
Feature selection, L1 vs. L2 regularization,

and rotational invariance

Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

We consider supervised learning in the pres-
ence of very many irrelevant features, and
study two different regularization methods
for preventing overfitting. Focusing on logis-
tic regression, we show that using L1 regu-
larization of the parameters, the sample com-
plexity (i.e., the number of training examples
required to learn “well,”) grows only loga-
rithmically in the number of irrelevant fea-
tures. This logarithmic rate matches the best
known bounds for feature selection, and in-
dicates that L1 regularized logistic regression
can be effective even if there are exponen-
tially many irrelevant features as there are
training examples. We also give a lower-
bound showing that any rotationally invari-
ant algorithm—including logistic regression
with L2 regularization, SVMs, and neural
networks trained by backpropagation—has a
worst case sample complexity that grows at
least linearly in the number of irrelevant fea-
tures.

1. Introduction

We consider supervised learning in settings where
there are many input features, but where there is a
small subset of the features that is sufficient to ap-
proximate the target concept well.

In supervised learning settings with many input fea-
tures, overfitting is usually a potential problem unless
there is ample training data. For example, it is well-
known that for unregularized discriminative models
fit via training-error minimization, sample complexity
(i.e., the number of training examples needed to learn
“well”) grows linearly with the VC dimension. Fur-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

ther, the VC dimension for most models grows about
linearly in the number of parameters (Vapnik, 1982),
which typically grows at least linearly in the number
of input features. Thus, unless the training set size
is large relative to the dimension of the input, some
special mechanism—such as regularization, which en-
courages the fitted parameters to be small—is usually
needed to prevent overfitting.

In this paper, we focus on logistic regression, and study
the behavior of two standard regularization methods
when they are applied to problems with many irrel-
evant features. The first, L1 regularization, uses a
penalty term which encourages the sum of the abso-
lute values of the parameters to be small. The second,
L2 regularization, encourages the sum of the squares
of the parameters to be small. It has frequently been
observed that L1 regularization in many models causes
many parameters to equal zero, so that the parameter
vector is sparse. This makes it a natural candidate in
feature selection settings, where we believe that many
features should be ignored. For example, linear least-
squares regression with L1 regularization is called the
Lasso algorithm (Tibshirani, 1996), which is known to
generally give sparse feature vectors. Another example
of learning using L1 regularization is found in (Zheng
et al., 2004).

In this paper, we prove that for logistic regression with
L1 regularization, sample complexity grows only log-
arithmically in the number of irrelevant features (and
at most polynomially in all other quantities of inter-
est). Logistic regression with L1 regularization is an
appealing algorithm since it requires solving only a
convex optimization problem. Further, the logarith-
mic dependence on the input dimension matches the
best known bounds proved in various feature selection
contexts (e.g., Ng, 1998; Ng & Jordan, 2001; Little-
stone, 1988; Helmbold et al., 1996; Kivinen & War-
muth, 1994).

We also consider logistic regression with L2 regular-
ization. (E.g., Nigam et al., 1999). We show that this
gives a rotationally invariant algorithm, and that any



rotationally invariant algorithm—which also includes
SVMs, neural networks, and many other algorithms—
has a worst case sample complexity that grows at least
linearly in the number of irrelevant features, even if
only a single feature is relevant. This suggests that
these algorithms may not be effective in settings where
only a few features are relevant, and the number of
training examples is significantly smaller than the in-
put dimension.

2. Preliminaries

We consider a supervised learning problem where we
are given a set S = {(x(i), y(i))}m

i=1 of m training ex-
amples drawn i.i.d. from some distribution D. Here,
x(i) ∈ [−1, 1]n are the n-dimensional inputs, and
y(i) ∈ {0, 1} are the labels. For notational convenience,
we assume that the last coordinate of the input vec-

tors x
(i)
n = 1 always, so that the intercept term needs

not be treated separately. We will focus on logistic
regression, so our model will be

p(y = 1|x; θ) =
1

1 + exp(−θT x)
, (1)

where θ ∈ R
n are the parameters of our model.

One way to describe regularized logistic regression is
as the finding the parameters θ that solve following
optimization problem:

arg max
θ

m
∑

i=1

log p(y(i)|x(i); θ) − αR(θ), (2)

where R(θ) is a regularization term that is used to pe-
nalize large weights/parameters. If R(θ) ≡ 0, then this
model is the standard, unregularized, logistic regres-
sion model with its parameters fit using the maximum
likelihood criteria. If R(θ) = ||θ||1 =

∑n
i=1 |θi|, then

this is L1 regularized logistic regression. If R(θ) =
||θ||22 =

∑n
i=1 θ2

i , this is L2 regularized logistic regres-
sion.

