πd, and want to find
a new policy whose feature expectations vector is a
convex combination

∑n
i=1 λiµ(πi) (λi ≥ 0,

∑

i λi = 1)
of these policies’, then we can do so by mixing together
the policies π1, . . . , πd, where the probability of picking
πi is given by λi.

We assume access to demonstrations by some expert
πE . Specifically, we assume the ability to observe
trajectories (state sequences) generated by the expert
starting from s0 ∼ D and taking actions according to
πE . It may be helpful to think of the πE as the optimal
policy under the reward function R∗ = w∗T φ, though
we do not require this to hold.

For our algorithm, we will require an estimate of the
expert’s feature expectations µE = µ(πE). Specifi-

cally, given a set of m trajectories {s
(i)
0 , s

(i)
1 , . . .}m

i=1

generated by the expert, we denote the empirical esti-
mate for µE by4

µ̂E = 1
m

∑m
i=1

∑∞

t=0 γtφ(s
(i)
t). (5)

In the sequel, we also assume access to a reinforcement
learning (RL) algorithm that can be used to solve an
MDP\R augmented with a reward function R = wT φ.
For simplicity of exposition, we will assume that the
RL algorithm returns the optimal policy. The general-
ization to approximate RL algorithms offers no special
difficulties; see the full paper. (Abbeel & Ng, 2004)

3. Algorithm
The problem is the following: Given an MDP\R, a
feature mapping φ and the expert’s feature expecta-
tions µE , find a policy whose performance is close to
that of the expert’s, on the unknown reward function
R∗ = w∗T φ. To accomplish this, we will find a policy
π̃ such that ‖µ(π̃)−µE‖2 ≤ ε. For such a π̃, we would
have that for any w ∈ R

k (‖w‖1 ≤ 1),

|E[
∑∞

t=0 γtR(st)|πE] − E[
∑∞

t=0 γtR(st)|π̃]| (6)

= |wT µ(π̃) − wT µE | (7)

≤ ‖w‖2‖µ(π̃) − µE‖2 (8)

≤ 1 · ε = ε (9)

The first inequality follows from the fact that |xT y| ≤
‖x‖2‖y‖2, and the second from ‖w‖2 ≤ ‖w‖1 ≤ 1.
So the problem is reduced to finding a policy π̃ that
induces feature expectations µ(π̃) close to µE . Our
apprenticeship learning algorithm for finding such a
policy π̃ is as follows:

1. Randomly pick some policy π(0), compute (or approx-

imate via Monte Carlo) µ(0) = µ(π(0)), and set i = 1.

2. Compute t(i) = maxw:‖w‖2≤1 minj∈{0..(i−1)} wT (µE −
µ(j)), and let w(i) be the value of w that attains this
maximum.

3. If t(i) ≤ ε, then terminate.

4. Using the RL algorithm, compute the optimal policy
π(i) for the MDP using rewards R = (w(i))T φ.

5. Compute (or estimate) µ(i) = µ(π(i)).

6. Set i = i + 1, and go back to step 2.

Upon termination, the algorithm returns {π(i) : i =
0 . . . n}.

Let us examine the algorithm in detail. On iteration
i, we have already found some policies π(0), . . . , π(i−1).
The optimization in step 2 can be viewed as an inverse
reinforcement learning step in which we try to guess

4In practice we truncate the trajectories after a finite
number H of steps. If H = Hε = logγ(ε(1 − γ)) is the
ε-horizon time, then this introduces at most ε error into
the approximation.

µ(π (0))

µ(π (1))

µE

w(2)

w(1)

w (3)

)µ π((2)

Figure 1. Three iterations for max-margin algorithm.

the reward function being optimized by the expert.
The maximization in that step is equivalently written

maxt,w t (10)

s.t. wT µE ≥ wT µ(j) + t, j = 0, . . . , i − 1 (11)

||w||2 ≤ 1 (12)

From Eq. (11), we see the algorithm is trying to
find a reward function R = w(i) · φ such that

Es0∼D[V πE (s0)] ≥ Es0∼D[V π(i)

