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Abstract

We consider the task of 3-d depth estimation
from a single still image. We take a supervised
learning approach to this problem, in which we
begin by collecting a training set of monocu-
lar images (of unstructured indoor and outdoor
environments which include forests, sidewalks,
trees, buildings, etc.) and their corresponding
ground-truth depthmaps. Then, we apply su-
pervised learning to predict the value of the
depthmap as a function of the image. Depth
estimation is a challenging problem, since lo-
cal features alone are insu�cient to estimate
depth at a point, and one needs to consider the
global context of the image. Our model uses a
hierarchical, multiscale Markov Random Field
(MRF) that incorporates multiscale local- and
global-image features, and models the depths
and the relation between depths at di�erent
points in the image. We show that, even on un-
structured scenes, our algorithm is frequently
able to recover fairly accurate depthmaps. We
further propose a model that incorporates both
monocular cues and stereo (triangulation) cues,
to obtain signi�cantly more accurate depth es-
timates than is possible using either monocular
or stereo cues alone.

1 Introduction

Recovering 3-d depth from images is a basic problem
in computer vision, and has important applications in
robotics, scene understanding and 3-d reconstruction.
Most work on visual 3-d reconstruction has focused on
binocular vision (stereopsis)[1] and on other algorithms
that require multiple images, such as structure from mo-
tion [2] and depth from defocus[3]. These algorithms
consider only the geometric (triangulation) di�erences.
Beyond stereo/triangulation cues, there are also numer-
ousmonocular cues|such as texture variations and gra-
dients, defocus, color/haze, etc.|that contain useful
and important depth information. Even though humans
perceive depth by seamlessly combining many of these

Figure 1: (a) A single still image, and (b) the correspond-
ing (ground-truth) depthmap. Colors in the depthmap
indicate estimated distances from the camera.

stereo and monocular cues, most work on depth estima-
tion has focused on stereovision.

Depth estimation from a single still image is a di�cult
task, since depth typically remains ambiguous given only
local image features. Thus, our algorithms must take
into account the global structure of the image, as well as
use prior knowledge about the scene. We also view depth
estimation as a small but crucial step towards the larger
goal of image understanding, in that it will help in tasks
such as understanding the spatial layout of a scene, �nd-
ing walkable areas in a scene, detecting objects, etc. In
this paper, we apply supervised learning to the problem
of estimating depthmaps (Fig. 1b) from a single still im-
age (Fig. 1a) of a variety of unstructured environments,
both indoor and outdoor, containing forests, sidewalks,
buildings, people, bushes, etc.

Our approach is based on modeling depths and rela-
tionships between depths at multiple spatial scales using
a hierarchical, multiscale Markov Random Field (MRF).
Taking a supervised learning approach to the problem of
depth estimation, we used a 3-d scanner to collect train-
ing data, which comprised a large set of images and their
corresponding ground-truth depthmaps. (This data has
been made publically available on the internet.) Using
this training set, we model the conditional distribution of



the depths given the monocular image features. Though
learning in our MRF model is approximate, MAP infer-
ence is tractable via linear programming.

We further consider how monocular cues from a single
image can be incorporated into a stereo system. We be-
lieve that monocular cues and (purely geometric) stereo
cues give largely orthogonal, and therefore complemen-
tary, types of information about depth. We show that
combining both monocular and stereo cues gives better
depth estimates than is obtained with either alone.

We also apply these ideas to autonomous obstacle
avoidance. Using a simpli�ed version of our algorithm,
we drive a small remote-controlled car at high speeds
through various unstructured outdoor environments con-
taining both man-made and natural obstacles.

This paper is organized as follows. Section 2 gives an
overview of various methods used for 3-d depth recon-
struction. Section 3 describes some of the visual cues
used by humans for depth perception, and Section 4
describes the image features used to capture monocu-
lar cues. We describe our probabilistic model in Sec-
tion 5. In Section 6.1, we describe our setup for collect-
ing aligned image and laser data. The results of depth
prediction on single images are presented in Section 6.2.
Section 6.2 also describes the use of a simpli�ed version
of our algorithm in driving a small remote-controlled car
autonomously. We describe how we incorporate monoc-
ular and stereo cues into our model in Section 7. Finally,
we conclude in Section 8.

2 Related Work
Although our work mainly focuses on depth estimation
from a single still image, there are many other 3-d re-
construction techniques, such as: explicit measurements
with laser or radar sensors[4], using two (or more than
two) images [1], and using video sequences[5]. Among
the vision-based approaches, most work has focused on
stereovision (see[1] for a review), and on other algo-
rithms that require multiple images, such as optical

ow [6], structure from motion [2] and depth from defo-
cus [3]. Frueh and Zakhor [7] constructed 3d city mod-
els by merging ground-based and airborne views. A
large class of algorithms reconstruct the 3-d shape of
known objects, such as human bodies, from images and
laser data [8; 9]. Structured lighting [10] o�ers another
method for depth reconstruction

There are some algorithms that can perform depth re-
construction from single images in very speci�c settings.
Nagai et al. [11] performed surface reconstruction from
single images for known, �xed, objects such as hands
and faces. Methods such as shape from shading[12;
13] and shape from texture[14; 15; 16] generally assume
uniform color and/or texture, 1 and hence would perform
very poorly on the complex, unconstrained, highly tex-
tured images that we consider. Hertzmann et al.[17]

1Also, most of these algorithms assume Lambertian sur-
faces, which means the appearance of the surface does not
change with viewpoint.

reconstructed high quality 3-d models from several im-
ages, but they required that the images also contain
\assistant" objects of known shapes next to the target
object. Torresani et al. [18] worked on reconstructing
non-rigid surface shapes from video sequences. Torralba
and Oliva [19] studied the Fourier spectrum of the im-
ages to compute the mean depth of a scene. Michels,
Saxena & Ng [20] used supervised learning to estimate
1-d distances to obstacles, for the application of au-
tonomously driving a small car. Delage, Lee and Ng[21;
22] generated 3-d models of indoor environments con-
taining only walls and 
oor, from single monocular im-
ages. Single view metrology[23] assumes that vanishing
lines and points are known in a scene, and calculates
angles between parallel lines to infer 3-d structure from
Manhattan images.