In the optimization problem in Equation (2), the pa-
rameter α ≥ 0 controls a tradeoff between fitting the
data well, and having well-regularized/small parame-
ters. In this paper, it will sometimes be useful to con-
sider an alternative way of parameterizing this trade-
off. Specifically, we will also consider the constrained
optimization problem:

max
θ

m
∑

i=1

log p(y(i)|x(i); θ) (3)

subject to R(θ) ≤ B. (4)

For every solution θ to Equation (2) found using some
particular value of α, there is some corresponding value

of B in the optimization problem (3-4) that will give
the same θ. Thus, these are two equivalent reparame-
terizations of the same problem. Readers familiar with
convex analysis (Rockafellar, 1970) may also verify the
equivalence between the two problems by noting that
the Lagrangian for the constrained optimization (3-4)
is exactly the objective in the optimization (2) (plus
a constant that does not depend on θ), where here α
is the Lagrange multiplier. Thus, (3-4) may be solved
by solving (2) for an appropriate α.

Because our logistic regression model is fit via (regu-
larized) maximum likelihood, one natural metric for a
fitted model’s error is its negative loglikelihood (also
called the “logloss”) on test data:

εl(θ) = E(x,y)∼D[− log p(y|x; θ)]. (5)

Here, the subscript “(x, y) ∼ D” indicates that the
expectation is with respect to a test example (x, y)
drawn from D. Our main theoretical results regarding
L1 regularization will use this error metric. Given a
dataset S, we also define the empirical logloss on S to
be

ε̂l(θ) = ε̂l
S(θ) =

1

m

m
∑

i=1

− log p(y(i)|x(i); θ). (6)

Sometimes, we will also be interested in the 0/1 mis-
classification error of our algorithm. We define

εm(θ) = P(x,y)∼D[t(1/(1 + e−θT x)) 6= y], (7)

where t is a threshold function (t(z) = 1 if z ≥ 0.5,
t(z) = 0 otherwise). The empirical 0/1 misclassifica-
tion error ε̂m(θ) = ε̂m

S (θ) is also defined analogously
to be the fraction of examples in S that a model using
parameter θ misclassifies.

It is straightforward to verify that, for the logistic re-
gression model, we have εl(θ) ≥ (log 2) · εm(θ). Thus,
an upper-bound on logloss also implies an upper-
bound on misclassification error, and a lower-bound
on misclassification error (such as given in Section 4)
also implies a lower-bound on logloss.

3. L1 regularized logistic regression

We are interested in supervised learning problems
where there is a very large number n of input features,
but where there may be a small subset—say r � n
of them—that is sufficient to learn the target concept
well. We will consider the following implementation of
L1 regularized logistic regression:

1. Split the data S into a training set S1 consisting of
the first (1 − γ)m examples, and a hold-out cross



validation set S2 consisting of the remaining γm
examples.

2. For B = 0, 1, 2, 4, . . . , C,

Fit a logistic regression model using the
training set S1 only, by solving the optimiza-
tion problem (3-4) with the specified value of
B. Call the resulting parameter vector θB .

3. Among the θB ’s from Step 2, select and output
the one with the lowest hold-out error on S2. I.e.,
pick θ = arg mini∈{0,1,2,...,C} ε̂S2

(θi)

Thus, this algorithm uses uses hold-out cross valida-
tion to select the regularization parameter B used
in (3-4). In Step 3 of the algorithm, we did not exactly
specify the error metric ε̂S2

. If the goal is to minimize
our expected logloss on the test data, it would make
sense to use ε̂S2

(θ) = ε̂l
S2

(θ) here. It will be this mini-
mum logloss setting to which the theoretical results in
this section apply. However, if the goal is to minimize
0/1 misclassification error, then it would also make
sense to pick the θi with the smallest misclassification
error on the hold-out test set, and use ε̂S2

(θ) = ε̂m
S2

(θ).

We want to show that if there is some hypothesis
that attains low generalization error using only a small
number r of features, then L1 regularized logistic re-
gression will attain performance that is (nearly) as
good as that of this hypothesis, even if the training
set is small.