(s0)] + t. I.e., a re-
ward on which the expert does better, by a “margin”
of t, than any of the i policies we had found previously.
This step is similar to one used in (Ng & Russell, 2000),
but unlike the algorithms given there, because of the
2-norm constraint on w it cannot be posed as a linear
program (LP), but only as a quadratic program.5

Readers familiar with support vector machines
(SVMs) will also recognize this optimization as be-
ing equivalent to finding the maximum margin hyper-
plane separating two sets of points. (Vapnik, 1998) The
equivalence is obtained by associating a label 1 with
the expert’s feature expectations µE , and a label −1
with the feature expectations {µ(π(j)) : j = 0..(i−1)}.
The vector w(i) we want is the unit vector orthogonal
to the maximum margin separating hyperplane. So, an
SVM solver can also be used to find w(i). (The SVM
problem is a quadratic programming problem (QP), so
we can also use any generic QP solver.)

In Figure 1 we show an example of what the first
three iterations of the algorithm could look like geo-
metrically. Shown are several example µ(π(i)), and the
w(i)’s given by different iterations of the algorithm.

Now, suppose the algorithm terminates, with t(n+1) ≤
ε. (Whether the algorithm terminates is discussed in
Section 4.) Then directly from Eq. (10-12) we have:

∀w with ‖w‖2 ≤ 1 ∃i s.t. wT µ(i) ≥ wT µE − ε. (13)

Since ||w∗||2 ≤ ||w∗||1 ≤ 1, this means that there is
at least one policy from the set returned by the al-
gorithm, whose performance under R∗ is at least as
good as the expert’s performance minus ε. Thus, at
this stage, we can ask the agent designer to manually
test/examine the policies found by the algorithm, and

5Although we previously assumed that the w∗ specify-
ing the “true” rewards statisfy ‖w∗‖1 ≤ 1 (and our theo-
retical results will use this assumption), we still implement
the algorithm using ‖w‖2 ≤ 1, as in Eq. (12).

pick one with acceptable performance. A slight exten-
sion of this method ensures that the agent designer
has to examine at most k + 1, rather than all n + 1,
different policies (see footnote 6).

If we do not wish to ask for human help to select a
policy, alternatively we can find the point closest to
µE in the convex closure of µ(0), . . . , µ(n) by solving
the following QP:

min ||µE − µ||2, s.t. µ =
∑

i λiµ
(i), λi ≥ 0,

∑

i λi = 1.

Because µE is “separated” from the points µ(i) by a
margin of at most ε, we know that for the solution µ
we have ||µE−µ||2 ≤ ε. Further, by “mixing” together
the policies π(i) according to the mixture weights λi as
discussed previously, we obtain a policy whose feature
expectations are given by µ. Following our previous
discussion (Eq. 6-9), this policy attains performance
near that of the expert’s on the unknown reward func-
tion.6

Note that although we called one step of our algorithm
an inverse RL step, our algorithm does not necessarily
recover the underlying reward function correctly. The
performance guarantees of our algorithm only depend
on (approximately) matching the feature expectations,
not on recovering the true underlying reward function.

3.1. A simpler algorithm
The algorithm described above requires access to a
QP (or SVM) solver. It is also possible to change
the algorithm so that no QP solver is needed. We
will call the previous, QP-based, algorithm the max-
margin method, and the new algorithm the projec-
tion method. Briefly, the projection method replaces
step 2 of the algorithm with the following:

- Set µ̄(i−1) =

µ̄(i−2)+ (µ(i−1)−µ̄(i−2))T (µE−µ̄(i−2))

(µ(i−1)−µ̄(i−2))T (µ(i−1)−µ̄(i−2))
(µ(i−1)−µ̄(i−2))

(This computes the orthogonal projection of µE onto

the line through µ̄(i−2) and µ(i−1).)

