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Abstract— Robust object detection is a critical skill for of these variations: sooner or later, one of the countless
robotic applications in complex environments like homes and variations in shape or texture will be mistaken for a positiv
offices. In this paper we propose a method for using multiple instance. Meanwhile, lighting, contrast, and poor viewéng
cameras to simultaneously view an object from multiple angles o L . .
and at high resolutions. We show that our probabilistic method gle can often make it difficult to distinguish legitimate edj .
for Combining the camera VieWS, which can be used with instances from other random clutter. These factors combine
many choices of single-image object detector, can significantly make single-viewpoint object detection quite difficult ds i
improve accuracy for detecting objects from many viewpoints. own, and multiple-viewpoint detection (where the objecyma

We also present our own single-image object detection method e geen from many different angles) is regarded as even more
that uses large synthetic datasets for training. Using a dis- difficult

tributed, parallel learning algorithm, we train from very large
datasets (up to 100 million image patches). The resulting
object detector achieves high performance on its own, but also L d
benefits substantially from using multiple camera views. Our
experimental results validate our system in realistic conditions b"j- -
and demonstrates significant performance gains over using ¥ ;
standard single-image classifiers, raising accuracy from 0.86 =" h
area-under-curve to 0.97. ==

. INTRODUCTION

Detecting classes of objects reliably remains a highl
challenging problem in robotics. Robotic systems requir |
extremely high accuracy for a large variety of object class
in order to perform even simple tasks (such as takin_
inventory of a few objects in a lab environment [1]) but Off- g
the-shelf vision algorithms that achieve the necessargl le
of performance do not yet exist. Robots, however, have mg. 1. A challenging detection task: Even in the absencecofusion,
number of advantages that are ignored by most detecti@hiects like hammers can be difficult to identify when viewirgnditions
systems. For instance, robots are able to view a real scefRgcure their key features.
from multiple angles and can view interesting objects up

- . A major complication in object detection with multiple
close when necessary [2], [3], yet most existing algorithms L : o - .
) ) - potential views is the variation of an object’s appearanite w
cannot directly leverage these tools. In this work, we wil

; ; : . changes in the viewpoint. Even detectors achieving state-
present a method for improving detection accuracy by usin i )
?(-the-art performance for a well-defined object class can
u

multiple viewing angles and high resolution imagery tha rn out to be poor performers when applied to objects with
may be obtained either from multiple cameras or by movingn

the robot. We will show that this method significantly boosts any differing views. Good performance has been demon-

; . . . “strated for a handful of existing object classes, such as car
detection accuracy and is a valuable tool for detectingaibje : ; ;
. L o ; and pedestrians, whose geometric structure appears fairly
whose appearance differs significantly with viewpoint.

T i ] ~consistent as the object rotates. For instance, pedestrian
_Even considering a single object class from a singlgan often be identified by clusters of vertical edges [7],
viewpoint (i.e., the same side of the object is always facingg) that are consistent regardless of whether the camera is

the camera), detecting classes of objects remains a daupf-front or behind them. The side view of a car, which
ing unsolved problem. Off-the-shelf vision algorithms cans essentially planar (and the same on both sides), tends
achieve good results for a hand_ful of well studied classeg, undergo simple perspective distortions as the car mtate
such as faces, cars, and pedestrians [4], [5], [6], [7], behe re|ative to the viewer. Thus, classifiers for these objeats ¢
these detectors can have high false positive rates when highen perform quite well over a broad range of views. In
recall is required. A key problem with single-image objectontrast, a more “exotic” object such as a claw hammer,
detection is the number of genuinely novel combinations qfke the one shown in Figure 1, can be surprisingly difficult.
shape and texture that can appear in cluttered environmenig the hammer rotates, not only do the various parts move
Classifiers that are hand-engineered or trained on only rgjative to the image center but the key visual features of
small number of examples are ill-equipped to deal with allhe object can appear dramatically different. The claw can
. .be hidden when viewed edge-on, or may be difficult to
enﬁgagepiﬂﬁism aeﬂd Sg”n‘ég%v J,;iv’:?sit; reSt\év,;tfzrc}r‘ec: OQKEA_ s recognize due to poor contrast with the background behind
acoat es@s. st anford. edu, ang@s. stanford. edu it (which is often shadowed by the hammer itself). These




types of objects may need to have separate classifiers fmapable of identifying objects in image fragments as snsll a
many different viewpoints to achieve good performance32 by 32 pixels [9], this makes the task far more difficult than
Unfortunately, even if we succeed in building reasonablperhaps necessary. Our system uses pan-tilt-zoom cameras
strong classifiers for each of N different views of the ohjéct that allow us to zoom in and acquire “close up” views of
can turn out that combining them is non-trivial. In parteml objects that reveal much more detail, often revealing featu

for N classifiers, it is common practice to simply label arthat were difficult to see in the original image. We will use
object using the output of the classifier whose responghis capability in Section V to verify object detections wit

is maximal. This implies, however, that the set of falsénigher accuracy than would otherwise be possible.

positives for the combined classifier includes all of theéal  \we will begin by surveying work related to both our

positives of the individua_l_classifiers—potentially incsi?qg single-image object detection algorithm and our work with
the number of false positives by a factor of N. For difficultyytiple cameras in Section 1. We will then present the ¢hre
objects with many differing views this can seriously degradmajor components of our detection system: our detection
performance. algorithm based on large synthetic training sets in Sedtipn
Thus, to identify objects from many different views, weour method of combining detections from multiple cameras
would like to solve two main difficulties: (i) the high error in Section 1V, and our use of high resolution images in
rates of single-image, single-viewpoint detectors, andi{¢  Section V. We will present our experimental results in
factor of N blowup in false positives if we naively combineSection VI, demonstrating the performance of the combined
these detectors into a multiple-viewpoint detector. Irs thisystem.
paper, we will explore several complementary solutions to
these problems. Il. RELATED WORK

First, recent work [9], [10], [11] has demonstrated that Qur single-image object detector builds on the system
improved accuracy can be obtained by using relatively #mphyresented in [12]. Our system uses the patch-based features
learning algorithms trained from very large datasets. Igescribed by Torralba et al. [13] and the Histogram of
our previous work, we have demonstrated that using larg@riented Gradient (HoG) features of Dalal and Triggs [7].
numbers of negative examples (up to 1 million) can improveghese features have been used for object detection (using
results for object detection [12]. Intuitively, by traigirour  hoosting in [13]) and pedestrian detection (using a tereplat
classifiers on huge numbers of examples, we can reduce W@tching method in [8]). In our work, both are treated as
likelihood that a classifier will encounter agenuinely l.lfﬂq “black box” feature generators and tossed into our |arge_
example about which it is confused. This will allow us toscale learning algorithm. In many ways, our use of the
reduce the error rates of our single-image, single-vien{poi patch-based features from [13] combined with machine
detectors to a level that is tolerable. In this work, we willearning algorithms resembles the work of Schneiderman
show the effect of training on up to 100 million examples (1&nd Kanade [14]. They have used wavelet-based features and
million positives) on single-viewpoint detection perfante. poosted decision trees to perform detection of faces arsl car
Our final multi-view detector will use 18 classifiers trainedrom multiple viewpoints. Their system also uses separate
on 6 million examples each. classifiers for each viewpoint, combined subsequently to

While our large dataset approach will give us classifierform a single output. They also use synthetic variations
that perform reasonably well, these classifiers will not bef hand-labeled training examples (a common practice in
perfect. For instance, it is common for our detectors twision applications) to obtain better generalization. tBgtic
miss some objects that are viewed from difficult angledata, as we will use for our classifier, has also been used
(for instance, when the claw of the hammer blends isuccessfully in prior work to generate large datasets uisefu
with desk clutter). More frustrating still are the numeroudor computer vision work. LeCun et al. [15], for instance,
false positives where an “unlucky” combination of shapesised synthetic data to train algorithms that perform well on
or viewing conditions have conspired to inexplicably fooldifficult recognition tasks.

the detector. Each of these types of errors might disappearopject detection from multiple cameras, in contrast to the
if the image had been taken from a different angle. Thejosely related problem of detecting objects with multiple
errors made by the detector in two different images Opotential views, has been studied less well in roboticsalite
the same scene are often different, suggesting that theifre. Multiple camera detection algorithms have been used i
results can be combined to yield higher accuracy. Based @firveillance applications to keep track of moving objeats o
this observation, we present a method for probabilis'g'vcallpeop|e as they pass between camera views [16], and to locate
combining the outputs of multiple object detectors, allogvi faces of users in smart rooms [17]. More similar to our work,
us to use multiple cameras in conjunction with almost anjhyltiple cameras have been used by Alahi et al. [18] to locate
choice of base detection algorithm. We show that this cag known object (observed by a fixed camera) in the views of
significantly improve the accuracy of the base detector.  other cameras, including mobile ones. Multiple cameras are
In addition to the above, we also explore the use of highsed in [19] to locate soccer players in video captured from
resolution imagery in our object detection system as amotheeveral cameras during a game, allowing their system to deal
avenue for reducing the number of mistakes made by singledth occlusions and overlap that would otherwise require an
image classifiers. Though it has been shown that humans advanced person detector. The application of this tecleniqu
to general object detection when a high-accuracy single-



TABLE |

image detector is available has not been explored, perhaps DATASETS SIZES

due to the inherent difficulty in building even a modestly Dataset Positive examples per Class

accurate single-image object detector. Our own system is [ Coates et. al, 2009 [12] <730

motivated by the same apparent advantages as prior work | Caltech 101 [23] < 800
lti-camera detection and tracking, but is more closel caltech 256 [24] s 82

pn mu _ _ gv : y LabelMe (Pedestrian) [25] 25330

integrated with a high-performance object detection metho NORB [15] 38880

that allows us to apply this approach to the hard task of Our single-view detector 1% 10°

object detection in robotics. Our multi-view detector 18 x 106

Use of high resolution imagery for object detection has
also been considered previously in combination with zoonis two orders of magnitude more dathan typical detection
ing cameras. In particular, “peripheral-foveal” systenasen and recognition datasets (Table I).
been developed that mimic human uses of peripheral vision

for coarse scanning of a scene, combined with high resol 1 ; ;

tion “foveal” vision for detection of objects [20], [21], B . o errTmrrT
Our system similarly leverages the use of high resolutio o8l oL i

images for object detection, but does not use the “attehtior ,

models used in previous work. Instead, we use our obje 2 .

detection system (boosted by the use of multiple camera 0.6¢

to select the regions where we will perform high resolutior *
detection. 0.4 ‘ ‘
10" N 10° 10°
Ill. SINGLE-IMAGE, SINGLE-VIEW DETECTION Training Examples

. . Fig. 2. The performance (area under precision-recall cuo¥ey single-
Our detection system uses a base classifier that can \h"givpoint classifier for claw hammers trained on up to 100 mrillexam-

executed independently for each camera view to find ares. (10 to 1 negatives-to-positives ratio.)

object in a specific pose. While using multiple cameras

will ultimately improve our accuracy, this base detectoln. preliminaries

must perform relatively well on its own. A poor detection , , o
algorithm that tends to miss objects frequently or makedarg Formally, we will assume that we are given a training
numbers of mistakes (especially mistakes that are coeetlatS€t composed of labelg; € {0,1} and example images
across object views) will not benefit much from the use ofi- (We will describe the generation of the positive example

multiple cameras. We achieve high performance by learnirlg@g€s briefly in Section I11-B.) In addition, we will assume
our classifier from an extremely large training set. Oufor €very positive example that we know the rotationof
classifier is based on boosted decision trees and usedN§ object relative to some canonical pose. For example, an
distributed training system capable of handling up to 108PJect facing directly away from the camera might haye=

million training examples [12], far more than most off-the-0° While another example of the object with its side facing
shelf systems. the camera would have; = 90°. We then split the positive

examples into 18 overlapping bins based on their pose. So,

In previous work, we havg achieved good performancg, instance, all positive examples with € [0°,24°) would
using a large corpus of negative examples and a small setF%E grouped together and those with € [20°, 44°) would

hand-labeled positive examples for each object class keut t rm another group.A separate feature bank is constructed

lack of positive examples made i.t d?f.ficult to handle O.bje(.:t%r each bin using the method described in Section IlI-C, and
whose. appearance can vary S|gn|f|cantly due to I!ght'n%e feature values are computed for every positive example
(especially specular reflections) or intra-class varratim image in the bin, as well as for all negative example imdges.
this paper, we use synthetic positive examples instead EBr each bin We’ now have a training set of labglsfeature
hand-_labeled ones aII(_)wing us to_a_rtificially generate mar\)’ectoeri and, for positive examples, poses We then use
varlatl'on.s of each objecF. By fraining on a large numb.e{hle training algorithm described in Section 1lI-D to learn
of va_rl_atlons we can achieve greater robustness of the f'na;i‘ separate classifier for each bin. This classifier estimates
classifier. P(y = 1|Z;a) for a new example imag€ (this is the

We have experimented with training sets as large as 1qf)obability thatZ is an image of the target object in pose
million examples. Figure 2 shows the effect of training ). As we will show in our experiments (Section V1), these
a single-viewpoint detector on larger and larger datasetsese-specific classifiers achieve high performance.
Performance increases dramatically up to several millions Given an input image, we apply our classifiers using
of examples, and continues to increase all the way up to 1Q|qe standard “sliding winc’iow" approach [7], [4], [26]. We
million examples. We note that our final experiments will use T '

6 m'_”'c,’n examples for e_aCh smglg-wgw classifier (VO‘%gh'y 2The extra4® overlap ensures that there are enough positive examples
the limit of performance illustrated in Figure 2), and tHast  with poses near the bin limits that we do not end up with “gapspases
covered by all of the classifiers.
1Each example is a 320 by 240 image patch containing either thetta  3Our negatives also include small, incomplete snippets cat fpositive
object, centered and cropped to the same scale, or randongrbackl example images. This has the effect of forcing the classifiegam to label
imagery. full objects and avoid relying on just a few parts.



evaluate all of the classifiers independently on a series of We begin by constructing a dictionary from small image
windows of varying sizes spaced at uniform intervals ovefragments. Each fragmenj is randomly extracted from
the image to detect objects at all locations, scales, anelsposthe image channels (intensity and edges) of our synthetic
Thus, for each sub-regiof; of an imageZ, our classifiers positive examples. Each patch is annotated with a rectangle
output the probability that the target object is contained iR specifying its approximate location relative to the object
the sub-region at the pose for which the classifier was tdaineenter, and the index of the image channel from which
(P(y; = 1|Z;; «)). Normally, these results would be collectedit was extracted. Specifically, a patch is defined as a triple
and the classifier with maximal response at each locatiafg, R,c). Given an input example image, a patch feature
would be selected as the final output of the system. Howevesalue is computed by first computing the (normalized) cross-
we will use these probability estimates later to improve oucorrelation of the dictionary patch with the corresponding
detection accuracy using multiple cameras. We now brieflynage channel, and then taking the maximum response over
describe the sub-components of our classification system time patch rectangle.

more detail. We also use HoG features in addition to patch-based
features, applied in a similar fashion to the patches desdri
above. In particular, we build a dictionary of descriptors
Ideally we always want to train on the same kinds ofxtracted from positive examples. A feature value is then
data on which we will test our classifier. However, if largedefined by taking the maximum dot-product between the
amounts of data are needed to learn good classifiers, collestored descriptor and a descriptor computed at each point in
ing real data for training becomes arduous if not infeasibler of the example image. This computation can be performed

For example, in order to train detectors that are invariajjuickly by first computing Ho@L,i,5) for all 4,j using
to lighting, exposure, and distortions we must either handntegral images [28].

engineer features and algorithms that take these into atcou
or otherwise find examples of our object that exhibit alk

of these variations in different combinations. Syntheatad classification algorithm. In our experiments we have about

offer; us the ability to .trr?un our cllassn‘ler to be. rObUSt400 patch features and 200 HoG features per object view.
to different types of variations by simply generating new

examples that demonstrate the kinds of variations thatimigh. Training

be seen in reality. . .
. - Once we have generated positive and negative example
For our system, we acquire large numbers of positive &mages and computed the feature vector for each, we train
amples by synthesmng.them using a “green scr_een”_meth%d boosted decision tree classifier using the Gentle Boost
similar to those used in [15] and [27]. A typical imagegigorithm [29]. Since our training sets are extremely large
captured from this system is shown in Figure 3a. it is impractical to train these classifiers on single maekin
Using the (known) background color, a mask is computethstead, we use the distributed training approach degtribe
that covers the object in the image frame (Figure 3b). Usinig [12]. Except for quantizing the feature values to 8 bits
the captured image and mask, we then apply a series @dch, the distributed training system yields the same tresul
photometric and geometric distortions to generate new poas training on a single machine.
itive examples. These distorted examples attempt to captur
variations that frequently appear in real data. These delu IV. MULTI-CAMERA DETECTION
(i) random backgrounds (placed behind the object using the Once we have a single-image object detector, we can com-
object’s mask for blending), (ii) random perspective disto bine their outputs to obtain improved detection perforneanc
tions, (iii) non-linear lighting changes (simulating undand Roughly speaking, if we receive multiple observations of
over-exposed images), and (iv) blurring. the same scene but from different angles, then even if
Figure 3c shows an example of a claw hammer synthesiz#ese observations are correlated it is quite possibletitieat
using this approach_ In addition to the Synthesized |mag§pmb|ned beliefs derived from all of the observations wil b
our system also determines the pose of the object from tigtter than any single observation. In our setting, we assum
location of a fiducial marking located on the green screethat we are given multiple different images of the same scene
surface, and thus we obtain the necessarywalue needed Where the viewpoints from which the images were captured
to group the examples for training. In our experiments, eaciie separated by a modest baseline (similar to what could
classifier is trained on 1 million positive examples geretat be achieved with multiple cameras on a robot, or by a robot

B. Training Data Synthesis

The patch and HoG features computed as above are
oncatenated into a single feature vector that is given to ou

in this way. that can move itself or the cameras a short distance). We'll
assume from now on that we have just two cameras, but
C. Features the same technique can straight-forwardly be applied to any

Once we have a set of positive and negative exampléimber of observations.
images (from a single orientation bin), we compute feature Recall from Section Ill that our classifiers are trained to
vectors for each. We use two types of features: (i) the patcidentify a single object over a small rang20f) of poses.
based features first described in [13], and (ii) Histogram dEach classifier is run in a sliding-window fashion, outmgti
Oriented Gradient descriptors [7]. We review them here onlg posterior probabilityP(y; = 1|Z;;«), where « is the
briefly. parameter for the pose of the object being detectedyarsl



(b) (e)
Fig. 3. Our synthetic data system: (a) Object view as seen &y#pturing camera, with fiducial marking. (b) Mask extractennf the green-screen
image. (c),(d),(e) Synthesized positive examples.

the label for sub-regiof;. The label isy; = 1 if the object 3D space. We discard points that violate the (approximate)
is detected in pose, or 0 otherwise. epipolar constraints between the cameras. For instantte if

We assume that, after running our single-view classifie/depth of the center point is very large (say, greater than 20
on the image, we are left with a set of candidate boundingi€ters), we can safely assume that the detections do not
boxes. Each box is annotated by the posterior probabilifgorreéspond to the same object. Using the approximate 3D
computed by the classifier and the approximate pas®ur Position we can also compute the size of the bounding boxes
basic approach to combining these detections will be brokdh 3D space. We reject correspondences whose bounding
into several steps: boxes have a relative error in width of more than 190%.

1) Determine the correspondence between pairs of det C_We also havc_e geometric information about the object itself:
tions. l.e., which detections in both cameras actuaITI/or each candldat_e_ detection we know the pose parameter
correspon’d to the same object in the scene. ai.from the clasglfler that gengrated the de'tectlon. Agaln,
2) For each pair of corresponding detections, compute tréjsmg the approximate .3D location of the object relative to
' Re cameras, we can reject any correspondences whose poses

posterior probability for the class label. . . ; T ,
3) Perform non-maximum suppression on the detectiord® not conS|stent.OF0r instance, if the detection in the firs
amera hasy; = 50°, then we can determine geometrically

jointly between the cameras to find the most probablt at the second camera should find the same object with an
locations of the objects considering all observations. . : - J
orientation of, sayq,; = 70° if the cameras are separated by

We'll now describe each of these steps in turn. 20 degrees around the object location. Any correspondences
whose poses do not (approximately) satisfy these contgrain
A. Determining Correspondences are rejected.

Determining the correspondence between detections in\We now use a simple stereo keypoint-matching system
each image is easy if our robot is equipped with a deptt® choose the best correspondences from amongst those
sensor or some other knowledge of the distances to eagftisfying the geometric constraints outlined above. As a
detection. Using the extrinsic and intrinsic parameterthef Preprocessing step, we compute point correspondences be-
cameras we could easily determine whether the centers of thfgeen the images captured by each camera using SURF
bounding boxes corresponded to the same point in the scef@scriptors [30]. For each detection in the firstimage we the
and Simi|ar|y could Verify that the boxes were approxin’mte| search for the best match in the second image. In particular,
of the same size (accounting for the object’s distance frof@r & detection with bounding bof; in the first image
each camera). Since we do not assume that such a sensgkg bounding bosR, in the second image, we compute the
available we will need to solve the correspondence problerffllowing score:

This turns out to be somewhgt r_10n—trivia| when accurate . (N12(R1,R2) Ni2(Ri,Rs)

parameters for the camera extrinsics are not known. This is m < Ni(Ry) ° Na(Ra) )

not only the case for our pan-tilt-zoom camérasit is also )
true, for example, when images are captured by moving th¥12(R1, R2) is the number of SURF correspondences where
robot base. In these cases, we may have only coarse estimdgsfirst pomt_falls insidék, and the second point falls inside
of the camera extrinsics from the robot's localization eyst X2+ NV1(R1) is the total number of SURF correspondences

To determine the correspondences we aoplv a numberw£ere the first point falls insid&R; (regardless of where
filtering steps to first rejec? pairs of detectiggg that aré n I?. gorrespondlng pomF s found in th? second_ image), and
likely to correspond to the same object, For a given pair § imilarly for N». We discard Iow-scorln.g candld_ate corre-
detections, we have bounding boxgs aﬁdR in the first pp_ndences, then use a greedy algorlthm o find the best

’ . . 2 . g{a\mng between detections in the two images.
and second camera respectively. Since we have approximate
intrinsic and extrinsic parameters for our cameras, we can

use the center points of the bounding boxes to (roughly) SLarge depth values are unlikely: objects beyond 20 meteraairtkely

: ; ; ; 10 be legitimately detected.
triangulate the center point of the hypothetical object i 6Note that if the size of the bounding box changes dependinghen

object view (e.g., if it bounds the object tightly) then thisuristic will

40ur pan-tilt-zoom cameras do not have encoders to determiiiegan  not work properly. We ensure during training that our detedearns to

and tilt. Instead, we can only dead-reckon their orientatithe pan and tilt place bounding boxes at the same size relative to the objgatdiess of

angles are reasonably accurate since the cameras use stemioes, but  viewpoint—allowing us to use the bounding box width as a primx object
are not sufficiently reliable for off-the-shelf stereo pagks. size.



B. Computing Posterior P that is not the same as the test distribution. We compensate
The result of the above procedure is a reduced set qu this difference by learning linear function parametars
candidate detections for each image, and pair-wise corrgpdﬂ that map the d.etECtOF qutputs to.the correct values
spondences between the detections indicating which phirs Q)eeded for Eq. (2.) usmg logistic regression [31] on a hold-
detections potentially correspond to the same object in tﬁ)éJt set of synthetic data:
scene. The next step is to combine the detections to make Ply=17)
more confident predictions about the label of the object. Our Py =0[11)
classifiers output probabilities instead of discrete Iapilus
giving us a measure of their confidence. By probabilistycal
combining the detections using the probabilities suppligd  After completing the above steps, we will have a set of cor-
the classifiers we can obtain a more confident labeling thaesponding detections with a combined posterior proligbili
either classifier could achieve alone. for each reflecting the likelihood that the target object wil

In the following we will consider one pair of the remainingP€ found at a particular location. As is commonly the case
candidate detections. We will refer to the sub-regibn with sliding window detection algorithms, we must suppress
containing the object as viewed from the first camera arfitections that are not local maxifh&ince we have multiple
the sub-regiorf, containing the object as viewed from theiMages, however, this suppression must be done jointly to
second camera. Each detection is annotated by probabiliti@@intain consistency between the detections in each camera
P(y = 1|T1;01) and P(y = 1|T5; ) respectively from view. A natural solution is to perform the non-maximal
our classifiers, where:; and a, are the pose parametersSUPPression in the 3D world space rather than t'he 2D image
of the classifiers that generated the detections. Note thgRace. As we have done previously, we can friangulate the
we have dropped the subscript for the labekince both 3D position of the detections using our (rough) camera
classifier outputs now refer to the same object (which mu@@rameters. We then perform non-maximal suppression in the
ultimately be labeled the same way in both camera viewsySual way over 3D position and object scale, removing any
In the following, we will omit thea; as they are not needed detections whose probability values are lower than another
for computing the posterior probability of the class label. detection that is nearby in the 3D space.

We will assume for the moment that we are given accurate V. FOVEATION
posterior probab|I.|t.|esP(y = 1) and Ply = 1‘12)'. A major limitation in detecting objects in single 2D images
Clearly the classifier outputs are highly correlated, since : . ; .

. . IS the quality and resolution of the image itself. Our carsgra
the imagesZ; andZ, are observations of the same scene]c r instance. outout 640 by 480 pixel images. While the
Nevertheless, we will assume that the observed sub—regioﬁ)s ' P y P ges.

" . ; quality is sufficiently high for humans to pick out most
7y and1; are conditionally independent given the label objects, many key details of an object are often lost, making
P(Ty, Ioly) = P(Z1]y) P(Z2|y).

. : : _ _the detection process much more difficult. One solution is to
Under this assumption the combined posterior probabilityse a camera with zoom capability to take high resolution
P(y = 1|7,,7,) can be computed using several applicationgictures of “interesting” areas in the scene and then perfor

(y = 1Zy)

P
= alog — + 5.
P(y =0|T1)

|C. Non-Maximal Suppression

of Bayes'’s Rule yielding: object detection in these regions.
P(y|Ty,T,) w (1) In this work, we use foveation as a “verification” mech-

P(y) anism for candidate detections found by our multi-camera
From this it is easily seen that the log odds of the posteriafetector. For each candidate detection found using the-meth
in Eq. (1) can be written: ods described above, we will direct our cameras to acquire
log Py =111,1) _ high resolution images of the detection’s bounding box (one
P(y=0|71,I,) image for each camera, as before). We will then re-run our
P(y = 1|T)) Py = 1|T,) Py=1) detectors on the higher resolution images, yielding a set of

log Py = 0|T)) + log Py = 0Z) — log Ply=0) (2)  detections and a probability estimate for each. Since we are
ooming in on a previously selected candidate region there
no stereo correspondence problem to solve; we can simply
combine the detection probabilities as described prelyous
will ultimately threshold the combined detections at whate [OF @ny detection pairs whose poses are consistent with the
camera geometry. We can then use these combined detections

value yields the best performance. : ; .
) . for our results and discard the detections acquired from the
We have assumed that the posterior probabilities output Ww-resolution images.

the detector are accurate. In reality, the probabilitiesiar
correct because they refer to the training distribufidrnus, VI. EXPERIMENTS
(y=1T

. . P . . .
our classifier actually gives usg 716@:0'1; for a distribution For our experiments, we used two AXIS 214 pan-tilt-zoom

cameras and tasked them with identifying claw hammers

Thus, we can combine the detection probabilities by simplf
adding the log odds together (plus a constant). The choi
of constantP(y = 1) is generally not important since we

"The classifier has been optimized for the training distriut{and,
indeed, usually separates the data perfectly) and thudbevitiver-confident. 8As a sliding window detector passes over an object in an imhge t
The training data also has a different distribution of pesiand negative probability values from the detector increase to a maximune(whe object
examples than real data. is roughly centered) and then begin decreasing.



around our lab. The two cameras are mounted slightly le: L[ O OHORO 4O 0 ok x Hx Ak ke X KX
than 1 meter apart on a fixed horizontal bar attached to
tripod at a height of about 2.5 meters. A picture of our systel

is shown in Figure 4. We collected green-screen images of g 0.8/
different claw hammers for training. Using these images, w .2
synthesized 1 million examples for each pose as described &J 0.6/ ¢ 4=50°

Section Ill. Negative examples were extracted from a set «
images that do not contain other hammers, yielding rough 04H
5 million negative examples for each classifier. We use

decision trees of depth 3 and 400 rounds of boosting. 0 012 014 016 018 1
Recall

Fig. 7. Precision-Recall curves for several individual welsammer
classifiers. The posex] for each classifier is given in the legend.
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Fig. 4. Our multi-camera system. 0.5| —o—single image
. . . . . 0.4l ——Multi-camera
Each of the single-view, single-image classifiers perform 1 —— Multi-camera + foveation

fairly well in isolation. We tested several of the classHier 03, 02 04 06 08 1
individually by placing hammers in specific poses relative ' " Recall '

to one of the cameras and then running the classifier for Fig. 8. Precision-Recall curves for our claw-hammer detector
that pose on the captured image. The precision-recall surve

for these classifiers can be seen in Figure 7. They perform o . . .
quite well considering the difficulty of some of the detengo of the rectangles indicates the probability associatedh wit

(the example shown in Figure 1, for instance, is classifiel® detection. Figure 5 shows a scene as viewed from each
correctly by thea = 50° classifier). Nevertheless, they areC@mera along with the detections output by the single-image
imperfect, and the large number of classifiers (18) amplifiegassifier. These detections are then combined using the
the problem of false positives. As a result, when we naive|9rocedure described in Section IV to obtain a reduced set

combine the detections from all of the views we expect thef corresponding detections with more accurate probgbilit
precision of the combined detector to suffer. estimates. These detections, as viewed from the left camera

are shown in Figure 6a. Also shown are the 3D triangulated

We now test the multi-camera and foveation detectio ositions of the detections, where it is clear that therewaoe

strateglgs descr_lbed ab_ove and compare the results t(.) fsters of detections. Figure 6b shows the result of apglyi
accuracies obtained using the standard method of naively,” a5 1on-maximum suppression step of Section IV-C

combining the detections in a single image (which we eXPelhere all of the detections have been collapsed to two

to ex_hibit a high false positive rate.) We again plac_:e Fh?ocations. Finally, our system foveates on each of the two
(previously unseen) hammers around our lab, but this t maining candidate detections and executes the classifier

allow them to be placed in any pose relative to the Camerasscond time. In this case, the previously incorrectly labtel

Tlrllusf’t'r? orlder .tf(.) dettect ?rlll of\tNhese ITaTrge_rs, we TUSt u gion is correctly labeled as negative during the fovesatio
all ot the classifiers together. We collected 1mages 1rom Lppjq 1he correctly labeled hammer is verified as shown in

different scenes, each containing from 0 to 3 hammers. Figure 6c.

The final precision-recall curves for our multi-camera
detection methods are shown in Figure 8.

As Figure 8 makes clear, the naive strategy for combining
detections suffers from reduced precision compared to the
accuracies of the individual classifiers (compare with Fig-

ure 7). This method achieves an area-under-curve of 0.86.
o The performance of the multi-camera detector is signifigant
| 4 better (AUC of 0.89), recovering some of the lost precision.
Fig. 5.  Output of all 18 single-image classifiers for the lefidaright  Moreover, the addition of foveation to the system improves
cameras for one of the test scenes. (Best viewed in color.) performance much further still (AUC of 0.97). These results

To illustrate the operation of the system, a typical exampleuggest that the false positive errors created by using many
of the outputs of each step of our detection system amdassifiers can be successfully overcome using these types o
shown in Figures 5 and 6. In each image, the brightnessultiple-camera, multiple-resolution techniques.




AR
| l

(b)

Fig. 6.

VII. CONCLUSION [11]

We have demonstrated a system for object detection that
demonstrates a number of key elements that can be combirltd
to achieve high performance: (i) learning from extremelyi3]
large datasets including synthetic examples, (ii) levieigag
multiple camera views, (iii) using high resolution imagéoy
verify detections. Our results show that the use of multiplgs)
cameras and resolutions allows us to take a strong single-
image, single-view object detector and construct a mudtivv 16]
object detector that achieves higher accuracy than islgessi
using the standard approach of combining the responses/ifl
a single image. Since these techniques are applicable to any
type of object detector that outputs probability estimates
we believe these results demonstrate that multi-camera aliél
multi-resolution methods are valuable tools for building
robust multi-view object detection systems. Moreover, we
expect that the methods presented here will continue {9l
yield benefits as more sophisticated single-image demct%o]
are developed.

[14]
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