Theorem 3.1: Let any ε > 0, δ > 0, C > 0, 0 <
γ < 1,K ≥ 1, and m be fixed. Suppose there exists r
indices 1 ≤ i1, i2, . . . , ir ≤ n, and a parameter vector
θ∗ ∈ R

n such that only the r corresponding components
of θ∗ are non-zero, and |θij

| ≤ K (j = 1, . . . , r). Sup-
pose further that C ≥ rK. Then, in order to guarantee
that, with probability at least 1 − δ, the parameters θ̂
output by our learning algorithm does nearly as well as
θ∗, i.e., that

εl(θ̂) ≤ εl(θ∗) + ε, (8)

it suffices that

m = Ω((log n) · poly(r,K, log(1/δ), 1/ε,C)) . (9)

The main tools used to show this result are certain cov-
ering number bounds shown by (Bartlett, 1998; Zhang,
2002). The proof is given in Appendix A. This result
shows that the sample complexity of our algorithm—
that is, the number of training examples needed to
learn “well”—grows only logarithmically in the num-
ber of irrelevant features. Thus, logistic regression
with L1 regularization is capable of learning in prob-
lems even where the number of irrelevant features may
be far larger than the training set size.

Space constraints preclude a full discussion, but we
also note that C can be chosen automatically (as a
function of m) so that the same bound as stated above
holds, but with the dependence on C removed. Fur-
ther, by modifying the definition of p(y|x; θ), it is
straightforward to generalize this result to L1 regu-
larized versions of other models from the generalized
linear model family (McCullagh & Nelder, 1989), such
as linear least squares regression.

4. Rotational invariance and L2

regularization

Let M = {M ∈ R
n×n|MMT = MT M = I, |M | = 1}

be the class of rotational matrices.1 Thus, if x ∈ R
n

and M ∈ M, then Mx is x rotated through some angle
around the origin.2

Given a training set S = {(x(i), y(i))}m
i=1, we let

MS = {(Mx(i), y(i))}m
i=1 denote the training set with

all the inputs rotated according to M . Given a learn-
ing algorithm L, we let L[S](x) denote the predicted
label resulting from using the learning algorithm to
train on a dataset S, and using the resulting hypoth-
esis/classifier to make a prediction on x.

Definition 4.1: Given a (deterministic) learning al-
gorithm L, we say that it is rotationally invariant

if, for any training set S, rotational matrix M ∈ M,
and test example x, we have that L[S](x) = L[S ′](x′),
where S′ = MS, x′ = Mx. More generally, if L is
a stochastic learning algorithm so that its predictions
are random, we say that it is rotationally invariant if,
for any S,M, x, the predictions L[S](x) and L[S ′](x′)
have the same distribution.

Some readers familiar with logistic regression may al-
ready recognize that its L2 regularized version is ro-
tationally invariant. But for the sake of completeness,
we will state and formally prove this here.

Proposition 4.2: L2 regularized logistic regression
(Equation 2, with α > 0) is rotationally invariant.

Proof. Let any S,M, x be given, and let S ′ = MS,
x′ = Mx. Because MT M = I, we have 1

1+exp(−θT x)
=

1If we drop the condition that the determinant is |M | =
1, then we obtain the class of all orthogonal matrices, which
may include a reflection as well as a rotation. (Strang,
1988) Using the more restrictive set as we do here leads
to a slightly stronger theoretical result.

2If we are using the convention (mentioned earlier) that
xn = 1 always to handle the intercept term, then we may
restrict attention to matrices M where Mnn = 1, Mjn = 0
(j < n), so that the final coordinate is not changed by M .
This makes no difference to our results.



1
1+exp(−(Mθ)T (Mx))

, and thus p(y|x; θ) = p(y|Mx;Mθ).

Further, R(θ) = θT θ = (Mθ)T (Mθ) = R(Mθ).
Define J(θ) =

∑m
i=1 log p(y(i)|x(i); θ) − αR(θ), and

J ′(θ) =
∑m

i=1 log p(y(i)|Mx(i); θ) − αR(θ). Let θ̂ =
arg maxθ J(θ) be the parameters resulting from fit-
ting L2 regularized logistic regression to S. (Be-
cause α > 0, the Hessian of J can be shown to
be negative definite, and thus J has a unique maxi-
mum.) Similarly, let θ̂′ = arg maxθ J ′(θ) be the pa-
rameters resulting from fitting to S ′. By our pre-
vious argument, clearly J(θ) = J ′(Mθ) for all θ.

Thus, θ̂ = arg maxθ J(θ) = M−1 arg maxθ J ′(θ) =

M−1θ̂′, which implies θ̂′ = Mθ̂. Hence, L[S](x) =

1/(1 + exp(−θ̂T x)) = 1/(1 + exp(−(Mθ̂)T (Mx))) =

1/(1 + exp(−(θ̂′)T x′)) = L[S′](x′). �

We also give, without proof, additional examples of
rotationally invariant algorithms:

• SVMs using most kernels.3

• Multilayer neural networks trained using back-
propagation.4

• Unregularized logistic regression.5

• The perceptron algorithm.