- Set w(i) = µE − µ̄(i−1)

- Set t(i) = ‖µE − µ̄(i−1)‖2

In the first iteration, we also set w(1) = µE − µ(0) and
µ̄(0) = µ(0). The full justification for this method is
deferred to the full paper (Abbeel and Ng, 2004), but
in Sections 4 and 5 we will also give convergence results
for it, and empirically compare it to the max-margin

6In k-dimensional space, any point that is a convex
combination of a set of N points, with N > k + 1, can
be written as a convex combination of a subset of only
k + 1 points of the original N points (Caratheodory’s
Theorem, Rockafeller, 1970). Applying this to µ =

arg minµ∈Co{µ(π(i))}n
i=0

||µE −µ||2 and {µ(π(i))}n
i=0 we ob-

tain a set of k + 1 policies which is equally close to the
expert’s feature expectations and thus have same perfor-
mance guarantees. (Co denotes convex hull.)

π (0))=µ(0)
µ(1)

µ(π (1))

µE

w(2)
w(3)

µ(2)

w(1)

(

µ π((2))

µ

Figure 2. Three iterations for projection algorithm.

algorithm. An example showing three iterations of the
projection method is shown in Figure 2.

4. Theoretical results
Most of the results in the previous section were predi-
cated on the assumption that the algorithm terminates
with t ≤ ε. If the algorithm sometimes does not ter-
minate, or if it sometimes takes a very (perhaps ex-
ponentially) large number of iterations to terminate,
then it would not be useful. The following shows that
this is not the case.

Theorem 1. Let an MDP\R, features φ : S 7→ [0, 1]k,
and any ε > 0 be given. Then the apprenticeship learn-
ing algorithm (both max-margin and projection ver-
sions) will terminate with t(i) ≤ ε after at most

n = O
(

k
(1−γ)2ε2 log k

(1−γ)ε

)

(14)

iterations.

The previous result (and all of Section 3) had assumed
that µE was exactly known or calculated. In prac-
tice, it has to be estimated from Monte Carlo samples
(Eq. 5). We can thus ask about the sample complex-
ity of this algorithm; i.e., how many trajectories m we
must observe of the expert before we can guarantee we
will approach its performance.

Theorem 2. Let an MDP\R, features φ : S 7→ [0, 1]k,
and any ε > 0, δ > 0 be given. Suppose the appren-
ticeship learning algorithm (either max-margin or pro-
jection version) is run using an estimate µ̂E for µE

obtained by m Monte Carlo samples. In order to en-
sure that with probability at least 1 − δ the algorithm
terminates after at most a number of iterations n given
by Eq. (14), and outputs a policy π̃ so that for any true

reward R∗(s) = w∗T φ(s) (‖w∗‖1 ≤ 1) we have

E[
∑∞

t=0 γtR∗(st)|π̃] ≥ E[
∑∞

t=0 γtR∗(st)|πE]−ε, (15)

it suffices that

m ≥ 2k
(ε(1−γ))2 log 2k

δ .

The proofs of these theorems are in Appendix A.

In the case where the true reward function R∗ does
not lie exactly in the span of the basis functions φ, the
algorithm still enjoys a graceful degradation of perfor-
mance. Specifically, if R∗(s) = w∗ · φ(s) + ε(s) for

some residual (error) term ε(s), then our algorithm
will have performance that is worse than the expert’s
by no more than O(‖ε‖∞).

5. Experiments

5.1. Gridworld

In our first set of experiments, we used 128 by 128
gridworlds with multiple/sparse rewards. The reward
is not known to the algorithm, but we can sample tra-
jectories from an expert’s (optimal) policy. The agent
has four actions to try to move in each of the four com-
pass directions, but with 30% chance an action fails
and results in a random move. The grid is divided into
non-overlapping regions of 16 by 16 cells; we call these
16x16 regions “macrocells.” A small number of the re-
sulting 64 macrocells have positive rewards. For each
value of i = 1, . . . , 64, there is one feature φi(s) indi-
cating whether that state s is in macrocell i. Thus, the
rewards may be written R∗ = (w∗)T φ. The weights w∗

are generated randomly so as to give sparse rewards,
which leads to fairly interesting/rich optimal policies.7

In the basic version, the algorithm is run using the
64-dimensional features φ. We also tried a version in
which the algorithm knows exactly which macrocells
have non-zero rewards (but not their values), so that
the dimension of φ is reduced to contain only features
corresponding to non-zero rewards.