We presented a method for learning depths from a sin-
gle image in [24] and extended our method to improve
stereo vision using monocular cues in[25]. In work that
is contemporary to ours, Hoiem, Efros and Herbert[26;
27] built a simple \pop-up" type 3-d model from an im-
age by classifying the image into ground, vertical and
sky. Their method, which assumes a simple \ground-
vertical" structure of the world, fails on many envi-
ronments that do not satisfy this assumption and also
does not give accurate metric depthmaps. Building on
these concepts of single image 3-d reconstruction, Hoiem,
Efros and Hebert [28] and Sudderth et al. [29] integrated
learning-based object recognition with 3-d scene repre-
sentations. Saxena et al.[30] extended these ideas to
create 3-d models that are both visually pleasing as well
as quantitatively accurate.

Our approach draws on a large number of ideas
from computer vision such as feature computation and
multiscale representation of images. A variety of im-
age features and representations have been used by
other authors, such as Gabor �lters [31], wavelets [32],
SIFT features [33], etc. Many of these image features
are used for purposes such as recognizing objects[34;
35], faces [36], facial expressions[37], grasps [38]; im-
age segmentation[39], computing the visual gist of a
scene[40] and computing sparse representations of nat-
ural images [41]. Stereo and monocular image features
have been used together for object recognition and image
segmentation [42].

Our approach is based on learning a Markov Random
Field (MRF) model. MRFs are a workhorse of machine
learning, and have been successfully applied to numer-
ous problems in which local features were insu�cient
and more contextual information had to be used. Ex-
amples include image denoising[43], stereo vision and
image segmentation[1], text segmentation [44], object
classi�cation [34], and image labeling[45]. For the ap-
plication of identifying man-made structures in natural
images, Kumar and Hebert used a discriminative ran-
dom �elds algorithm [46]. Since MRF learning is in-
tractable in general, most of these models are trained
using pseudo-likelihood; sometimes the models' parame-
ters are also hand-tuned.



3 Visual Cues for Depth Perception
Humans use numerous visual cues to perceive depth.
Such cues are typically grouped into four distinct cat-
egories: monocular, stereo, motion parallax, and fo-
cus cues[47; 48]. Humans combine these cues to un-
derstand the 3-d structure of the world [49; 50; 51;
47]. Below, we describe these cues in more detail. Our
probabilistic model will attempt to capture a number of
monocular cues (Section 5), as well as stereo triangula-
tion cues (Section 7).

3.1 Monocular Cues
Humans use monocular cues such as texture variations,
texture gradients, interposition, occlusion, known object
sizes, light and shading, haze, defocus, etc.[52] For ex-
ample, many objects' texture will look di�erent at di�er-
ent distances from the viewer. Texture gradients, which
capture the distribution of the direction of edges, also
help to indicate depth [16]. For example, a tiled 
oor
with parallel lines will appear to have tilted lines in an
image. The distant patches will have larger variations
in the line orientations, and nearby patches with almost
parallel lines will have smaller variations in line orienta-
tions. Similarly, a grass �eld when viewed at di�erent
distances will have di�erent texture gradient distribu-
tions. Haze is another depth cue, and is caused by at-
mospheric light scattering [53].

Many monocular cues are \contextual information,"
in the sense that they are global properties of an image
and cannot be inferred from small image patches. For
example, occlusion cannot be determined if we look at
just a small portion of an occluded object. Although
local information such as the texture and color of a patch
can give some information about its depth, this is usually
insu�cient to accurately determine its absolute depth.
For another example, if we take a patch of a clear blue
sky, it is di�cult to tell if this patch is in�nitely far away
(sky), or if it is part of a blue object. Due to ambiguities
like these, one needs to look at theoverall organization
of the image to determine depths.

3.2 Stereo Cues
Each eye receives a slightly di�erent view of the world
and stereo vision combines the two views to perceive 3-d
depth [54]. An object is projected onto di�erent loca-
tions on the two retinae (cameras in the case of a stereo
system), depending on the distance of the object. The
retinal (stereo) disparity varies with object distance, and
is inversely proportional to the distance of the object.
Disparity is typically not an e�ective cue for estimationg
small depth variations of objects that are far away.

3.3 Motion Parallax and Focus Cues
As an observer moves, closer objects appear to move
more than further objects. By observing this phe-
nomenon, called motion parallax, one can estimate the
relative distances in a scene[55]. Humans have the abil-
ity to change the focal lengths of the eye lenses by con-
trolling the curvature of lens, thus helping them to focus

Figure 2: The convolutional �lters used for texture ener-
gies and gradients. The �rst nine are 3x3 Laws' masks.
The last six are the oriented edge detectors spaced at
300 intervals. The nine Laws' masks are used to perform
local averaging, edge detection and spot detection.

on objects at di�erent distances. The focus, or accomo-
dation, cue refers to the ability to estimate the distance
of an object from known eye lens con�guration and the
sharpness of the image of the object[56].

4 Feature Vector
In our approach, we divide the image into small rectan-
gular patches, and estimate a single depth value for each
patch. We use two types of features: absolute depth
features|used to estimate the absolute depth at a par-
ticular patch|and relative features, which we use to es-
timate relative depths (magnitude of the di�erence in
depth between two patches). These features try to cap-
ture two processes in the human visual system: local fea-
ture processing (absolute features), such as that the sky
is far away; and continuity features (relative features),
a process by which humans understand whether two ad-
jacent patches are physically connected in 3-d and thus
have similar depths.2

We chose features that capture three types of local
cues: texture variations, texture gradients, and color.
Texture information is mostly contained within the im-
age intensity channel[54],3 so we apply Laws' masks[57;
20] to this channel to compute the texture energy
(Fig. 2). Haze is re
ected in the low frequency infor-
mation in the color channels, and we capture this by
applying a local averaging �lter (the �rst Laws' mask)
to the color channels. Lastly, to compute an estimate of
texture gradient that is robust to noise, we convolve the
intensity channel with six oriented edge �lters (shown in
Fig. 2).

One can envision including more features to capture
other cues. For example, to model atmospheric e�ects
such as fog and haze, features computed from the physics
of light scattering [53] could also be included. Sim-
ilarly, one can also include features based on surface-
shading [13].

4.1 Features for absolute depth
We �rst compute summary statistics of a patch i in the
image I (x; y) as follows. We use the output of each
of the 17 (9 Laws' masks, 2 color channels and 6 tex-
ture gradients) �lters Fn , n = 1 ; :::; 17 as: E i (n) =P

(x;y )2 patch( i ) jI � Fn jk , where k 2 f 1; 2g give the sum

2 If two neighboring patches of an image display similar
features, humans would often perceive them to be parts of
the same object, and therefore to have similar depth values.

3We represent each image in YCbCr color space, where Y
is the intensity channel, and Cb and Cr are the color channels.



Figure 3: The absolute depth feature vector for a patch, which includes features from its immediate neighbors and
its more distant neighbors (at larger scales). The relative depth features for each patch use histograms of the �lter
outputs.

absolute energy and sum squared energy respectively.4

This gives us an initial feature vector of dimension 34.
To estimate the absolute depth at a patch, local im-

age features centered on the patch are insu�cient, and
one has to use more global properties of the image. We
attempt to capture this information by using image fea-
tures extracted at multiple spatial scales (image resolu-
tions).5 (See Fig. 3.) Objects at di�erent depths exhibit
very di�erent behaviors at di�erent resolutions, and us-
ing multiscale features allows us to capture these vari-
ations [58]. For example, blue sky may appear similar
at di�erent scales, but textured grass would not. In ad-
dition to capturing more global information, computing
features at multiple spatial scales also helps to account
for di�erent relative sizes of objects. A closer object ap-
pears larger in the image, and hence will be captured
in the larger scale features. The same object when far
away will be small and hence be captured in the small
scale features. Features capturing the scale at which an
object appears may therefore give strong indicators of
depth.

To capture additional global features (e.g. occlusion
relationships), the features used to predict the depth of a
particular patch are computed from that patch as well as
the four neighboring patches. This is repeated at each of
the three scales, so that the feature vector at a patch in-
cludes features of its immediate neighbors, its neighbors
at a larger spatial scale (thus capturing image features

4Our experiments using k 2 f 1; 2; 4g did not improve per-
formance noticeably.

5The patches at each spatial scale are arranged in a grid
of equally sized non-overlapping regions that cover the entire
image. We use 3 scales in our experiments.

that are slightly further away in the image plane), and
again its neighbors at an even larger spatial scale; this
is illustrated in Fig. 3. Lastly, many structures (such as
trees and buildings) found in outdoor scenes show verti-
cal structure, in the sense that they are vertically con-
nected to themselves (things cannot hang in empty air).
Thus, we also add to the features of a patch additional
summary features of the column it lies in.

For each patch, after including features from itself and
its 4 neighbors at 3 scales, and summary features for its
4 column patches, our absolute depth feature vectorx is
19� 34 = 646 dimensional.

4.2 Features for relative depth
We use a di�erent feature vector to learn the dependen-
cies between two neighboring patches. Speci�cally, we
compute a 10-bin histogram of each of the 17 �lter out-
puts jI � Fn j, giving us a total of 170 featuresyis for each
patch i at scale s. These features are used to estimate
how the depths at two di�erent locations are related. We
believe that learning these estimates requires less global
information than predicting absolute depth, but more
detail from the individual patches. For example, given
two adjacent patches of a distinctive, unique, color and
texture, we may be able to safely conclude that they
are part of the same object, and thus that their depths
are close, even without more global features. Hence, our
relative depth features yijs for two neighboring patches
i and j at scale s will be the di�erences between their
histograms, i.e., yijs = yis � yjs .

5 Probabilistic Model
Since local images features are by themselves usually in-
su�cient for estimating depth, the model needs to reason
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Figure 4: The multiscale MRF model for modeling re-
lation between features and depths, relation between
depths at same scale, and relation between depths at
di�erent scales. (Only 2 out of 3 scales, and a subset of
the edges, are shown.)

more globally about the spatial structure of the scene.
We capture the spatial structure of the image by mod-
eling the relationships between depths in di�erent parts
of the image. Although the depth of a particular patch
depends on the features of the patch, it is also related to
the depths of other parts of the image. For example, the
depths of two adjacent patches lying in the same build-
ing will be highly correlated. We will use a hierarchical
multiscale Markov Random Field (MRF) to model the
relationship between the depth of a patch and the depths
of its neighboring patches (Fig. 4). In addition to the
interactions with the immediately neighboring patches,
there are sometimes also strong interactions between the
depths of patches which are not immediate neighbors.
For example, consider the depths of patches that lie on
a large building. All of these patches will be at simi-
lar depths, even if there are small discontinuities (such
as a window on the wall of a building). However, when
viewed at the smallest scale, some adjacent patches are
di�cult to recognize as parts of the same object. Thus,
we will also model interactions between depths at mul-
tiple spatial scales.

5.1 Gaussian Model

Our �rst model will be a jointly Gaussian Markov Ran-
dom Field (MRF) as shown in Eq. 1. To capture the mul-
tiscale depth relations, we will model the depthsdi (s)

for multiple scales s = 1 ; 2; 3. In our experiments, we
enforce a hard constraint that depths at a higher scale
are the average of the depths at the lower scale.6 More
formally, we de�ne di (s + 1) = (1 =5)

P
j 2 N s ( i ) [f i g dj (s).

Here, Ns(i ) are the 4 neighbors of patchi at scales.7

In Eq. 1, M is the total number of patches in the im-
age (at the lowest scale);Z is the normalization constant
for the model; x i is the absolute depth feature vector for
patch i ; and � and � are parameters of the model. In
detail, we use di�erent parameters (� r , � 1r , � 2r ) for each
row r in the image, because the images we consider are
taken from a horizontally mounted camera, and thus dif-
ferent rows of the image have di�erent statistical prop-
erties. For example, a blue patch might represent sky if
it is in upper part of image, and might be more likely to
be water if in the lower part of the image.

Our model is a conditionally trained MRF, in that its
model of the depthsd is always conditioned on the im-
age featuresX ; i.e., it models only P(djX ). We �rst
estimate the parameters� r in Eq. 1 by maximizing the
conditional log likelihood `(d) = log P(djX ; � r ) of the
training data. Since the model is a multivariate Gaus-
sian, the maximum likelihood estimate of parameters� r
is obtained by solving a linear least squares problem.

The �rst term in the exponent above models depth as
a function of multiscale features of a single patchi . The
second term in the exponent places a soft \constraint"
on the depths to be smooth. If the variance term� 2

2rs is
a �xed constant, the e�ect of this term is that it tends to
smooth depth estimates across nearby patches. However,
in practice the dependencies between patches are not the
same everywhere, and our expected value for (di � dj )2

may depend on the features of the local patches.
Therefore, to improve accuracy we extend the model

to capture the \variance" term � 2
2rs in the denominator

of the second term as a linear function of the patches
i and j 's relative depth features yijs (discussed in Sec-
tion 4.2). We model the variance as� 2

2rs = uT
rs jyijs j.

This helps determine which neighboring patches are
likely to have similar depths; for example, the \smooth-
ing" e�ect is much stronger if neighboring patches are

6One can instead have soft constraints relating the depths
at higher scale to depths at lower scale. One can also envision
putting more constraints in the MRF, such as that points
lying on a long straight edge in an image should lie on a
straight line in the 3-d model, etc.

7Our experiments using 8-connected neighbors instead of
4-connected neighbors yielded minor improvements in accu-
racy at the cost of a much longer inference time.



similar. This idea is applied at multiple scales, so that
we learn di�erent � 2

2rs for the di�erent scales s (and rows
r of the image). The parametersurs are learned to �t
� 2

2rs to the expected value of (di (s) � dj (s))2, with a
constraint that urs � 0 (to keep the estimated� 2

2rs non-
negative), using a quadratic program (QP).

Similar to our discussion on � 2
2rs , we also learn the

variance parameter� 2
1r = vT

r x i as a linear function of the
features. Since the absolute depth featuresx i are non-
negative, the estimated � 2

1r is also non-negative. The
parametersvr are chosen to �t � 2

1r to the expected value
of (di (r ) � � T

r x i )2, subject to vr � 0. This � 2
1r term

gives a measure of the uncertainty in the �rst term, and
depends on the features. This is motivated by the ob-
servation that in some cases, depth cannot be reliably
estimated from the local features. In this case, one has
to rely more on neighboring patches' depths, as modeled
by the second term in the exponent.

After learning the parameters, given a new test-set
image we can �nd the MAP estimate of the depths by
maximizing Eq. 1 in terms of d. Since Eq. 1 is Gaussian,
logP(djX ; �; � ) is quadratic in d, and thus its maximum
is easily found in closed form (taking at most 1-2 seconds
per image). More details are given in Appendix A.

5.2 Laplacian model
We now present a second model (Eq. 2) that uses Lapla-
cians instead of Gaussians to model the posterior dis-
tribution of the depths. Our motivation for doing so
is three-fold. First, a histogram of the relative depths
(di � dj ) is empirically closer to Laplacian than Gaus-
sian (Fig. 5, see[59] for more details on depth statistics),
which strongly suggests that it is better modeled as one.8

Second, the Laplacian distribution has heavier tails, and
is therefore more robust to outliers in the image features
and to errors in the training-set depthmaps (collected
with a laser scanner; see Section 6.1). Third, the Gaus-
sian model was generally unable to give depthmaps with
sharp edges; in contrast, Laplacians tend to model sharp
transitions/outliers better.

This model is parametrized by � r (similar to Eq. 1)
and by � 1r and � 2rs , the Laplacian spread parame-
ters. Maximum-likelihood parameter estimation for the
Laplacian model is not tractable (since the partition
function depends on � r ). However, by analogy to the
Gaussian case, we approximate this by solving a linear
system of equationsX r � r � dr to minimize L 1 (instead
of L 2) error, i.e., min � r jjdr � X r � r jj1. HereX r is the ma-
trix of absolute depth features. Following the Gaussian
model, we also learn the Laplacian spread parameters
in the denominator in the same way, except that the
instead of estimating the expected values of (di � dj )2

8Although the Laplacian distribution �ts the log-
histogram of multiscale relative depths reasonably well, there
is an unmodeled peak near zero. A more recent model[30]
attempts to model this peak, which arises due to the fact
that the neighboring depths at the �nest scale frequently lie
on the same object.

Figure 5: The log-histogram of relative depths. Em-
pirically, the distribution of relative depths is closer to
Laplacian than Gaussian.

and (di (r ) � � T
r x i )2, we estimate the expected values of

jdi � dj j and jdi (r ) � � T
r x i j, as a linear function of urs

and vr respectively. This is done using a Linear Program
(LP), with urs � 0 and vr � 0.

Even though maximum likelihood (ML) parameter es-
timation for � r is intractable in the Laplacian model,
given a new test-set image, MAP inference for the depths
d is tractable and convex. Details on solving the infer-
ence problem as a Linear Program (LP) are given in
Appendix B.
Remark. We can also extend these models to combine
Gaussian and Laplacian terms in the exponent, for ex-
ample by using aL 2 norm term for absolute depth, and
a L 1 norm term for the interaction terms. MAP infer-
ence remains tractable in this setting, and can be solved
using convex optimization as a QP (quadratic program).

6 Experiments
6.1 Data collection
We used a 3-d laser scanner to collect images and their
corresponding depthmaps (Fig. 7). The scanner uses a
laser device (SICK LMS-291) which gives depth readings
in a vertical column, with a 1:0� resolution. To collect
readings along the other axis (left to right), the SICK
laser was mounted on a panning motor. The motor ro-
tates after each vertical scan to collect laser readings for
another vertical column, with a 0:5� horizontal angu-
lar resolution. We reconstruct the depthmap using the
vertical laser scans, the motor readings and known rela-
tive position and pose of the laser device and the camera.
We also collected data of stereo pairs with corresponding
depthmaps (Section 7), by mounting the laser range �nd-
ing equipment on a LAGR (Learning Applied to Ground
Robotics) robot (Fig. 8). The LAGR vehicle is equipped
with sensors, an onboard computer, and Point Grey Re-
search Bumblebee stereo cameras, mounted with a base-
line distance of 11:7cm. [25]

We collected a total of 425 image+depthmap pairs,
with an image resolution of 1704x2272 and a depthmap
resolution of 86x107. In the experimental results
reported here, 75% of the images/depthmaps were used
for training, and the remaining 25% for hold-out testing.



(a) Image (b) Ground-Truth (c) Gaussian (d) Laplacian

Figure 6: Results for a varied set of environments, showing (a) original image, (b) ground truth depthmap, (c)
predicted depthmap by Gaussian model, (d) predicted depthmap by Laplacian model. (Best viewed in color ).



Figure 7: The 3-d scanner used for collecting images and
the corresponding depthmaps.

The images comprise a wide variety of scenes including
natural environments (forests, trees, bushes, etc.), man-
made environments (buildings, roads, sidewalks, trees,
grass, etc.), and purely indoor environments (corridors,
etc.). Due to limitations of the laser, the depthmaps
had a maximum range of 81m (the maximum range
of the laser scanner), and had minor additional errors
due to re
ections, missing laser scans, and mobile
objects. Prior to running our learning algorithms,
we transformed all the depths to a log scale so as to
emphasize multiplicative rather than additive errors
in training. Data used in the experiments is available at:
http://ai.stanford.edu/ � asaxena/learningdepth/

6.2 Results
We tested our model on real-world test-set images of
forests (containing trees, bushes, etc.), campus areas
(buildings, people, and trees), and indoor scenes (such
as corridors).

Table 1 shows the test-set results with di�erent feature
combinations of scales, summary statistics, and neigh-
bors, on three classes of environments: forest, campus,
and indoor. The Baseline model is trained without any

Figure 8: The custom built 3-d scanner for collecting
depthmaps with stereo image pairs, mounted on the
LAGR robot.

features, and predicts the mean value of depth in the
training depthmaps. We see that multiscale and column
features improve the algorithm's performance. Including
features from neighboring patches, which help capture
more global information, reduces the error from:162 or-
ders of magnitude to:133 orders of magnitude.9 We also
note that the Laplacian model performs better than the
Gaussian one, reducing error to:084 orders of magnitude
for indoor scenes, and:132 orders of magnitude when av-
eraged over all scenes. Empirically, the Laplacian model
does indeed give depthmaps with signi�cantly sharper
boundaries (as in our discussion in Section 5.2; also see
Fig. 6).

Fig. 9 shows that modeling the spatial relationships
in the depths is important. Depths estimated without
using the second term in the exponent of Eq. 2, i.e.,
depths predicted using only image features with row-
sensitive parameters� r , are very noisy (Fig. 9d).10 Mod-
eling the relations between the neighboring depths at
multiple scales through the second term in the expo-
nent of Eq. 2 also gave better depthmaps (Fig. 9e). Fi-
nally, Fig. 9c shows the model's \prior" on depths; the
depthmap shown re
ects our model's use of image-row
sensitive parameters. In our experiments, we also found
that many features/cues were given large weights; there-
fore, a model trained with only a few cues (e.g., the top
50 chosen by a feature selection method) was not able to
predict reasonable depths.

9Errors are on a log10 scale. Thus, an error of " means
a multiplicative error of 10 " in actual depth. E.g., 10 :132 =
1:355, which thus represents an 35.5% multiplicative error.

10 This algorithm gave an overall error of :181, compared
to our full model's error of :132.



Figure 9: (a) original image, (b) ground truth depthmap, (c) \prior" depthmap (tr ained with no features), (d)
features only (no MRF relations), (e) Full Laplacian model. (Best viewed in color ).

Table 1: E�ect of multiscale and column features on accuracy. The average absoluteerrors (RMS errors gave very
similar trends) are on a log scale (base 10).H1 and H2 represent summary statistics for k = 1 ; 2. S1, S2 and S3
represent the 3 scales.C represents the column features. Baseline is trained with only the bias term (no features).

Feature All Forest Campus Indoor
Baseline .295 .283 .343 .228
Gaussian ( S1 ,S2 ,S3 , H 1 ,H 2 ,no neighbors) .162 .159 .166 .165
Gaussian ( S1 , H 1 ,H 2) .171 .164 .189 .173
Gaussian ( S1 ,S2 , H 1 ,H 2) .155 .151 .164 .157
Gaussian ( S1 ,S2 ,S3 , H 1 ,H 2) .144 .144 .143 .144
Gaussian ( S1 ,S2 ,S3 , C, H 1) .139 .140 .141 .122
Gaussian ( S1 ,S2 ,S3 , C, H 1 ,H 2) .133 .135 .132 .124
Laplacian .132 .133 .142 .084

Our algorithm works well in a varied set of environ-
ments, as shown in Fig. 6 (last column). A number of
vision algorithms based on \ground �nding" (e.g., [60])
appear to perform poorly when there are discontinuities
or signi�cant luminance variations caused by shadows,
or when there are signi�cant changes in the ground tex-
ture. In contrast, our algorithm appears to be robust to
luminance variations, such as shadows (Fig. 6, 4th row)
and camera exposure (Fig. 6, 2nd and 5th rows).

Some of the errors of the algorithm can be attributed
to errors or limitations of the training set. For example,
the maximum value of the depths in the training and test
set is 81m; therefore, far-away objects are all mapped to
the distance of 81m. Further, laser readings are often
incorrect for re
ective/transparent objects such as glass;
therefore, our algorithm also often estimates depths of
such objects incorrectly. Quantitatively, our algorithm
appears to incur the largest errors on images which con-
tain very irregular trees, in which most of the 3-d struc-
ture in the image is dominated by the shapes of the leaves
and branches. However, arguably even human-level per-
formance would be poor on these images.

We note that monocular cues rely on prior knowledge,
learned from the training set, about the environment.
This is because monocular 3-d reconstruction is an in-
herently ambiguous problem. Thus, the monocular cues
may not generalize well to images very di�erent from
ones in the training set, such as underwater images or
aerial photos.

To test the generalization capability of the algorithm,
we also estimated depthmaps of images downloaded from
the Internet (images for which camera parameters are

not known).11 The model (using monocular cues only)
was able to produce reasonable depthmaps on most of
the images (Fig. 10). Informally, our algorithm appears
to predict the relative depths quite well (i.e., their rel-
ative distances to the camera);12 even for scenes very
di�erent from the training set, such as a sun
ower �eld,
an oil-painting scene, mountains and lakes, a city skyline
photographed from sea, a city during snowfall, etc.

Car Driving Experiments : Michels, Saxena and
Ng [20] used a simpli�ed version of the monocular depth
estimation algorithm to drive a remote-controlled car
(Fig. 11a). The algorithm predicts (1-d) depths from
single still images, captured from a web-camera with
320x240 pixel resolution. The learning algorithm can
be trained on either real camera images labeled with
ground-truth ranges to the closest obstacle in each direc-
tion, or on a training set consisting of synthetic graph-
ics images. The resulting algorithm, trained on a com-
bination of real and synthetic data, was able to learn
monocular visual cues that accurately estimate the rela-
tive depths of obstacles in a scene (Fig. 11b). We tested

11 Since we do not have ground-truth depthmaps for im-
ages downloaded from the Internet, we are unable to give a
quantitative comparisons on these images. Further, in the
extreme case of orthogonal cameras or very wide angle per-
spective cameras, our algorithm would need to be modi�ed
to take into account the �eld of view of the camera.

12 For most applications such as object recognition using
knowledge of depths, robotic navigation, or 3-d reconstruc-
tion, relative depths are su�cient. The depths could be
rescaled to give accurate absolute depths, if the camera pa-
rameters are known or are estimated.



Figure 10: Typical examples of the predicted depthmaps for images downloaded from the internet. (Best viewed
in color. )

the algorithm by driving the car at four di�erent loca-
tions, ranging from man-made environments with con-
crete tiles and trees, to uneven ground in a forest en-
vironment with rocks, trees and bushes where the car
is almost never further than 1m from the nearest ob-
stacle. The mean timebefore crash ranged from 19 to
more than 200 seconds, depending on the density of the
obstacles[20]. The unstructured testing sites were lim-
ited to areas where no training or development images
were taken. Videos of the algorithm driving the car au-
tonomously are available at:
http://ai.stanford.edu/ � asaxena/rccar

7 Improving Performance of
Stereovision using Monocular Cues

Consider the problem of estimating depth from two im-
ages taken from a pair of stereo cameras (Fig. 12). The
most common approach for doing so is stereopsis (stere-
ovision), in which depths are estimated by triangulation
using the two images. Over the past few decades, re-
searchers have developed very good stereovision systems
(see[1] for a review). Although these systems work well

Figure 11: (a) The remote-controlled car driven au-
tonomously in various cluttered unconstrained environ-
ments, using our algorithm. (b) A view from the car,
with the chosen steering direction indicated by the red
square; the estimated distances to obstacles in the dif-
ferent directions are shown by the bar graph below the
image.



Figure 12: Two images taken from a stereo pair of cam-
eras, and the depthmap calculated by a stereo system.

in many environments, stereovision is fundamentally lim-
ited by the baseline distance between the two cameras.
Speci�cally, their depth estimates tend to be inaccurate
when the distances considered are large (because even
very small triangulation/angle estimation errors trans-
late to very large errors in distances). Further, stereo-
vision also tends to fail for textureless regions of images
where correspondences cannot be reliably found.

On the other hand, humans perceive depth by seam-
lessly combining monocular cues with stereo cues. We
believe that monocular cues and (purely geometric)
stereo cues give largely orthogonal, and therefore com-
plementary, types of information about depth. Stereo
cues are based on the di�erence between two images and
do not depend on the content of the image. Even if the
images are entirely random, it would still generate a pat-
tern of disparities (e.g., random dot stereograms[52]).
On the other hand, depth estimates from monocular cues
are entirely based on the evidence about the environment
presented in a single image. In this section, we investi-
gate how monocular cues can be integrated with any rea-
sonable stereo system, to obtain better depth estimates
than the stereo system alone.

7.1 Disparity from stereo correspondence

Depth estimation using stereovision from two images
(taken from two cameras separated by a baseline dis-
tance) involves three steps: First, establish correspon-
dences between the two images. Then, calculate the
relative displacements (called \disparity") between the
features in each image. Finally, determine the 3-d depth
of the feature relative to the cameras, using knowledge
of the camera geometry.

Stereo correspondences give reliable estimates of dis-
parity, except when large portions of the image are fea-
tureless (i.e., correspondences cannot be found). Fur-
ther, for a given baseline distance between cameras, the
accuracy decreases as the depth values increase. In the
limit of very distant objects, there is no observable dis-
parity, and depth estimation generally fails. Empirically,
depth estimates from stereo tend to become unreliable
when the depth exceeds a certain distance.

Our stereo system �nds good feature correspondences
between the two images by rejecting pixels with little
texture, or where the correspondence is otherwise am-
biguous. More formally, we reject any feature where
the best match is not signi�cantly better than all other

matches within the search window. We use the sum-
of-absolute-di�erences correlation as the metric score to
�nd correspondences[2]. Our cameras (and algorithm)
allow sub-pixel interpolation accuracy of 0:2 pixels of
disparity. Even though we use a fairly basic implemen-
tation of stereopsis, the ideas in this paper can just as
readily be applied together with other, perhaps better,
stereo systems.

7.2 Modeling Uncertainty in Stereo
The errors in disparity are often modeled as either Gaus-
sian [3] or via some other, heavier-tailed distribution
(e.g., [61]). Speci�cally, the errors in disparity have two
main causes: (a) Assuming unique/perfect correspon-
dence, the disparity has a small error due to image noise
(including aliasing/pixelization), which is well modeled
by a Gaussian. (b) Occasional errors in correspondence
cause larger errors, which results in a heavy-tailed dis-
tribution for disparity [61].

If the standard deviation is � g in computing dispar-
ity g from stereo images (because of image noise, etc.),
then the standard deviation of the depths13 will be
� d;stereo � � g=g. For our stereo system, we have that
� g is about 0.2 pixels;14 this is then used to estimate
� d;stereo . Note therefore that � d;stereo is a function of the
estimated depth, and speci�cally, it captures the fact
that variance in depth estimates is larger for distant ob-
jects than for closer ones.

7.3 Probabilistic Model
We use our Markov Random Field (MRF) model, which
models relations between depths at di�erent points in the
image, to incorporate both monocular and stereo cues.
Therefore, the depth of a particular patch depends on the
monocular features of the patch, on the stereo disparity,
and is also related to the depths of other parts of the
image.

In our Gaussian and Laplacian MRFs (Eq. 3 and 4),
we now have an additional term di;stereo , which is the
depth estimate obtained from disparity.15 This term
models the relation between the depth and the estimate
from stereo disparity. The other terms in the models are
similar to Eq. 1 and 2 in Section 5.

7.4 Results on Stereo
For these experiments, we collected 257 stereo
pairs+depthmaps in a wide-variety of outdoor and in-
door environments, with an image resolution of 1024x768

13 Using the delta rule from statistics: Var( f (x)) �
(f 0(x)) 2Var( x), derived from a second order Taylor series ap-
proximation of f (x). The depth d is related to disparity g as
d = log( C=g), with camera parameters determining C.

14 One can also envisage obtaining a better estimate of � g

as a function of a match metric used during stereo correspon-
dence[62], such as normalized sum of squared di�erences; or
learning � g as a function of disparity/texture based features.

15 In this work, we directly use di;stereo as the stereo cue.
In [63], we use a library of features created from stereo depths
as the cues for identifying a grasp point on objects.



(a) Image (b) Laser (c) Stereo (d) Mono (Lap) (e) Stereo+Mono (Lap)

Figure 13: Results for a varied set of environments, showing one image of the stereo pairs (column 1), ground truth
depthmap collected from 3-d laser scanner (column 2), depths calculated by stereo (column 3), depths predicted by
using monocular cues only (column 4), depths predicted by using both monocular and stereo cues (column 5). The
bottom row shows the color scale for representation of depths. Closest points are 1.2 m, and farthest are 81m. (Best
viewed in color )
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Table 2: The average errors (RMS errors gave very sim-
ilar trends) for various cues and models, on a log scale
(base 10).

Algorithm All Campus Forest Indoor
Baseline .341 .351 .344 .307
Stereo .138 .143 .113 .182
Stereo (smooth) .088 .091 .080 .099
Mono (Gaussian) .093 .095 .085 .108
Mono (Lap) .090 .091 .082 .105
Stereo+Mono .074 .077 .069 .079
(Lap)

and a depthmap resolution of 67x54. We used 75% of
the images/depthmaps for training, and the remaining
25% for hold-out testing.

We quantitatively compare the following classes of al-
gorithms that use monocular and stereo cues in di�erent
ways:
(i) Baseline : This model, trained without any fea-
tures, predicts the mean value of depth in the training
depthmaps.
(ii) Stereo : Raw stereo depth estimates, with the miss-
ing values set to the mean value of depth in the training
depthmaps.
(iii) Stereo (smooth) : This method performs inter-
polation and region �lling; using the Laplacian model
without the second term in the exponent in Eq. 4, and
also without using monocular cues to estimate� 2 as a
function of the image.
(iv) Mono (Gaussian) : Depth estimates using only
monocular cues, without the �rst term in the exponent
of the Gaussian model in Eq. 3.
(v) Mono (Lap) : Depth estimates using only monoc-
ular cues, without the �rst term in the exponent of the
Laplacian model in Eq. 4.
(vi) Stereo+Mono : Depth estimates using the full
model.

Table 2 shows that although the model is able to pre-
dict depths using monocular cues only (\Mono"), the
performance is signi�cantly improved when we combine
both mono and stereo cues. The algorithm is able to
estimate depths with an error of :074 orders of magni-
tude, (i.e., 18.6% of multiplicative error because 10:074 =
1:186) which represents a signi�cant improvement over
stereo (smooth) performance of:088.

Fig. 13 shows that the model is able to predict
depthmaps (column 5) in a variety of environments.
It also demonstrates how the model takes the best es-
timates from both stereo and monocular cues to esti-

mate more accurate depthmaps. For example, in row 6
(Fig. 13), the depthmap generated by stereo (column 3)
is very inaccurate; however, the monocular-only model
predicts depths fairly accurately (column 4). The com-
bined model uses both sets of cues to produce a better
depthmap (column 5). In row 3, stereo cues give a bet-
ter estimate than monocular ones. We again see that our
combined MRF model, which uses both monocular and
stereo cues, gives an accurate depthmap (column 5) cor-
recting some mistakes of stereo, such as some far-away
regions that stereo predicted as close.

In Fig. 14, we study the behavior of the algorithm
as a function of the 3-d distance from the camera. At
small distances, the algorithm relies more on stereo cues,
which are more accurate than the monocular cues in this
regime. However, at larger distances, the performance of
stereo degrades, and the algorithm relies more on monoc-
ular cues. Since our algorithm models uncertainties in
both stereo and monocular cues, it is able to combine
stereo and monocular cues e�ectively.

We note that monocular cues rely on prior knowledge,
learned from the training set, about the environment.
This is because monocular 3-d reconstruction is an in-
herently ambiguous problem. In contrast, the stereop-
sis cues we used are are purely geometric, and therefore
should work well even on images taken from very dif-
ferent environments. For example, the monocular algo-
rithm fails sometimes to predict correct depths for ob-
jects which are only partially visible in the image (e.g.,
Fig. 13, row 2: tree on the left). For a point lying on such
an object, most of the point's neighbors lie outside the
image; hence the relations between neighboring depths
are less e�ective here than for objects lying in the middle
of an image. However, in many of these cases, the stereo
cues still allow an accurate depthmap to be estimated
(row 2, column 5).

8 Conclusions

Over the last few decades, stereo and other \triangula-
tion" cues have been successfully applied to many im-
portant problems, including robot navigation, building
3-d models of urban environments, and object recog-
nition. Unlike triangulation-based algorithms such as
stereopsis and structure from motion, we have developed
a class of algorithms that exploit a largely orthogonal set
of monocular cues. We presented a hierarchical, multi-
scale Markov Random Field (MRF) learning model that
uses such cues to estimate depth from a single still im-
age. These monocular cues can not only be combined
with triangulation ones, but also scale better than most
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Figure 14: The average errors (on a log scale, base 10)
as a function of the distance from the camera.

triangulation-based cues to depth estimation at large dis-
tances. Although our work has been limited to depth
estimation, we believe that these monocular depth and
shape cues also hold rich promise for many other appli-
cations in vision.
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Appendix

A MAP Inference for Gaussian Model
We can rewrite Eq. 1 as a standard multivariate Gaus-
sian,

PG (djX ; �; � ) =
1

ZG
exp

�
�

1
2

(d � X a � r )T � � 1
a (d � X a � r )

�

where X a = (� � 1
1 + QT � � 1

2 Q) � 1� � 1
1 X , with � 1 and � 2

representing the matrices of the variances� 2
1;i and � 2

2;i
in the �rst and second terms in the exponent of Eq. 1
respectively.16 Q is a matrix such that rows of Qd give
the di�erences of the depths in the neighboring patches
at multiple scales (as in the second term in the exponent
of Eq. 1). Our MAP estimate of the depths is, therefore,
d� = X a � r .

During learning, we iterate between learning � and
estimating � . Empirically, � 1 � � 2, and X a is very
close to X ; therefore, the algorithm converges after 2-3
iterations.

16 Note that if the variances at each point in the image
are constant, then X a = ( I + � 2

1 =� 2
2 QT Q) � 1X . I.e., X a is

essentially a smoothed version ofX .

B MAP Inference for Laplacian Model
Exact MAP inference of the depths d 2 RM can be
obtained by maximizing logP(djX ; �; � ) in terms of d
(Eq. 2). More formally,

d� = arg max
d

logP(djX ; �; � )

= arg min
d

cT
1 jd � X� r j + cT

2 jQdj

where, c1 2 RM with c1;i = 1=� 1;i , and c2 2 R6M with
c2;i = 1=� 2;i . Our features are given byX 2 RM xk and
the learned parameters are� r 2 Rk , which give a naive
estimate ~d = X� r 2 RM of the depths. Q is a matrix
such that rows of Qd give the di�erences of the depths
in the neighboring patches at multiple scales (as in the
second term in the exponent of Eq. 2).

We add auxiliary variables � 1 and � 2 to pose the prob-
lem as a Linear Program (LP):

d� = arg min
d;� 1 ;� 2

cT
1 � 1 + cT

2 � 2

s:t : � � 1 � d � ~d � � 1

� � 2 � Qd � � 2

In our experiments, MAP inference takes about 7-8 sec-
onds for an image.
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