• Any algorithm that uses PCA or ICA as a pre-
processing step, by first re-representing the data
in the basis formed by the top k principle compo-
nents/independent components.6

• Gaussian discriminant analysis (a generative
learning algorithm which models p(x|y) with a
multivariate normal distribution).7

Examples of non-rotationally invariant algorithms in-
clude logistic regression with L1 regularization, naive

3Including the linear K(x, z) = xT z, polynomial
K(x, z) = (xT z + c)d, or RBF (Gaussian) K(x, z) =
exp(−||x − z||2/σ2) kernels, or any other kernel K(x, z)
that can be written as a function of only xT x, xT z and
zT z. Note also that the “L1 norm soft margin” formu-
lation of SVMs uses a different, per-training example, L1

penalty on the slack variables, and rotational invariance
still holds.

4Under the technical assumption that the weights
are initialized, say, using independent samples from a
Normal(0,ε) distribution (or any other spherically symmet-
ric distribution).

5Here, we restrict attention to training sets where the
maximization (2) has a unique optimum with α = 0. (If
not, one can also use the limiting solution from α → 0+

with R(θ) = ||θ||22, if the limit exists).
6Assuming we do not preprocess the data for PCA by

rescaling each input feature to have the same variance.
7Assuming the model uses a full covariance matrix, so

that the off-diagonal entries are allowed to be non-zero.

Bayes, decision trees that make only axis-aligned
splits, Winnow (Littlestone, 1988), EG (Kivinen &
Warmuth, 1994), and most feature selection algo-
rithms (Blum & Langley, 1997; Kohavi & John, 1997;
Ng & Jordan, 2001; Ng, 1998).

We now give a lower-bound on the worst-case sample
complexity of feature selection using any rotationally
invariant algorithm.

Theorem 4.3: Let L be any rotationally invariant
learning algorithm, and let any 0 < ε < 1/8, 0 < δ <
1/100 be fixed. Then there exists a learning problem
D so that: (i) The labels are deterministically related
to the inputs according to y = 1 if x1 ≥ t, y = 0
otherwise for some t, and (ii) In order for L to attain
ε or lower 0/1 misclassification error with probability
at least 1 − δ, it is necessary that the training set size
be at least

m = Ω(n/ε).

Thus, for any rotationally invariant algorithm L, there
exists at least one problem that should have been
“easy” in the sense that there is only one relevant fea-
ture (x1) and the labels are simply obtained by thresh-
olding x1, but L requires a large number of training
examples to learn it. Note that a good feature se-
lection algorithm should be able to learn any target
concept of this form using only O(log n) training ex-
amples. (E.g., Ng, 1998, Littlestone, 1988.) However,
L requires a number of training examples that’s at
least linear in the dimension of the input.

This suggests that rotationally invariant algorithms
are unlikely to be effective feature selection algorithms,
particularly in settings where only a small subset of the
features are relevant, and the dimension of the input
n is significantly larger than the training set size m.

The proof of this result is given in Appendix B, and
uses ideas from the lower-bounds originally proved
by (Ehrenfeucht et al., 1989; Vapnik, 1982). A related
result was also shown by (Kivinen et al., 1995) for the
perceptron learning algorithm. They point out that
the perceptron is rotationally invariant, and that an
adversary choosing the sequence of training examples
can force it (or, more generally, any “additive linear
online prediction algorithm”) to make Ω(n) mistakes.

Remark. Support Vectors Machines have been
proved to work well in extremely high dimensional in-
put spaces, even infinite-dimensional ones, as long as
the data is separated with a large margin γ. (Vapnik,
1998) Thus, it may seem surprising that we can show
that SVMs perform poorly in the presence of high di-
mensional inputs (with many irrelevant features). To
reconcile this, we note that while the margin does not



0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

1 relevant feature; 100 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

3 relevant features; 100 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

exp decay relevance; 100 training examples

L1 regularization
L2 regularization

(a) (b) (c)

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of features

lo
gl

os
s

1 relevant feature; 100 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of features

lo
gl

os
s

3 relevant features; 100 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of features

lo
gl

os
s

exp decay relevance; 100 training examples

L1 regularization
L2 regularization

(d) (e) (f)

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

1 relevant feature; 200 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

3 relevant features; 200 training examples

L1 regularization
L2 regularization

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

m
is

cl
as

si
fic

at
io

n 
er

ro
r

exp decay relevance; 200 training examples

L1 regularization
L2 regularization

(g) (h) (i)