In Figure 3, we compare the max-margin and projec-
tion versions of the algorithm, when µE is known ex-
actly. We plot the margin t(i) (distance to expert’s pol-
icy) vs. the number of iterations, using all 64 macro-
cells as features. The expert’s policy is the optimal
policy with respect to the given MDP. The two al-
gorithms exhibited fairly similar rates of convergence,
with the projection version doing slightly better.

The second set of experiments illustrates the perfor-
mance of the algorithm as we vary the number m of
sampled expert trajectories used to estimate µE . The
performance measure is the value of the best policy
in the set output by the algorithm. We ran the al-
gorithm once using all 64 features, and once using
only the features that truly correspond to non-zero
rewards.8 We also report on the performance of three

7Details: We used γ = 0.99, so the expected horizon is
of the order of the gridsize. The true reward function was
generated as follows: For each macrocell i (i = 1, . . . , 64),
with probability 0.9 the reward there is zero (w∗

i = 0),
and with probability 0.1 a weight w∗

i is sampled uniformly
from [0,1]. Finally, w∗ is renormalized so that ‖w∗‖1 =
1. Instances with fewer than two non-zero entries in w∗

are non-interesting and were discarded. The initial state
distribution is uniform over all states.

8Note that, as in the text, our apprenticeship learning
algorithm assumes the ability to call a reinforcement learn-
ing subroutine (in this case, an exact MDP solver using
value iteration). In these experiments, we are interested

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of iterations

D
is

ta
nc

e
to

 e
xp

er
t f

ea
tu

re
 d

is
tr

ib
ut

io
n

max margin
projection

Figure 3. A comparison of the convergence speeds of the
max-margin and projection versions of the algorithm on a
128x128 grid. Euclidean distance to the expert’s feature
expectations is plotted as a function of the number of it-
erations. We rescaled the feature expectations by (1 − γ)
such that they are in [0, 1]k. The plot shows averages over
40 runs, with 1 s.e. errorbars.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rf

or
m

an
ce

/p
er

fo
rm

an
ce

 o
f e

xp
er

t

log10 (number of sample trajectories)

irl only non−zero weight features
irl all features
parameterized policy stochastic
parameterized policy majority vote
mimic the expert

Figure 4. Plot of performance vs. number of sampled tra-
jectories from the expert. (Shown in color, where avail-
able.) Averages over 20 instances are plotted, with 1 s.e.
errorbars. Note the base-10 logarithm scale on the x-axis.

other simple algorithms. The “mimic the expert” al-
gorithm picks whatever action the expert had taken
if it finds itself in a state in which it had previously
observed the expert, and picks an action randomly oth-
erwise. The “parameterized policy stochastic” uses a
stochastic policy, with the probability of each action
constant over each macrocell and set to the empiri-
cal frequency observed for the expert in the macrocell.
The “parameterized policy majority vote” algorithm
takes deterministically the most frequently observed
action in the macrocell. Results are shown in Fig-
ure 4. Using our algorithm, only a few sampled expert
trajectories—far fewer than for the other methods—
are needed to attain performance approaching that of
the expert. (Note log scale on x-axis.)9 Thus, by

mainly in the question of how many times an expert must
demonstrate a task before we learn to perform the same
task. In particular, we do not rely on the expert’s demon-
strations to learn the state transition probabilities.

9The parameterized policies never reach the expert’s
performance, because their policy class is not rich enough.
Their restricted policy class is what makes them do better

Figure 5. Screenshot of driving simulator.

learning a compact representation of the reward func-
tion, our algorithm significantly outperforms the other
methods. We also observe that when the algorithm is
told in advance which features have non-zero weight
in the true reward function, it is able to learn using
fewer expert trajectories.

5.2. Car driving simulation

For our second experiment, we implemented a car-
driving simulation, and applied apprenticeship learn-
ing to try to learn different “driving styles.” A screen-
shot of our simulator is shown in Figure 5. We are
driving on a highway at 25m/s (56mph), which is faster
than all the other cars. The MDP has five different ac-
tions, three of which cause the car to steer smoothly
to one of the lanes, and two of which cause us to drive
off (but parallel to) the road, on either the left or the
right side. Because our speed is fixed, if we want to
avoid hitting other cars it is sometimes necessary to
drive off the road.

The simulation runs at 10Hz, and in the experiments
that follow, the expert’s features were estimated from
a single trajectory of 1200 samples (corresponding to
2 minutes of driving time). There were features in-
dicating what lane the car is currently in (including
offroad-left and offroad-right, for a total of five fea-
tures), and the distance of the closest car in the current
lane.10 Note that a distance of 0 from the nearest car
implies a collision. When running the apprenticeship
learning algorithm, the step in which reinforcement
learning was required was implemented by solving a
discretized version of the problem. In all of our exper-
iments, the algorithm was run for 30 iterations, and a
policy was selected by inspection (per the discussion
in Section 3).

We wanted to demonstrate a variety of different driv-
ing styles (some corresponding to highly unsafe driv-
ing) to see if the algorithm can mimic the same “style”
in every instance. We considered five styles:

1. Nice: The highest priority is to avoid collisions

than the “mimic the expert” algorithm initially.
10More precisely, we used the distance to the single clos-

est car in its current lane, discretized to the nearest car
length between -7 to +2, for a total of 10 features.

with other cars; we also prefer the right lane over
the middle lane over the left lane, over driving
off-road.

2. Nasty: Hit as many other cars as possible.

3. Right lane nice: Drive in the right lane, but go
off-road to avoid hitting cars in the right lane.

4. Right lane nasty: Drive off-road on the right, but
get back onto the road to hit cars in the right lane.

5. Middle lane: Drive in the middle lane, ignoring
all other cars (thus crashing into all other cars in
the middle lane).

After each style was demonstrated to the algorithm
(by one of the authors driving in the simulator for 2
minutes), apprenticeship learning was used to try to
find a policy that mimics demonstrated style. Videos
of the demonstrations and of the resulting learned poli-
cies are available at

http://www.cs.stanford.edu/~pabbeel/irl/

In every instance, the algorithm was qualitatively able
to mimic the demonstrated driving style. Since no
“true” reward was ever specified or used in the experi-
ments, we cannot report on the results of the algorithm
according to R∗. However, Table 1 shows, for each of
the five driving styles, the feature expectations of the
expert (as estimated from the 2 minute demonstra-
tion), and the feature expectations of the learned con-
troller for the more interesting features. Also shown
are the weights w used to generate the policy shown.
While our theory makes no guarantee about any set of
weights w found, we note that the values there gener-
ally make intuitive sense. For instance, in the first
driving style, we see negative rewards for collisions
and for driving offroad, and larger positive rewards
for driving in the right lane than for the other lanes.

6. Discussion and Conclusions
We assumed access to demonstrations by an expert
that is trying to maximize a reward function express-
ible as a linear combination of known features, and pre-
sented an algorithm for apprenticeship learning. Our
method is based on inverse reinforcement learning, ter-
minates in a small number of iterations, and guaran-
tees that the policy found will have performance com-
parable to or better than that of the expert, on the
expert’s unknown reward function.

Our algorithm assumed the reward function is express-
ible as a linear function of known features. If the set
of features is sufficiently rich, this assumption is fairly
unrestrictive. (In the extreme case where there is a
separate feature for each state-action pair, fully gen-
eral reward functions can be learned.) However, it
remains an important problem to develop methods for
learning reward functions that may be non-linear func-
tions of the features, and to incorporate automatic fea-

Table 1. Feature expectations of teacher µ̂E and of selected/learned policy µ(π̃) (as estimated by Monte Carlo). and
weights w corresponding to the reward function that had been used to generate the policy shown. (Note for compactness,
only 6 of the more interesting features, out of a total of 15 features, are shown here.)

Collision Offroad Left LeftLane MiddleLane RightLane Offroad Right
1 µ̂E 0.0000 0.0000 0.1325 0.2033 0.5983 0.0658

µ(π̃) 0.0001 0.0004 0.0904 0.2287 0.6041 0.0764
w̃ -0.0767 -0.0439 0.0077 0.0078 0.0318 -0.0035

2 µ̂E 0.1167 0.0000 0.0633 0.4667 0.4700 0.0000
µ(π̃) 0.1332 0.0000 0.1045 0.3196 0.5759 0.0000
w̃ 0.2340 -0.1098 0.0092 0.0487 0.0576 -0.0056

3 µ̂E 0.0000 0.0000 0.0000 0.0033 0.7058 0.2908
µ(π̃) 0.0000 0.0000 0.0000 0.0000 0.7447 0.2554
w̃ -0.1056 -0.0051 -0.0573 -0.0386 0.0929 0.0081

4 µ̂E 0.0600 0.0000 0.0000 0.0033 0.2908 0.7058
µ(π̃) 0.0569 0.0000 0.0000 0.0000 0.2666 0.7334
w̃ 0.1079 -0.0001 -0.0487 -0.0666 0.0590 0.0564

5 µ̂E 0.0600 0.0000 0.0000 1.0000 0.0000 0.0000
µ(π̃) 0.0542 0.0000 0.0000 1.0000 0.0000 0.0000
w̃ 0.0094 -0.0108 -0.2765 0.8126 -0.5099 -0.0154

ture construction and feature selection ideas into our
algorithms.

It might also be possible to derive an alternative ap-
prenticeship learning algorithm using the dual to the
LP that is used to solve Bellman’s equations. (Manne,
1960) Specifically, in this LP the variables are the
state/action visitation rates, and it is possible to place
constraints on the learned policy’s stationary distribu-
tion directly. While there are few algorithms for ap-
proximating this dual (as opposed to primal) LP for
large MDPs and exact solutions would be feasible only
for small MDPs, we consider this an interesting direc-
tion for future work.

Acknowledgements. This work was supported by
the Department of the Interior/DARPA under con-
tract number NBCHD030010.

References

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learn-
ing via inverse reinforcement learning. (Full paper.)
http://www.cs.stanford.edu/~pabbeel/irl/.

Amit, R., & Mataric, M. (2002). Learning movement se-
quences from demonstration. Proc. ICDL.

Atkeson, C., & Schaal, S. (1997). Robot learning from
demonstration. Proc. ICML.

Demiris, J., & Hayes, G. (1994). A robot controller using
learning by imitation.

Hogan, N. (1984). An organizing principle for a class of
voluntary movements. J. of Neuroscience, 4, 2745–2754.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning
by watching: Extracting reusable task knowledge from
visual observation of human performance. T-RA, 10,
799–822.

Manne, A. (1960). Linear programming and sequential
decisions. Management Science, 6.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invari-
ance under reward transformations: Theory and appli-
cation to reward shaping. Proc. ICML.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML.

Pomerleau, D. (1989). Alvinn: An autonomous land vehi-
cle in a neural network. NIPS 1.

Rockafellar, R. (1970). Convex analysis. Princeton Uni-
versity Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992).
Learning to fly. Proc. ICML.

Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and
control of optimal trajectory in human multijoint arm
movement. minimum torque-change model. Biological
Cybernetics, 61, 89–101.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley & Sons.

A. Proofs of Theorems

In (Abbeel & Ng, 2004) we give longer, easier to read proofs
of the theorems. Due to space constraints, the proofs to
follow are quite dense.

In preparation for the proofs, we begin with some defini-
tions. Given a set of policies Π, we define M = M(Π) =
Co{µ(π) : π ∈ Π} to be the convex hull of the set of
feature expectations attained by policies π ∈ Π. Hence,
given any vector of feature expectations µ̃ ∈ M , there is a
set of policies π1, . . . , πn ∈ Π and mixture weights {λi}n

i=1

(λi ≥ 0,
Pn

i=1 λi = 1), so that µ̃ =
Pn

i=1 λiµ(πi). Thus,
given any point µ̃ ∈ M , by mixing together policies in Π,
we can obtain a new policy whose feature expectations are
exactly µ̃. (Here, mixture policies are as defined in Sec-

tion 2.) We also define M (i) = Co{µ(π(j)) : j = 0, . . . , i}
to be the convex hull of the set of feature expectations
of policies found after iterations 0, . . . , i of our algorithm.
Due to space constraints, we give a full proof only for the
case of µ̂E ∈ M .11 In reading the proofs, Figure 6 may be
helpful for conveying geometric intuition.

The following Lemma establishes improvement in a single
iteration of the algorithm.

Lemma 3. Let there be given an MDP\R, features φ :

S → [0, 1]k, and a set of policies Π, µ̄(i) ∈ M . Let π(i+1) be
the optimal policy for the MDP\R augmented with reward

R(s) = (µ̂E − µ̄(i)) · φ(s), i.e. π(i+1) = arg maxπ(µ̂E −
11As mentioned previously, µ̂E is a noisy estimate of µE .

Thus, it may not be a valid feature expectation vector for
any policy; i.e., we do not necessarily have µ̂E ∈ M . In
the extended version of the proofs we consider a small ball
with radius ρ centered around µ̂E and that intersects M ,
and prove convergence to this ball. That proof is very
similar, but has more technicalities and is significantly
longer (Abbeel & Ng, 2004).

w

~

_

^
E

(i+1)

(i)

(i+1)

µ

µ

µµ

Figure 6. Progress in one iteration step.

µ̄(i)) ·µ(π), and let µ̃(i+1) = (µ̂E−µ̄(i))·(µ(i+1)−µ̄(i))

‖µ(i+1)−µ̄(i)‖2
2

(µ(i+1)−
µ̄(i)) + µ̄(i), i.e. the projection of µ̂E onto the line through

µ(i+1) = µ(π(i+1)), µ̄(i). Then

‖µ̂E − µ̃(i+1)‖2

‖µ̂E − µ̄(i)‖2
≤ k

p

k2 + (1 − γ)2‖µ̂E − µ̄(i)‖2
2

(16)

and the point µ̃(i+1) is a convex combination of µ̄(i) and

µ(i+1).

Proof. For simplicity of notation, we let the origin of our
coordinate system coincide with µ̄(i). Then

(µ̃(i+1) − µ̂E) · (µ̃(i+1) − µ̂E)

µ̂E · µ̂E

=
µ(i+1) · µ(i+1) −

(µ(i+1)
·µ̂E)2

µ̂E ·µ̂E

µ(i+1) · µ(i+1)

≤
µ(i+1) · µ(i+1) − 2µ̂E · µ(i+1) + µ̂E · µ̂E

µ(i+1) · µ(i+1)

=
(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E)

(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E) + µ̂E · µ̂E + 2(µ(i+1) − µ̂E) · µ̂E

≤
(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E)

(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E) + µ̂E · µ̂E

≤
k2/(1 − γ)2

k2/(1 − γ)2 + µ̂E · µ̂E

,

where we used in order: the definition of µ̃(i+1) and rewrit-
ing; (µ(i+1) · µ̂E − µ̂E · µ̂E)2 ≥ 0; rewriting terms; µ(i+1) ·
µ̂E ≥ µ̂E ·µ̂E (since π(i+1) = arg maxπ(µ̂E−µ̄(i))·µ(π)) ; all
points considered lie in M ⊆ [0, 1

1−γ
]k, so their norms are

bounded by k/(1−γ). Since the origin coincides with µ̄(i),

this proves Eq. (16). It is easily verified from µ̃(i+1)’s defini-

tion that µ̃(i+1) = λµ(i+1)+(1−λ)µ̄(i), for λ = µ̂E ·µ(i+1)

µ(i+1)·µ(i+1) .

Also, λ ≥ 0 since µ(i+1) · µ̂E ≥ µ̂E · µ̂E ≥ 0; and, λ ≤ 1
since (µ(i+1) · µ̂E)2 ≤ (µ(i+1) · µ(i+1))(µ̂E · µ̂E) ≤ (µ(i+1) ·
µ(i+1))(µ(i+1) ·µ̂E) (Cauchy-Schwarz, µ(i+1) = maxµµ̂E ·µ),

which implies µ(i+1) · µ̂E ≤ µ(i+1) · µ(i+1). �

Proof of Theorem 1. Note that given a point µ̄(i),
Lemma 3 gives a way to construct a point µ̃(i+1) ∈ M (i+1)

with a distance to µ̂E that is smaller by a factor given
by Eq. (16). As long as for the current iterate µ̄(i)

we have ‖µ̂E − µ̄(i)‖2 ≥ ε, we have ‖µ̂E−µ̃(i+1)‖2

‖µ̂E−µ̄(i)‖2
≤

k√
k2+(1−γ)2ε2

. The max-margin algorithm sets µ̄(i+1) =

arg minµ∈M(i+1) ‖µ̂E − µ‖2. So we have t(i+1)/t(i) ≤
k√

k2+(1−γ)2ε2
. The projection algorithm sets µ̄(i+1) =

µ̃(i+1), so it keeps track of a single point (which is a convex
combination of previously obtained points), for which the

distance t(·) is reduced in each iteration by the same factor:
t(i+1)/t(i) ≤ k√

k2+(1−γ)2ε2
. Since the maximum distance

in M is
√

k/(1 − γ), we have

t(i) ≤
„ √

k√
(1−γ)2ε2+k

«i √
k

1−γ
. (17)

So we have t(i) ≤ ε if

i ≥ log
√

k
(1−γ)ε

/ log

√
(1−γ)2ε2+k√

k

= O
“

k
(1−γ)2ε2

log k
(1−γ)ε

”

.

This completes the proof. �

Proof of Theorem 2. Recall φ ∈ [0, 1]k so µ ∈ [0, 1
1−γ

]k.

Let µi denote the i’th component of µ. Then applying the
Hoeffding inequality on the m-sample estimate (1 − γ)µ̂i

of (1 − γ)µi ∈ [0, 1] gives

P ((1 − γ)|µi − µ̂i| > τ) ≤ 2 exp(−2τ 2m). (18)

Using Eq. (18) for all i and the union bound gives

P (∃i ∈ {1 . . . k}.(1 − γ)|µi − µ̂i| > τ) ≤ 2k exp(−2τ 2m),

which can be rewritten as

P ((1 − γ)‖µE − µ̂E‖∞ ≤ τ) ≥ 1 − 2k exp(−2τ 2m).

Substituting τ = (1 − γ)ε/(2
√

k) gives

P (‖µE − µ̂E‖∞ ≤ ε

2
√

k
) ≥ 1 − 2k exp(−2(

ε(1 − γ)

2
√

k
)2m),

where k is the dimension of the feature vectors φ and
feature expectations µ, and m is the number of sam-
ple trajectories used for the estimate µ̂E . So if we take
m ≥ 2k

(ε(1−γ))2
log 2k

δ
then with probability at least (1 − δ)

we have that ‖µE − µ̂E‖∞ ≤ ε

2
√

k
. Using ‖ · ‖2 ≤

√
k‖ · ‖∞

for k-dimensional spaces, we get

‖µE−µ̂E‖2 ≤ ε

2
w.p. 1−δ for m ≥ 2k

(ε(1 − γ))2
log

2k

δ
. (19)

Theorem 1 guarantees that after a sufficient number of it-
erations we have t(i) ≤ ε

2
. Thus, assuming that m is as

given in Eq. (19), we have that with probaility 1 − δ (and
after sufficient iterations) the algorithm will return a policy
π̃ such that µ̃ = µ(π̃) satisfies

‖µ̃ − µE‖2 ≤ ‖µ̃ − µ̂E‖2 + ‖µ̂E − µE‖2

≤ t(i) +
ε

2
≤ ε. (20)

Using this (and keeping in mind that ‖.‖2 ≤ ‖.‖1 and so
‖w∗‖1 ≤ 1 implies ‖w∗‖2 ≤ 1) we can prove that w.p. 1−δ,

|E[
∞

X

t=0

γtR∗(s(t))|π̃] − E[
∞

X

t=0

γtR∗(s(t))|πE]|

= |(w∗)T (µ̃ − µE)|
≤ ε,

where we used in order the definitions of w,µ; Cauchy-
Schwarz; and Eq. (20). �

