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Abstract— Although robot navigation in indoor environments
has achieved great success, robots are unable to fully navigate
these spaces without the ability to operate elevators, including
those which the robot has not seen before. In this paper, we
focus on the key challenge of autonomous interaction with an
unknown elevator button panel. A number of factors, such as
lack of useful 3D features, variety of elevator panel designs,
variation in lighting conditions, and small size of elevator
buttons, render this goal quite difficult.

To address the task of detecting, localizing, and labeling the
buttons, we use state-of-the-art vision algorithms along with
machine learning techniques to take advantage of contextual
features. To verify our approach, we collected a dataset of 150
pictures of elevator panels from more than 60 distinct elevators,
and performed extensive offline testing. On this very diverse
dataset, our algorithm succeeded in correctly localizing and
labeling 86.2% of the buttons. Using a mobile robot platform,
we then validate our algorithms in experiments where, using
only its on-board sensors, the robot autonomously interprets
the panel and presses the appropriate button in elevators never
seen before by the robot. In a total of 14 trials performed
on 3 different elevators, our robot succeeded in localizing the
requested button in all 14 trials and in pressing it correctly in
13 of the 14 trials.

I. INTRODUCTION

Robots have been able to autonomously navigate unknown
building floors for some time; however, their mobility in
these general environments is restricted if they are not
capable of autonomously operating elevators. Current robot
systems (used in environments such as hospitals and labs)
either rely on human assistance or use infrared transmitters to
interact with an elevator ([1], [2], [3], [4]). Relying on human
assistance can be inefficient and one can imagine a situation
where it might be impossible, e.g. a robot janitor cleaning a
building after working hours. Retrofitting all elevators with
infrared detectors could be costly and time-consuming and
may not be possible if robots must be able to navigate in a
large number of different buildings.

In this paper, we consider the challenge of enabling a
mobile robot to autonomously operate elevators (with no
human intervention), including those never before seen by
the robot. We focus on developing algorithms to enable a
robot to identify and accurately localize buttons and recog-
nize their labels, and execute the action of pressing the button
corresponding to the desired floor. We specifically address
interior button panels since call buttons usually consist of
only up/down buttons and represent a constrained special
case of general elevator panels.
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Fig. 1. Robot autonomously operating an elevator

Figure 2 shows some sample elevator panels. Note the
wide variability of button and label types and the challenging
lighting conditions. To identify the locations and labels of
all the buttons in a single 2D image, we use sliding-window
object detection and optical character recognition. In Figure 2
again, also note the grid layouts and the sequential (ordered
by floor) arrangement of buttons. We use machine learning
techniques to take advantage of these contextual cues to im-
prove the performance of the baseline detectors. Specifically,
we use Expectation-Maximization to fit the buttons to one
or more grids, allowing for recovery of false negatives and
reliable label extraction. A Hidden Markov Model is applied
to the results from the optical character recognition to correct
for mislabeled buttons.

We validate our algorithms in a set of experiments where
the robot is commanded to press a given button in an
elevator never seen before by the robot. An experimental
run is considered a success if the robot locates and presses
the appropriate button using only its onboard sensors. The
perception algorithm correctly localizes the desired button in
all 14 trials and the manipulator presses the desired buttonin
13 of the 14 trials. On a much more diverse, offline dataset,
our algorithm succeeds in correctly localizing and labeling
86.2% of the buttons.

II. RELATED WORK

Several researchers have demonstrated a robot using an
elevatorwith human assistance. In the 2002 AAAI Mobile
Robot Challenge, one of the subtasks for participating robots
required the robot to navigate to a different floor using an
elevator. Teams were given pictures of the elevator prior to
the challenge, but since the robots were allowed to ask a
human for assistance, none attempted to autonomously press
the buttons ([1], [2]). Miura et. al developed a framework
for interactive teaching of a robot, and used the scenario of
elevator operation to test their algorithms. After undergoing
a training phase where a human pointed out key information,
such as the location of the door and buttons in the elevator,



Fig. 2. Sample elevator panels. Notice (1) the wide variability in the button appearance: the shape, the material (metal vs.plastic), the presence or absence
of letters and numbers; (2) the imaging conditions in elevators: dim lights, specular reflections; (3) the non-standardized grid arrangement of the buttons;
(4) the variety of label types: different fonts, difficult-to-perceive numbers (in some cases rubbed off or damaged); (5) various naming conventions (L for
lobby versusG for the ground floor vs1). Our algorithm addresses each of these issues in building arobust automated system for elevator button detection
and manipulation.

their robot was able to successfully operate the elevator to
traverse a floor of the building [3].

Kang et al. looked at developing a navigation strategy for
a robot using a known elevator. They addressed navigation
and path planning and also proposed algorithms to recognize
the buttons, the direction the elevator is moving, and the
current floor for the elevators in a single building. However,
since their robot did not have arms, it had to wait for human
assistance to press buttons [4]. Recently, there has been
some interest in having robots autonomously operate known
elevators. In the 2008 TechX Challenge, teams competed
towards enabling a robot to autonomously navigate from
an outdoor environment to an indoor environment, including
operating an elevator to reach a specified floor. The teams
were provided with a digital image of the elevator before the
competition [5], and the robot was required to operate the
single known elevator.

Despite some of these promising results, the difficult
challenge of a robot completely autonomously operating
unknown elevators is still outstanding. A crucial, unsolved
subtask is the development of generalized vision-based al-
gorithms that help the robot localize the elevator buttons
and assign appropriate labels with high accuracy. Object
detection algorithms based solely on 2D data can suffer
from false detections when the objects and/or scenery vary
significantly from the data on which the algorithms were
trained.1

Using contextual cues has shown to improve object de-
tection in 2D images [7], [8], [9]. In the context of an
elevator panel, we recognize two main contextual cues: the
arrangement of the buttons in one or more grids, and the
arrangement of labels in order of floors.

1Recently researchers have shown that augmenting 2D images with 3D
sensing can provide significant performance boosts to objectdetection
algorithms [6]. However, most current 3D sensors do not have sufficient
resolution to detect the buttons at the range required. Thus, in the case
of an elevator panel, 3D data provides little information in identifying the
location of the buttons other than helping to remove detections that do not
lie in the plane of the wall.

Our goal is to enable a robot to completely autonomously
operate any elevator in any building, including those that the
robot has not seen before. In contrast to many of the recent
works on robotic elevator operation, we focus our efforts on
developing robust perception algorithms to detect, localize,
and label elevator buttons.

III. APPROACH

To successfully operate the elevator, the robot must lo-
calize the buttons, recognize the button labels, and control
the manipulator to press the button. Following the American
Disability Association (ADA) guidelines [10], we make the
following assumptions: elevator buttons must be no smaller
than 1.9 cm in diameter and button labels must lie to the
left of the corresponding button. The button detections must
have high precision since buttons may be (and often are) as
small as 1.9 cm.

Elevator panels vary widely in appearance and arrange-
ment of buttons. Further, lighting conditions vary greatly
among elevator cabs (see Figure 2). Even with a large dataset
for training, extracting enough image features which are
common across all button variations to be able to recognize
buttons in new images (unseen in the training phase) is
difficult. Further, correctly labeling the buttons relies on
both accurate localization of the label and good performance
of the optical character recognition (OCR) algorithm. A
straight-forward combination of these two steps is largely
inadequate. We develop a more complex model that uses
machine learning techniques to incorporate features such as
arrangement of the buttons in grid patterns and sequential
ordering of labels and demonstrate improvement in overall
performance.

First, we use the fact that most elevator buttons lie on a
grid to infer missed detections and remove false positives.As
shown in Figure 2, the grid stucture varies greatly between
panels and thus has to be learned from data for each elevator
individually. We apply the Expectation Maximization (EM)
algorithm described in detail in section III-B.



Second, we note that elevator buttons generally appear in
order of floors: floor 1 is followed by floor 2 and then by
floor 3. We can use this knowledge to automatically correct
mislabeled buttons: for example, if the optical character
recognition (OCR) algorithm labels consecutive buttons10,
11, 11, 13, we infer that the second11 should be changed
to a12. Hand-coding such rules is difficult: various possible
labels exist for the ground floor (L, G, 1), unexpected labels
often appear (R, S), and special cases such as the13th

floor being missing in some buildings have to be taken into
account. We automatically learn these rules from training
data using a Hidden Markov Model (HMM) as described in
section III-D and use it to produce more consistent labels.

Overall, our perception algorithm consists of four main
steps: (A) button detection using a standard sliding-window
object detector, (B) grid fit using the EM algorithm, (C) label
binarization and recognition using OCR techniques, and (D)
consistency enforcement using the HMM.

A. Button Detection

We use a 2D sliding window object detector to capture
common visual features among elevator buttons. This sliding
window object detector, derived from the patch-based classi-
fiers introduced by Torralba [11] and implemented by [12],
provides initial estimates for the locations of all the buttons
in an image.2

Knowledge of average elevator button size (based on
ADA guidelines) and the distance of the camera from the
panel (obtained from a laser scanner), allows us to compute
an upper and lower bound on the expected detection size
for each panel. A standard approach for post-processing
object detector results is to use a fixed confidence threshold
(throw out detections with confidence values less than a
fixed value) and then apply non-maximal suppression to
remove overlapping detections. However, in our scenario,
large variations in imaging conditions among elevators cause
the average confidence value for detections to be much lower
on some panels than others. Thus, using a fixed confidence
threshold results in very few detections on some of the
images in our test set (i.e., many false negatives). We instead
use a dynamic threshold, determined at run-time for each
individual panel, which normalizes the panels, followed by
clustering to produce more accurate estimates of button
positions (see Figure 3). More details on the button detection
post-processing are given in section IV-A.

B. Grid Fit

As shown in Figure 3(c), despite the dynamic thresholding
and clustering improvements, the button detection step still

2Briefly, the supervised training procedure produces a dictionary of
features consisting of localized templates from cropped training examples.
The relevance of each of these features in identifying whether a button is
present in an image patch is evaluated by computing the normalized cross
correlation of each template with the image patch. A binary classifier is
learned by using boosted decision trees to select the set of feature patches
which are most effective at recognizing a button in the training examples
(see [11] for more details). We then use this classifier withina sliding-
window detector framework to compute the probability of a button within
each rectangular subwindow of the elevator panel image.

(a) (b)

Fig. 3. (a) Output of the sliding window detector. (b) The useof dynamic
threshold to remove detections that are of relatively low confidence for each
individual panel, followed by clustering..

results in a number of both spurious detections and missed
detections. To help eliminate these false positives and recover
false negatives, as well as provide an ordering scheme for
enforcing label consisteny, we observe that elevator buttons
usually lie in one or more grids. This contextual cue is
incorporated into our model by fitting the candidates from
the sliding window detector to grids using Expectation
Maximization (EM) [13].

The EM implementation requires initial estimates for all
of the grid parameters. The initialization step clusters all
the sliding window detections and estimates a cell width
and height by examining clusters along similar horizontal
and vertical bands. It then iterates through each cluster and
attempts to recursively grow a grid from the current cluster
location. This results in a number of possible initial grid fits.
We assume that panels have at most five grids, and consider
five types of initializations (with one, two, three, four, and
five grids respectively), as shown in Figure 4. We compute
the log likelihood of all the initial grids (see Equation 3
below), and choose the ones with the maximum likelihood
for each of the five types of initialization to input into the
EM algorithm.3

We use an implementation of EM with a mixture of
Gaussians model to learn the best grid parameters. The
algorithm is presented in detail in Table I. Briefly, our
observations consist of the button detections from the sliding
window classifier{x(1), . . . x(m)}. Each button detectionx(i)

is associated with a hidden variablez(i) assigning it to one
of the grid cells. Specifically, if the number of rows and
columns in the grid arenr andnc respectively, then

z(i) ∈ {(1, 1), (1, 2), . . . , (nr, nc),outlier} (1)

We want to model the data by specifying a joint distribution

p(x(i), z(i)) = p(x(i)|z(i)) × p(z(i)) (2)

Table I definesp(x(i)|z(i)) formally, but the intuition is
as follows: If z(i) corresponds to one of the grid cells
then p(x(i)|z(i)) follows a normal distribution around the
center of the grid cellz(i). Otherwise,z(i) = outlier and

3Since fitting the data to more grids will always produce an increase in the
total likelihood, we compare the five grid layouts using a way that penalizes
for the increase in the number of model parameters. Specifically, we use
the Bayesian Information Criterion (BIC) to choose the best fit: BIC =
−2 ln(L)+k ln(n) whereL is the value for the likelihood function,n is the
number of button detections, andk is the total number of grid parameters.



Fig. 4. Best viewed in color.Five initializations of grid fit for a single elevator panel,with one, two and three, four, and five grids respectively. These
serve as input to the EM algorithm. The colored clusters represent the estimated button centers based on the button detections that fall within each cell.

p(x(i)|z(i)) follows a uniform distribution over all positions
in the image. We assume a uniform prior forp(z(i)).

The grid parametersθ specify the position of the grid
and the width and height of the cells. We use maximum
likelihood estimation to find the best set of parameters for
each grid using the log likelihood function:

ℓ(θ) =

M∑

i=1

log p(x(i); θ) =

M∑

i=1

∑

z(i)

log p(x(i), z(i); θ) (3)

Since the number of grid rows and columns cannot be
updated by maximizing a differentiable function, we learn
these additional parameters by adding a row and/or column
to the grid and comparing the likelihood values.

Finally, note that the algorithm in Table I learns the grid
parameters such that the grid cell centers correspond to
button detections centers. However, since we are interested in
cropping out the button and the corresponding label, which
is always located to the left of the button by the ADA
guidelines, we shift the learned grid to the left such that
the button detection cluster occupies the right half of the
grid cell instead of its center, with the assumption that the
label must then occupy the left half.

The overall algorithm thus allows us to learn a grid pattern
with up to five grids with the appropriate number of rows
and columns to correctly match each individual panel.

C. Optical Character Recognition

The first two steps of the pipeline, button detection and
grid fit, produce estimates of the location of buttons and la-
bels. Given these estimates, our next goal is to appropriately
classify each button, e.g.2nd floor, ground floor,
alarm, and so on. Consider the distribution of labels in
Figure 6. Even though it is easy for a human to correctly
identify most, if not all, of the labels, it becomes surprisingly
difficult for a robot to do so autonomously using standard
OCR algorithms.

For this part of the pipeline we use the open-source
LeNet-5 convolutional neural network of Lecun et al. ([14]).
However, this network was initially designed for and trained
on handwritten digits, which were written in black ink
on white background. Since this is quite dissimilar to our
scenario, as evidenced by Figure 6, we had to (1) binarize

(a) (b)

Fig. 5. EM grid fit step. (a) Button detection clusters. (b) Learned grid
location using EM. Note the missing buttons in the grid2 and 5 which
are recovered but also note the false positive introduced inthe bottom right
corner of the grid.

Fig. 6. Elevator button labels from our training and test images. Designing
a character recognition system for these labels is a challenging task which
we address in section III-C.

our data, i.e., process the images of elevator labels to obtain
black images against white background to aid the OCR, and
(2) retrain the neural network using sample binarized elevator
labels instead of handwritten digits.

1) Image binarization:We want to extract from the label
a binarized image of the segment, which corresponds to the
alphanumeric character assigned to the button, to input into
the OCR algorithm. A binarization of a given segment is
an image where the pixel value is 1 if it belongs to the
segment and 0 otherwise. Various binarization techniques
have been proposed in the literature ([15], [16], [17]), many
specifically tailored for OCR ([18], [19]). However, in our



TABLE I

THE EM ALGORITHM FOR FITTING A GRID TO A SET OF ELEVATOR

BUTTON DETECTIONS

Parameters: θ = {ox, oy , ∆x, ∆y} where
ox = x-coordinate of grid
oy = y-coordinate of grid

(center of top-left cell)
∆x = width of grid cell
∆y = height of grid cell

Given: (1) button detections {x(1), . . . x(m)} where
x(i) ∈ R4 specifies the center, width
and height of the detection

(2) nr, nc number of rows, columns in grid

Hidden: assignments {z(1), . . . z(m)} of each detection
to one of the grid cells

z(i) ∈ {1, 2, . . . ncnr, outlier}

.....................................................................

Repeat until convergence {
For each grid cell j:

let µj be the coordinates of its center
based on the grid parameters θ

E-step:
For each detection i:

Qi(z
(i)) = p(z(i)|x(i); θ)

∝
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nrnc

if z(i) ∈ {1, 2, . . . nrnc}

ǫ
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if z(i) = outlier
M-step:

θ := argmax

„

Pm
i=1

P

z(i) Qi(z
(i)) × log

p(x(i),z(i);θ)

Qi(z
(i))

«

}

case we are considering a task where only 1-2 characters
appear per image which means that no algorithms can be
applied to learn the font of the text or the geometric position
of the characters relative to each other.

From Figure 6 it becomes clear that simple thresholding
algorithms will not work for binarizing these labels. Further,
edge detection and similar techniques do not yield adequate
results in practice, since reliably post-processing theiroutput
to obtain coherent components corresponding to individual
characters is extremely challenging.

Instead, we use an unsupervised superpixel segmentation
algorithm due to Felzenszwalb et al. [20] with four different
parameter settings (c = 50, 100, 200, 500) to obtain four
different segmentations of the image. We then inputall of
the segments obtained from each of the four segmentations
into the OCR algorithm. The segmentation parameters were
determined from the training set, and in Figure 7 we illustrate
our approach and show the benefit of using the output from
all four segmentations, instead of just choosing a single
segmentation parameter.

After some basic post-processing to get rid of segments
that are too large, too small, or circular (usually correspond-
ing to button boundaries), we turn each segment into a binary

image of the same size as the detection window.
2) Training the neural network:We trained our network

to recognize the common labels found on elevator panels (1,
2, 3, 4, 5, 6, 7, 8, 9, G, B, L, open, close, alarm).4

The training data is comprised of binary images of segments
taken from the training set. Because some labels such as
9s, 8s, and7s did not appear enough in the training set,
synthesized segments were generated by performing minor
transformations on the available segments, such as eroding
and dilating random parts of each segment. The network
was also trained to recognize segments that were not a label
(NAL), since many of the segments from the binarization will
not correspond to actual alphanumeric labels.

For each segment classified, the network outputs a con-
fidence value associated with the label. Because multiple
proposed binarized images are created for each input button,
OCR produces multiple character predictions per button. We
then filter the output by throwing away segments that have
low confidence values or that get classified asNAL, and use
the relative locations of the remaining segments to decide on
the most likely label. For example, if we detect multiple 1s
and 2s in the image we want to use their relative locations
and confidence values to distinguish between labels of1, 2,
11, 12, 21 or 22.

D. Consistency Enforcement

From the OCR algorithm, we have a series of imperfect
observations for the button label states. For example, it’s
not uncommon to see15, 16, 11, 18 for four consecutive
floor buttons. A person who needs to get to the17th floor
immediately predicts that the corresponding button would be
between16 and18 even if the label is missing entirely. We
incorporated this insight into our algorithm using a Hidden
Markov Model (HMM) [13].

From the button detection, grid fit and OCR steps, for each
panel we obtain one or more disjoint grids corresponding to
proposed button positions, and a label for each cell within
these grids. We run an HMM to probabilistically enforce
consistency between the observed labels.

The states in our HMM correspond to floors. The grid
fit step attempts to fit rectangular grids around the buttons,
but the buttons are not usually arranged in fully populated
rectangular arrays (for example, there is often one or more
cells in the upper right or bottom right of the grid that do not
contain actual buttons). Thus we need to explicitly introduce
an extrablank state that signifies the absence of a button
in a grid cell, instead of forcing each grid cell to necessarily
be assigned to a floor.

The observations in our HMM are the character strings re-
turned by OCR. Theemission probability distributiondefines
the probability that a labelc is emitted from states, or, in
other words, the probability that, given an image of a button
that leads to floors (e.g. floor 15), OCR returns the labelc

4In our training set, we do not include0 (since it is too easily mistaken
with the circular outline around many of the labels), thestop label (since
it is often associated with a knob or keyhole and not a button), or phone
label (since it does not appear often and is much like a1 in appearance).



Fig. 7. Binarization step (best viewed in color). The first image is the original label. The other four non-binary images represent the output of the
segmentation algorithm with four different parameter settings, with different colors corresponding to different segments. Each of these four segmentations
is followed by binary images extracted from it using simple post-processing (discarding of segments that are deemed too large, too small, or circular). In
this case only the second parameter setting produced a near-perfect segmentation of the character5; however, all settings are needed for robust performance
on varied elevator panels. Each of the obtained binarized images is then passed through OCR to extract a label.

Fig. 8. An example of the grid fit and the HMM model (best viewed in
color). Note that the observation from the OCR for the2 will be NAL since
the label, to the left of the button, is missing. The HMM will choose the
most likely sequence to be one in which theNAL is changed to a2.

(e.g.”13”). The transition probability distributiondefines the
probability that a button for floorsi is followed in the grid
by a button for floorsi+1 (e.g. given a button for floor 15,
the probability that the next button we encounter in the grid
is for floor 21). These emission and transition conditional
probability distributions are empirically estimated fromthe
training data with Laplace smoothing. Figure 8 shows an
graphical example of the HMM given the output from the
grid fit and OCR for a given panel.

This learning procedure automatically captures interesting
interdependencies between buttons such as a missing 13th

floor, since the training data has many instances where the
button for floor 14 often follows one for floor 12. It also
learns that labelsG, L or 1 all likely correspond to the same
floor since they are often observed on the first floor button.

Further, during training this model observes the common
errors made by other stages of the pipeline (e.g. that OCR
tends to sometimes mistake8s for 9s or that spurious labels
of 1s are common due to the typical shape of segments from
the binarization step) and learns to implicitly compensatefor
these mistakes. For instance, the model learns that1s are
often observed incorrectly and thus do not provide strong evi-
dence for any particular floor; however, observing something
more reliable, such as a two-digit number, is significantly
more informative. Thus the HMM model provides additional
robustness to the overall system.

Finally, given a test panel containing a grid of buttons,
along with the output of OCR for each button, we use the
Viterbi algorithm to find the most likely sequence of un-
derlying states (floors) corresponding to those observations.
We refer the reader to [13] for a detailed explanation of this
standard algorithm.

IV. PERCEPTION RESULTS

To train and test our algorithm, we use a diverse set
of 150 images of 61 distinct elevator panels taken with a
high resolution (7 Megapixel) digital camera. To evaluate
the performance of our approach, we randomly split the data
into 100 images for training and 50 for testing, making sure
that pictures from the same elevator do not appear in both
the training and the test set. We hand label all the buttons
with their location in the image, their character label, and
their grid assignment. We then separately evaluate each step
in our pipeline.

A. Sliding window button detection and clustering

To train the button detector, we use 998 positive examples
(cropped buttons) and 20,000 negative examples cropped
from the training set images. Since the button model often
identifies keyholes and labels as buttons, we include images
of keyholes and labels in the negative training set. We train
an initial classifier, augment the set of negative examples
with false positive detections obtained by running the sliding
window detector on the training elevator panels, and retrain
the button classifier.

The positive examples consist of three main types of
buttons: circular plastic buttons, square plastic buttons, and
circular metalic buttons. These types are visually very dis-
tinct from each other, and this variety allows the trained
classifier to detect buttons on a variety of elevator panels.
Figure 10(a) shows the PR curve for this model on the test
panels. As is standard in computer vision [21], a detection
is considered correct if its intersection with a groundtruth
button divided by the union of their areas is greater than
50%, and at most a single detection per groundtruth button
is considered correct.

Given the raw detections we first use adaptive thresh-
olding to remove all low-probability detections. Intuitively,
if a panel classification results in a large number of very
high-probability detections we want to keep only the most
confident of those; however, if a panel is such that the buttons
are very difficult to detect, we want to make sure we do
not discard all the detections, as we would with a fixed
global probability thresholding method. Thus we determine
the threshold by considering, for each panel, all detections
of probability of at least0.25, computing their standard
deviation of the detection probability, and removing all
detections with probability less than3.0 standard deviations
below the maximum probability.

For the clustering step, we use a confidence pixel map
of the image created by summing the probabilities of all



detections that lie over a pixel. We then compute the standard
deviations of all values within this map and remove detec-
tions centered on pixels that have a probability less than
one standard deviation from 0. As shown in Figure 10(a),
the dynamic thresholding and clustering greatly improves
the performance of the detector when compared to standard
non-maximal suppresion followed by a fixed thresholding
approach.

B. Grid fit

Next, we want to take advantage of the fact that buttons are
typically arranged in a grid-like fashion to help recover any
missed detections. As described in section III-B, we initialize
grids based on the button detection clusters and then run the
EM algorithm to more accurately fit these grids to our button
detection data. We extract the proposed button locations from
grids by choosing, for each cell, either the average center of
all button detections present within it or simply the right half
of the cell if no detections are present.5

The performance of each of these steps is reported in
Table 10. Observe the drop in precision and increase in recall
with the grid initialization and the EM steps. A drop in pre-
cision is expected because the EM grid fit algorithm assumes
that buttons are arranged in fully populated rectangular grids,
but often a row or column on the panel is not completely
filled. Thus the overall number of proposed buttons increases.
Despite introducing some false positives, the grid fit also
recovers missed buttons in the grid (or false negatives)
which were not found by the object detector, leading to an
increased number of true positives and thus higher recall. It
is more important to recover false negatives in the grid fit
step, because false positives which are introduced will be
eliminated if the OCR step does not classify the label as a
valid alphanumeric character (Figure 5).

C. OCR and HMM

For each button we run the all the binarized segments from
the label image through OCR and then automatically choose
which character(s) to output for the button based on the
returned OCR confidence values. Our dictionary includes1-
9, G, L, B, open, close, andalarm. Our OCR dictionary
includes only the alphabetic charactersG, L, andB because
there are not enough instances of other characters to build
them into the model. Thus our algorithm will assign aNAL
to the occasional instances ofP, DH, etc.

To evaluate the performance of the image binarization and
OCR, we use the ground truth labels for each panel. We use
the resulting OCR classifications and the ground truth grid
assignments to extract sequences of labels, to input into the
HMM. Table 10(b) gives the recall for the OCR only and the
OCR followed by HMM. It is clear that the HMM is able to
correct some of the mislabeled buttons from the OCR step,
resulting in improved performance.

5Recall that by construction each cell corresponds to a button and an
adjacent label, and labels are assumed to be to the left of the buttons
following ADA guidelines.

(a) (b)

Fig. 9. (a) Learned grid location using EM. (a) OCR label. (c)HMM label
correction. Note that OCR misclassifies over 20/35 of the floorbuttons and
HMM is able to correct for all but one.

Although the grid fit step introduces false positives due
to elevator buttons not lying in fully populated grids, the
adverse effect of these false positives is reduced by not
including cells in the HMM input for which (1) OCR
classified asNAL and (2) the button detector did not find
a detection. Figure 9 shows an example of the OCR and
HMM output for a given EM grid fit.

Figure 10(c) shows the results for all the steps along the
pipeline. To evaluate the button detection and EM steps,
we consider a classification as correct based on the button
ground truth for the given panel. For the OCR and HMM
steps, both the button and label classification must match
that in the ground truth. The OCR performance is obviously
lower than that shown in Figure 10(b), since the grid fit
step does not produce perfectly cropped out labels like the
ground truth, but HMM corrects some of mislabeled buttons.
Overall, the entire pipeline, from the sliding window detector
to the HMM, was able to perfectly detect, localize,and label
86.2% of the buttons in the images.6

V. EXPERIMENTAL RESULTS

We demonstrate our perception algorithms on the STAIR
(STanford AI Robot) mobile robot platform in a number of
experiments where the robot was commanded to go to a
given floor. The robot was required to autonomously locate
the appropriate button and successfully press it in order for
the trial to be considered a success.

A. Hardware

Our robotic platform consists of a Neuronics Katana450 5-
DOF robotic arm, with angle gripper, mounted on a Segway
base. The vision system consists of a Canon SX100-IS digital
camera and a high resolution 3D sensor consisting of a
Point Grey Research Flea2 camera and a rotating laser line
scanner (for a detailed description of this sensor, see [6]).
The depth data was used to provide only the 3D location
of a button for manipulation but not recognition. The Canon
camera was used to provide higher resolution images for the
optical character recognition. The 3D sensor (Flea2 camera
+ laser) was calibrated with the Canon camera using a

6In computing the statistics listed for OCR and HMM, we consider
buttons which are part of our OCR dictionary, as well as10, 20, etc (even
though we our dictionary does not include0). We do not include labels for
buttons which were labeled asNAL in the ground truth.



Method Accuracy
OCR only 0.836

OCR + HMM 0.884

Method Recall Precision F-score
Post-processed detections0.955 0.932 0.944

EM 0.963 0.841 0.898
OCR 0.742 0.709 0.725
HMM 0.862 0.881 0.871

(a) (b) (c)

Fig. 10. Results on the offline dataset of 50 test images. (a) The blue curve is the precision-recall curve for button detections from the sliding windows
algorithm after running non-maximal suppression, which is standard in the literature. The performance using our adaptivethresholding method with
clustering is 0.955 recall and 0.932 precision, and is shownin red. (b) Results of the OCR and HMM algorithm on labeling the ground truth detections
(686 labels total). (c) Results for each step along the pipeline, starting with unlabeled images of elevator panels.

standard camera calibration procedure which estimates the
transformation between the two sensors given a number of
correspondences between scene and image points [22]. The
vision-manipulator system was calibrated using a procedure
describe in [23], resulting in an average error of 0.7 mm.

B. Perception

We tested our algorithms on the robotic platform in 14
trial runs in 3 elevators in 2 buildings which the robot had
not seen before. The robot was placed in front of the panel
at a distance within which the manipulator could reach the
panel, and was commanded to press a randomly chosen floor
button.

The path planning for the manipulator was simplified by
assuming that the space between the robot and the wall was
free of obstacles. Thus simple inverse kinematics could be
used to convert the desired 3D positions for the end-effector
to joint angle configurations. In computing the desired loca-
tion for the end-effector, we applied the constraint that the
end-effector should move in a linear fashion when pressing
the button to ensure that the elevator is successfully activated.

C. Results

The perception algorithm correctly identified the location
of the appropriate button in all 14 trials, and the robot
succeeded in pressing the button in all but one of the trials.
Seehttp://www.stanford.edu/∼ellenrk7/Elevatorsfor a video
showing clips from these experiments.

VI. CONCLUSION

In this paper, we considered the challenge of enabling
a mobile robot to autonomously operate unkown elevators.
We focus on perception, which is the key component in
tackling this problem: detecting, localizing, and correctly
labeling the buttons on an interior button panel of previously
unseen elevators. We validate our algorithm both on a large
dataset of diverse elevator panel images as well as on a
robot platform that was able to correctly analyze a previously
unseen elevator panel in all of our trial runs, and correctly
manipulate the desired button in all but one run.
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