Figure 1. Experiment comparing logistic regression with L1 regularization (blue solid lines; colors where available) vs.
logistic regression with L2 regularization (red dashed lines). Left column: One relevant feature. Middle column: Three
relevant features. Right column: Exponentially-decaying relevance. Top row: Misclassification error with m=100. Middle
row: Logloss error with m=100. Bottom row: Misclassification error with m=200.

shrink as extra irrelevant features are added, the di-
ameter of the data (e.g., maximum distance between
any two points measured in the L2-norm) grows with
the number of irrelevant features, and it is actually the
margin divided by the diameter that governs general-
ization performance. (Vapnik, 1998)

5. Experiments

We now present some empirical results comparing lo-
gistic regression using L1 and L2 regularization. All
results reported here are averages over at least 100 in-
dependent trials, and in each experiment, 30% of the
data was used as hold-out data for selecting the reg-
ularization parameter. (Very similar results are ob-

tained if the regularization parameters are tuned on
test data.)

In the first experiment, we let the total number of fea-
tures vary and let just a single feature be relevant.8

Figure 1a shows the misclassification error of the two

8Experimental details: Inputs were drawn from a mul-
tivariate normal distribution. For one relevant feature, the
labels were generated using a logistic model with θ1 = 10
(and all other θi = 0). For three relevant features, we used
θ1 = θ2 = θ3 = 10c1. For the third problem, we used
θi = (1/2)i−1c2 (i ≥ 1), (The constants were c1 = 1/

√
3,

c2 =
√

75, which preserve the scaling of the problem so that
Bayes error remains the same.) Results reporting logloss
and 0/1 misclassification error used respectively ε̂S2 = ε̂l

S2

and ε̂S2 = ε̂m
S2

in the hold-out cross validation step.



methods, when trained using 100 training examples.
As we see, the results are dramatically different. Us-
ing L1 regularization, logistic regression is extremely
insensitive to the presence of irrelevant features. Note
the scale on the horizontal axis: Even learning with
just 100 examples in a 1000-dimensional input space,
it is able to attain very low generalization error. In
contrast, the error of logistic regression with L2 regu-
larization rapidly approaches 0.5.

Figure 1b shows the same experiment repeated with
three relevant features. Figure 1c shows results from a
third experiment where all the features contain some
information about the output, but where the degree
to which feature i is relevant decreases exponentially
with i. Only the first few features have a significant
effect on the output label, and to model the data well,
it is sufficient to use only a very small number of fea-
tures. Again, L1 regularization is clearly superior as n
becomes large.

Figures 1d-f repeat the same experiments, but here
the logloss is plotted instead of misclassification error.
Figures 1g-i show the same experiments repeated using
200 training examples. In all cases, logistic regression
with L1 regularization, as predicted by the theoretical
results, exhibits a significantly higher tolerance to the
presence of many irrelevant features.

Acknowledgments

I give warm thanks to Pieter Abbeel, Chris Manning,
Rajat Raina, Yoram Singer and Kristina Toutanova
for helpful conversations. This work was supported by
the Department of the Interior/DARPA under con-
tract number NBCHD030010.

References

Anthony, M., & Bartlett, P. (1999). Neural network learn-
ing: Theoretical foundations. Cambridge University
Press.

Bartlett, P. (1998). The sample complexity of pattern clas-
sification with neural networks: The size of the weights
is more important than the size of the network. IEEE
Transactions on Information Theory, 2, 525–536.

Blum, A., & Langley, P. (1997). Selection of relevant fea-
tures and examples in machine learning. Artificial Intel-
ligence, 97, 245–271.

Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L.
(1989). A general lower bound on the number of exam-
ples needed for learning. Information and Computation,
82, 247–261.

Haussler, D. (1992). Decision-theoretic generalizations of
the PAC model for neural networks and other applica-
tions. Information and Computation, 100, 78–150.

Kivinen, J., Warmuth, M., & Auer, P. (1995). The percep-

tron vs. winnow: Linear vs. logarithmic mistake bounds
when few input variables are relevant. Proc. 8th An-
nual Conference on Computational Learning Theory (pp.
289–296).

Kivinen, J., & Warmuth, M. K. (1994). Exponentiated gra-
dient versus gradient descent for linear predictors (Tech-
nical Report UCSC-CRL-94-16). Univ. of California
Santa Cruz, Computer Research Laboratory.

Kohavi, R., & John, G. (1997). Wrappers for feature subset
selection. Artificial Intelligence, 97, 273–324.

Littlestone, N. (1988). Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2, 285–318.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models (second edition). Chapman and Hall.

Ng, A. Y. (1998). On feature selection: Learning with
exponentially many irrelevant features as training ex-
amples. Proceedings of the Fifteenth International Con-
ference on Machine Learning (pp. 404–412). Morgan
Kaufmann.

Ng, A. Y., & Jordan, M. I. (2001). Convergence rates of
the voting gibbs classifier, with application to bayesian
feature selection. Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning. Morgan Kauf-
mann.

Nigam, K., Lafferty, J., & McCallum, A. (1999). Us-
ing maximum entropy for text classification. IJCAI-99
Workshop on ML for Information Filtering.

Pollard, D. (1984). Empirical processes: Theory and appli-
cations. Springer-Verlag.

Rockafellar, R. (1970). Convex analysis. Princeton Univ.
Press.

Strang, G. (1988). Linear algebra and its applications, 3rd
ed. International Thomas Publishing.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. J. Royal. Statist. Soc B., 58, 267–288.

Vapnik, V. (1982). Estimation of dependences based on
empirical data. Springer-Verlag.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley & Sons.

Zhang, T. (2002). Covering number bounds of certain
regularized linear function classes. Journal of Machine
Learning Research, 527–550.

Zheng, A. X., Jordan, M. I., Liblit, B., & Aiken, A. (2004).
Statistical debugging of sampled programs. Neural In-
formation Processing Systems 16.

Appendix A: Proof of Theorem 3.1

Our proof of Theorem 3.1 is based on bounding the
covering numbers of certain function classes. Due to
space constraints, our proof is necessarily brief, but
for highly readable introductions to covering numbers,
see, e.g., (Anthony & Bartlett, 1999; Haussler, 1992).

Let there be a class of functions F with some do-
main U and range [−M,M ] ⊂ R. Given some set



of points z(1), . . . , z(m) ∈ U , we let F|z(1),...,z(m) =

{[f(z(1)), . . . , f(z(m))]; f ∈ F} ⊆ [−M,M ]m. We say
that a set {v(1), . . . , v(k)} ⊆ R

m ε-covers F|z(1),...,z(m)

in the p-norm if, for every u ∈ F|z(1),...,z(m) , there

is some v(i) so that ||u − v(i)||p ≤ m1/pε. Here,
||t||p = (

∑m
i=1 |ti|

p)1/p. Define Np(F , ε, [z1, . . . , zm])
to be the size of the smallest set that ε-covers
F|z1,...,zm

in the p-norm. Also, let Np(F , ε,m) =
supz1,...,zm

Np(F , ε, [z1, . . . , zm]).

Let there be some distribution D over U , and define
ε(f) = Ez∼D[f(z)]. If z(1), . . . , z(m) ∼iid D, then (Pol-
lard, 1984) showed that

P

[

∃f ∈ F :

∣

∣

∣

∣

∣

1

m

m
∑

i=1

f(z(i)) − Ez∼D[f(z)]

∣

∣

∣

∣

∣

> ε

]

≤ 8E[N1(F , ε/8, [z(1), . . . , z(m)])] exp

(

−mε2

512M2

)

.(10)

Further, (Zhang, 2002) shows that if G = {g : g(x) =
θT x, x ∈ R

n, ||θ||q ≤ a} is a class of linear functions
parameterized by weights θ with q-norm bounded by
a, and if the inputs x ∈ R

n are also norm-bounded so
that ||x||p ≤ b, and further 1/p + 1/q = 1 (so the p-
and q-norms and dual) with 2 ≤ p ≤ ∞, then

log2 N2(G, ε,m) ≤

⌈

a2b2

ε2

⌉

log2(2n + 1). (11)

(A special case of this is also found in Bartlett, 1998.)

Some other well-known properties of covering numbers
(e.g., Anthony and Bartlett, 1999; Zhang, 2002; Haus-
sler, 1992) include that

N1 ≤ N2, (12)

and that given a class of functions G with domain R, if
F is a class of functions R× Y 7→ R defined according
to F = {fg(x, y) = `(g(x), y) : g ∈ G, y ∈ {0, 1}},
where `(·, y) (for any fixed y and viewed a function of
the first parameter only) is Lipschitz continuous with
Lipschitz constant L, then

N1(F , ε,m) ≤ N1(G, ε/L,m). (13)

We now give the main part of the proof. First, notice
that the algorithm uses hold-out cross validation to se-
lect amongst the values B = 0, 1, 2, 4, . . . . Let B̂ be the
smallest value in {0, 1, 2, 4, . . .} that is greater than or
equal to rK. Notice therefore that rK ≤ B̂ ≤ 2rK.
We will begin by considering the step in the algorithm
where logistic regression was fit using the regulariza-
tion parameter B̂. Specifically, let θ̂ denote the pa-
rameter vector resulting from solving the optimization
problem given by Equations (3-4) with B = B̂.

Let G = {gθ : [−1, 1]n 7→ R : gθ(x) = θT x, ||θ||1 ≤ B̂}
be a class of linear functions parameterized by θ with
L1-norm bounded by B̂. Using Equations (12,11), we
have that

log2 N1(G, ε,m) ≤ log2 N2(G, ε,m)

≤

⌈

B̂2

ε2

⌉

log2(2n + 1). (14)

(Recall our assumption in Section 2 that x ∈ [−1, 1]n,
which implies ||x||∞ ≤ 1.) From Holder’s inequality,
we also have

|gθ(x)| = |θT x| ≤ ||θ||1 · ||x||∞ ≤ B̂. (15)

Now, let F be a class of functions f : R × Y 7→ R

defined according to F = {fθ(x, y) = `(gθ(x), y) :
gθ ∈ G, y ∈ {0, 1}}, where `(g(x), 1) = − log 1/(1 +
exp(−g(x))), and `(g(x), 0) = − log(1 − 1/(1 +
exp(−g(x)))). Thus, `(g(x), y) is the logloss suffered
by the logistic regression model on an example where it
predicts p(y = 1|x) = 1/(1 + exp(−g(x)), and the cor-
rect label was y. It is straightforward to show that
| d
dt`(t, y)| ≤ 1 for any y ∈ {0, 1}. Thus, `(·, y) is

Lipschitz continuous with Lipschitz constant L = 1.
Hence, combining Equations (13,14), we get

log2 N1(F , ε,m) ≤

⌈

B̂2

ε2

⌉

log2(2n + 1). (16)

It is also straightforward to show that |`(t, 1)| =
| log 1/(1+exp(−t))| ≤ |t|+1 (and similarly for `(t, 0)).
Together with Equation (15), this implies that

|fθ(x, y)| = |`(gθ(x), y)| = |`(θT x, y)| ≤ B̂ + 1. (17)

Let m1 = (1 − γ)m be the number of examples the

parameters θ̂ were trained on in the inner-loop of
the algorithm. (The remaining m2 = γm examples
were used for hold-out cross validation.) Recalling
that N1(F , ε, [z(1), . . . , z(m)])] ≤ N1(F , ε,m) by defini-
tion, and putting together Equations (16,10,17) with

M = B̂ + 1, we find that

P

[

∃f ∈ F :

∣

∣

∣

∣

∣

1

m1

m1
∑

i=1

f(x(i), y(i)) − E(x,y)∼D[f(x, y)]

∣

∣

∣

∣

∣

> ε

]

≤ 8 · 264B̂2/ε2+1(2n + 1) · exp

(

−m1ε
2

512(B̂ + 1)2

)

. (18)

We would like for this probability to be small. By
setting the right hand side to δ and solving for m1,
we find that in order for the probability above to be
upper-bounded by δ, it suffices that m1 = Ω((log n) ·
poly(B̂, 1

ε , log 1
δ )) = Ω((log n) · poly(r,K, 1

ε , log 1
δ )),

where to obtain the second equality we used the fact



(shown earlier) that rK ≤ B̂ ≤ 2rK. Since m1 =
(1− γ)m, if we treat (1− γ) as a constant that can be
absorbed into the big-Ω notation, then to ensure the
above holds, it suffices that

m = Ω((log n) · poly(r,K, 1
ε , log 1

δ )). (19)

To summarize, we have shown that if m satisfies Equa-
tion (19), then with probability 1− δ, it will hold true
that for all f ∈ F , we have that
∣

∣

∣

∣

∣

1

m1

m1
∑

i=1

f(x(i), y(i)) − E(x,y)∼D[f(x, y)]

∣

∣

∣

∣

∣

≤ ε. (20)

By referring to the definitions of F and G, we see this
would imply that for all θ : ||θ||1 ≤ B̂, we have
∣

∣

∣

∣

∣

1

m1

m1
∑

i=1

− log p(y(i)|x(i); θ) − E(x,y)∼D[− log p(y|x; θ)]

∣

∣

∣

∣

∣

≤ ε

(21)
and therefore that for all θ : ||θ||1 ≤ B̂,

∣

∣ε̂l
S1

(θ) − εl(θ)
∣

∣ ≤ ε. (22)

In summary, we have shown that with a training set
whose size has to be at most logarithmic in n and poly-
nomial in all quantities of interest, with probability
1−δ, we will have that ε̂l

S1
(θ) is a uniformly good esti-

mate for εl(θ). Now, recall that the parameter vector θ̂

was found by solving θ̂ = arg minθ:||θ||1≤B̂ ε̂l
S1

(θ). Us-

ing Equation (22), a standard uniform convergence re-
sult9 (e.g., Vapnik, 1982; Anthony and Bartlett, 1999)
shows that minimizing ε̂l is nearly as good as minimiz-
ing εl, and that in particular, Equation (22) implies

εl(θ̂) ≤ min
θ:||θ||1≤B̂

εl(θ) + 2ε

≤ εl(θ∗) + 2ε, (23)

where the second step used the fact that ||θ∗||1 ≤ B̂.

Hence, we have shown that in Step 2 of the algorithm,
we will find at least one parameter vector θ̂ whose per-
formance (generalization error as measured according
to εl) is nearly as good as that of θ∗. In Step 3 of the
algorithm, we use hold-out cross validation to select
from the set of θB ’s found in Step 2. Using another
entirely standard argument, it is straightforward to
show that, with only a “small” (at most polynomially
large, and independent of n) number of examples used
in the hold-out set, we can ensure that with proba-
bility 1 − δ, the selected parameter vector will have
performance at most ε worse that that of the best pa-
rameter vector in the set. The details of this step are

9Specifically, that if |f(θ)− f̂(θ)| ≤ ε for all θ ∈ Θ, then

f(arg minθ∈Θ f̂(θ)) ≤ minθ∈Θ f(θ) + 2ε.

omitted due to space, but is entirely standard and may
be found in, e.g., (Vapnik, 1982; Anthony & Bartlett,
1999). Putting this together with (23), we have shown
that, with probability 1 − 2δ, the output θ satisfies

εl(θ) ≤ εl(θ∗) + 3ε. (24)

Finally, replacing δ with δ/2 and ε with ε/3 everywhere
in the proof shows the theorem. �

Appendix B: Proof of Theorem 4.3

Let L and ε, δ be as given in the statement of the theo-
rem. Consider the concept class of all linear separators
in n dimensions, C = {hθ : hθ(x) = 1{θT x ≥ β}, θ 6=
0}. (Here, we do not use the convention adopted previ-
ously that necessarily xn = 1. Also, 1{·} is the indica-
tor function, so that 1{True} = 1, and 1{False} = 0.)
It is well-known that VC(C) = n + 1. (Vapnik, 1982)

From a standard PAC lower bound, there must there-
fore exist a distribution DX over the inputs, and a
target concept h∗ ∈ C, so that if DX is the input dis-
tribution, and the labels are given by y = h∗(x), then
for L to attain ε or lower 0/1 misclassification error
with probability at least 1− δ, it is necessary that the
training set size be at least m = Ω(n/ε). (Results
of this type have been proved by Vapnik, 1982 and
Ehrenfeucht et al., 1989. The particular result stated
here is also given in, e.g., Theorem 5.3 of Anthony and
Bartlett, 1999).

Since h∗ ∈ C is a linear target concept, it can be writ-
ten h∗(x) = 1{θ∗T x ≥ β∗} for some θ∗ ∈ R

n and
β∗ ∈ R. Because replacing (θ∗, β∗) with (cθ∗, cβ∗) for
any positive constant c does not change anything, we
may assume without loss of generality that ||θ∗||2 = 1.

Let M be any orthogonal matrix whose first row is
θ∗T . Such a matrix must exist. (Strang, 1988) Thus,
Mθ∗ = [1, 0, . . . , 0]T = e1 (the first basis vector). Fur-
ther, by flipping the signs of any single row (other
than the first row) of M if necessary, we may en-
sure that |M | = 1, and hence M ∈ M. Now, con-
sider a learning problem where the input distribution
is induced by sampling x ∼ DX , and then comput-
ing x′ = Mx. Further, let the labels be given by
y′ = 1{x′

1 ≥ β∗}. Because 1{x′
1 ≥ β∗} = 1{eT

1 x′ ≥
β∗} = 1{(Mθ∗)T (Mx) ≥ β∗} = 1{(θ∗)T x ≥ β∗} = y,
we therefore see that a learning problem with exam-
ples drawn from the (x′, y′) distribution is simply a
rotated version of the problem with examples (x, y).
But since L is rotationally invariant, its predictions
on test sets under the original and rotated problems
will be identical, and thus its generalization error, and
sample complexity, must also be the same under either
problem. �


