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Abstract

Deep networks have been successfully applied to unsupervised feature learning for
single modalities (e.g., text, images or audio). In this work, we propose a novel ap-
plication of deep networks to learn features over multiple modalities. We present a
series of tasks for multimodal learning and show how to train a deep network that
learns features to address these tasks. In particular, we demonstrate cross modal-
ity feature learning, where better features for one modality (e.g., video) can be
learned if multiple modalities (e.g., audio and video) are present at feature learn-
ing time. Furthermore, we show how to learn a shared representation between
modalities and evaluate it on a unique task, where the classifier is trained with
audio-only data but tested with video-only data and vice-versa. We validate our
methods on the CUAVE and AVLetters datasets with an audio-visual speech clas-
sification task, demonstrating superior visual speech classification on AVLetters
and effective multimodal fusion.

1 Introduction

In speech recognition, people are known to integrate audio-visual information in order to understand
speech. This was first exemplified in the McGurk effect [1] where a visual /ga/ with a voiced /ba/
is perceived as /da/ by most subjects. In particular, the visual modality provides information on
the place of articulation [2] and muscle movements which can often help to disambiguate between
speech with similar acoustics (e.g., the unvoiced consonants /p/ and /k/ ). In this paper, we examine
multimodal learning and how to employ deep architectures to learn multimodal representations.

Multimodal learning involves relating information from multiple sources. For example, images and
3-d depth scans are correlated at first-order as depth discontinuities often manifest as strong edges
in images. Conversely, audio and visual data for speech recognition have non-linear correlations
at a “mid-level”, as phonemes or visemes; it is difficult to relate raw pixels to audio waveforms or
spectrograms.

In this paper, we are interested in modeling “mid-level” relationships, thus we choose to use audio-
visual speech classification to validate our methods. In particular, we focus on learning representa-
tions for speech audio which are coupled with videos of the lips.

We will consider the learning settings shown in Figure 1. The overall task can be divided into
three phases – feature learning, supervised training, and testing. We keep the supervised training
and testing phases fixed and examine different feature learning models with multimodal data. In
detail, we consider three learning settings – multimodal fusion, cross modality learning, and shared
representation learning.
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Figure 1: Multimodal Learning Settings.

For the multimodal fusion setting, data from all modalities is available at all phases; this represents
the typical setting considered in most prior work in audio-visual speech recognition [3]. In cross
modality learning, one has access to data from multiple modalities only during feature learning.
During the supervised training and testing phase, only data from a single modality is provided. In
this setting, the aim is to learn better single modality representations given unlabeled data from mul-
tiple modalities. Last, we consider a shared representation learning setting, which is unique in that
different modalities are presented for supervised training and testing. This setting allows us to eval-
uate if the feature representations can capture correlations across different modalities. Specifically,
studying this setting allows us to assess whether the learned representations are modality-invariant.

In the following sections, we first describe the building blocks of our model. We then present
different multimodal learning models leading to a deep network that is able to perform the various
multimodal learning tasks. Finally, we report experimental results and conclude.

2 Background

The multimodal learning settings we consider can be viewed as a special case of self-taught learning
[4]. The self-taught learning paradigm uses unlabeled data (not necessarily from the same distri-
bution as the labeled data) to learn representations that improve performance on some task. While
self-taught learning was first motivated with sparse coding, recent work on deep learning [5, 6, 7]
have examined how deep sigmoidal networks can be trained to produce useful representations for
handwritten digits and text. The key idea is to use greedy layer-wise training with Restricted Boltz-
mann Machines (RBMs) followed by fine-tuning. We use an extension of RBMs with sparsity [8],
which have been shown to be able to learn meaningful features for digits and natural images. In
the next section, we review the sparse RBM, which we use as a layer-wise building block for our
models.

2.1 Sparse restricted Boltzmann machines

We first describe the restricted Boltzmann machine (RBM) [5, 6] followed by the sparsity regular-
ization method [8]. The RBM is an undirected graphical model with hidden variables (h) and visible
variables (v). There are symmetric connections between the hidden and visible variables (wi,j), but
no connections between hidden variables or visible variables. This particular configuration makes it
easy to compute the conditional probability distributions, when v or h is fixed (Equation 2).
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p(hj |v) = sigmoid( 1
σ2 (bj + wTj v)) (2)

Equation 1 gives the negative log-probability of a RBM while Equation 2 gives the posteriors
of the hidden variables given the visible variables. This formulation models the visible vari-
ables as real-valued units and the hidden variables as binary units.1 As it is intractable to com-
pute the gradient of the log-likelihood term, we learn the parameters of the model (wi,j , bj , ci)

1We use Gaussian visible units for the RBM that is connected to the input data. When training the deeper
layers, we use binary visible units.
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using contrastive divergence [9]. To regularize the model for sparsity, we encourage each hid-
den unit to have a pre-determined expected activation using a regularization penalty of the form
λ
∑
j(ρ−

1
m (

∑m
k=1 E[hj |vk]))2, where {v1, ..., vm} is the training set and ρ determines the sparse-

ness of the hidden units.
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Figure 2: RBM Pretraining Models. We train (a) for audio and video separately as a
baseline. The shallow model (b) is limited and we find that this model is unable to
capture correlations across the modalities. The deep model (c) is trained in a greedy
layer-wise fashion by first training two separate (a) models. We later “unroll” the deep
model (c) to train the deep autoencoder models presented in Figure 3.

In this section, we describe our models for the task of audio-visual bimodal feature learning, where
the audio and visual input to the model are windows of audio (spectrogram) and video frames.
To motivate our deep autoencoder [5] model, we first describe several simple models and their
drawbacks.

One of the most straightforward approaches to feature learning is to train a RBM model separately
for audio and video (Figure 2a). After learning the RBM, the posteriors of the hidden variables
given the visible variables (Equation 2) can then be used as a new representation for the data. We
use this model as a baseline to compare the results of our multimodal learning models, as well as for
pre-training the deep networks.

To train a multimodal model, an direct approach is to train a RBM over the concatenated audio
and video data (Figure 2b). While this approach jointly models the distribution of the audio and
video data, it is limited as a shallow model. In particular, since the correlations between the audio
and video data are highly non-linear, it is hard for a RBM to learn these correlations and form
multimodal representations.

Therefore, we consider greedily training a RBM over the pre-trained layers for each modality, as
motivated by deep learning methods (Figure 2c). In particular, the posteriors (Equation 2) of the first
layer hidden variables are used as the training data for the new layer. By essentially representing the
data through learned first layer representations, it can be easier for the model to learn the higher-order
correlations across the modalities. Intuitively, the first layer representations correspond to phonemes
and visemes (lip pose and motions) and the second layer models the relationships between them.

However, there are still two issues with the above multimodal models. First, there is no explicit
objective for the models to discover correlations across the modalities. It is possible for the model to
find representations such that some hidden units are tuned only for audio while others are tuned only
for video. Second, the models are clumsy to use in a cross modality learning setting where only one
modality is present during supervised training and testing time. To use the RBM models presented
above with only a single modality present, one would need to integrate out the other unobserved
visible variables to perform inference.

Thus, we propose an autoencoder-based model that resolves both issues for the cross modality learn-
ing setting. The deep autoencoder (Figure 3a) is trained to reconstruct both modalities when given
only video data. We initialize the deep autoencoder with the deep RBM weights (Figure 2c) based
on Equation 2, discarding any weights that are no longer present due to the network’s configuration.
The middle layer is used as the new feature representation. This model can be viewed as an instance
of multitask learning [10].

We use the deep autoencoder (Figure 3a) models in settings where only a single modality is present
at supervised training and testing. On the other hand, when multiple modalities are available at
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Figure 3: Deep Autoencoder Models. A “video-only” model is shown in (a) where the
model learns to reconstruct both modalities given only video as the input. A similar
model can be drawn for the “audio-only” setting. We train the (b) bimodal deep
autoencoder in a denoising fashion, using an augmented dataset with examples that
require the network to reconstruct both modalities given only one. Both models are
pre-trained using sparse RBMs (Figure 2c). Since we use a sigmoid transfer function
in the deep network, we can initialize the network using the conditional probability
distributions p(h|v) and p(v|h) of the learned RBM.

task time, it is less clear how to use the model as one would need to train a deep autoencoder for
each modality. One straightforward solution is to train the networks such that the decoding weights
are tied. However, such an approach does not scale well – if we were to allow any combination
of modalities to be present or absent at test time, we will need to train an exponential number of
models. Instead, we propose a training method inspired by denoising autoencoders [11].

We propose training the deep autoencoder network (Figure 3b) using an augmented dataset with
additional examples that have only a single-modality as input. In practice, we add examples that
zero out one of the input modalities (e.g., video) and only have the other input modality (e.g., audio)
available, yet still requiring the network to reconstruct both modalities (audio and video). Thus,
one-third of the training data has only video for input, while another one-third of the data has only
audio for input, and the last one-third of the data has both audio and video for input.

Due to initialization using sparse RBMs, we find that the hidden units have low expected activation
even after the deep autoencoder training. Therefore, when one of the modalities is set to zero, the
first layer representations are close to zero. In this case, we are essentially training a modality-
specific deep autoencoder network (Figure 3a). Effectively, the method learns a model which is
robust to missing modalities.

4 Experiments

We evaluate our methods on audio-visual speech classification of isolated letters and digits. The
sparseness parameter ρ was chosen using cross-validation, while all other parameters (including
hidden layer size and weight regularization) were kept fixed.2

4.1 Data Preprocessing

We represent the audio signal using its spectrogram3 with temporal derivatives, resulting in a 483
dimension vector which was reduced to 100 dimensions with PCA whitening. A window of 10
contiguous audio frames was used as the input to our models.

2We cross-validated ρ over {0.01, 0.03, 0.05, 0.07}. The first layer features was 4x overcomplete for video
(1536 units) and 1.5x overcomplete for audio (1500 units). The second layer had 4554 units.

3Each spectrogram frame (161 frequency bins) had a 20ms window with 10ms overlaps.
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For the video, we preprocessed the frames so as to extract only the region-of-interest (ROI) en-
compassing the mouth.4 Each mouth ROI was rescaled to 60x80 pixels and further reduced to 32
dimensions,5 using PCA whitening. Temporal derivatives were computed over the reduced vector.
We use windows of 4 contiguous video frames for input since this had approximately the same
duration as 10 audio frames.

For both modalities, we also performed feature mean normalization over time [3], akin to removing
the DC component from each example. We also note that adding temporal derivatives to the repre-
sentations has been widely used in the literature as it helps to model dynamic speech information
[3, 14]. The temporal derivatives were computed using a normalized linear slope so that the dynamic
range of the derivative features are comparable to the original signal.

4.2 Datasets and Task

Since only unlabeled data was required for unsupervised feature learning, we combined diverse
datasets to learn features. We used all the datasets for feature learning. AVLetters and CUAVE were
further used for supervised classification. We ensured that no test data was used for unsupervised
feature learning.

CUAVE [15]. 36 individuals saying the digits 0 to 9. We used the normal portion of the dataset
where each speaker was frontal facing and spoke each digit 5 times. We evaluated digit classification
on the CUAVE dataset in a speaker independent setting. As there has not been a fixed protocol
for evaluation on this dataset, we chose to use odd-numbered speakers for the test set and even-
numbered ones for the training set.

AVLetters [16]. 10 speakers saying the letters A to Z, three times each. The dataset provided pre-
extracted lip regions at 60x80 pixels. As we were not able to obtain the raw audio information for
this dataset, we used it for evaluation on a visual-only lipreading task. We report results on the
third-test settings used by [14, 16] for comparisons.

AVLetters2 [17]. 5 speakers saying the letters A to Z, seven times each. This is a new high definition
version of the AVLetters dataset. We used this dataset for unsupervised training only.

Stanford Dataset. 23 volunteers spoke the digits 0 to 9, letters A to Z and selected sentences from
the TIMIT dataset. We collected this data in a similar fashion to the CUAVE dataset and used for
unsupervised training only.

TIMIT. We used the TIMIT [18] dataset for unsupervised audio feature pre-training.

We note that in all datasets there is variability in the lips in terms of appearance, orientation and size.

Our features were evaluated on speech classification of isolated letters and digits. We extracted fea-
tures from overlapping windows. Since examples had varying durations, we divided each example
into S equal slices and performed average-pooling over each slice. The features from all slices were
subsequently concatenated together. We combined features using S = 1 and S = 3 to form our final
feature representation for classification using a linear SVM.

4.3 Cross Modality Learning

We first evaluate the learned features in a setting where unlabeled data for both modalities are avail-
able during feature learning, while during supervised training and testing phases only a single modal-
ity is presented. In these experiments, we evaluate cross modality learning where one learns better
representations for one modality (e.g., video) when given multiple modalities (e.g., audio and video)
during feature learning. For the bimodal deep autoencoder, we set the value of the other modality to
zero when computing the shared representation which is consistent with the feature learning phase.
All deep autoencoder models are trained with all available unlabeled audio and video data.

On the AVLetters dataset (Table 1a), there is an improvement over hand-engineered features from
prior work. The deep autoencoder models performed the best on the dataset, obtaining a classifica-
tion score of 65.8%, outperforming the best previous published results.

4We used an off-the-shelf object detector [12] with median filtering over time to extract the mouth regions.
5Similar to [13] we found that 32 dimensions were sufficient and performed well.
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Feature Representation Accuracy
Baseline Preprocessed Video 46.2%
RBM Video 53.1%
Bimodal Deep Autoencoder 59.2%
Video-Only Deep Autoencoder 65.8%
Multiscale Spatial Analysis [16] 44.6%
Local Binary Pattern [14] 58.9%

(a) AVLetters

Feature Representation Accuracy
Baseline Video 58.5%
RBM Video 65.5%
Bimodal Deep Autoencoder 66.7%
Video-Only Deep Autoencoder 69.7%
Discrete Cosine Transform [19] 64% †§
Active Appearence Model [20] 75.7% †
Active Appearence Model [21] 68.7% †
Fused Holistic+Patch [22] 77.1% †
Visemic AAM[23] 83% †§

(b) CUAVE Video

Table 1: Classification performance for visual speech classification on (a) AVLetters and (b)
CUAVE. Learning sparse RBM features improve performance. The deep autoencoders perform
the best and show effective cross modality learning. §These results consider continuous speech
recognition, although the normal portion of CUAVE consists of speakers saying isolated digits.
†These models use a visual front-end system that is significantly more complicated than ours
and a different train/test split.

On the CUAVE dataset (Table 1b), there is an improvement by learning video features with both
video audio compared to learning features with only video data. The deep autoencoder models
ultimately performs the best, obtaining a classification score of 69.7%. In our model, we chose to
use a very simple front-end that only extracts bounding boxes (without any correction for orientation
or perspective changes). A more sophisticated visual front-end in conjunction with our models has
the potential to do even better.

The video classification results show that the deep autoencoder model achieves cross modality learn-
ing by discovering better video representations when given additional audio data. In particular, even
though the AVLetters dataset did not have any audio data, we were able to obtain better performance
by learning better video features using other unlabeled data sources which had both audio and video
data.

However, we also note that cross modality learning did not help to learn better audio features; since
our feature learning mechanism is unsupervised, we find that our model learns features that adapt to
the video modality but are not useful for speech classification.

4.4 Multimodal Fusion Results

Although using audio information alone performs reasonably well for speech recognition, fusing
audio and visual information can substantially improve performance, especially when the audio is
degraded with noise [19, 20, 21, 23]. Hence, we evaluate our models in both clean and noisy audio
settings.

Accuracy Accuracy
Feature Representation (Clean Audio) (Noisy Audio)
(a) Best Audio-Only 95.8% 79.6%
(b) Best Video-Only 69.7% 69.7%
(c) Bimodal Deep Autoencoder 90.0% 77.6%
(d) Best-Video + Best-Audio 87.0% 75.5%
(e) Bimodal + Best-Audio 94.4% 81.6%

Table 2: Digit classification performance for bimodal speech classification on CUAVE, under
clean and noisy conditions. We added white Gaussian noise to the original audio signal at 0db
SNR. Best audio refers to the best audio features we learned (single layer RBM for audio). Best
video refers to the video-only deep autoencoder features (Table 1b).

The video modality complements the audio modality by providing information such as place of
articulation that can help distinguish between similar sounding speech. However, when one simply
concatenates audio and visual features (Table 2(d)), it is often the case that performance is worse
as compared to using only audio features. Since our models are able to learn multimodal features
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that go beyond simply concatenating the audio and visual features, we propose combining the audio
features with our multimodal features. When the best audio features are concatenated together with
the bimodal features (Table 2(e)), we achieve an increase in accuracy in the noisy setting. This
shows that the learned multimodal features are better able to complement the audio features.

4.5 Shared Representation Learning
Supervised

Testing

Audio

Shared
Representation

Video Audio

Shared
Representation

Video

Linear Classifier

Training Testing

Train/Test Setting Accuracy
Audio/Video “Hearing to see” 29.4%
Video/Audio “Seeing to hear” 27.5%

Table 3: Shared Representation Learning on
CUAVE. The diagram (above) depicts the Au-
dio/Video “Hearing to see” setting.

While the above results show that we have
learned useful features for video and audio, it
does not yet show that the model captures cor-
relations across the modalities. In this experi-
ment, we assess if multimodal features indeed
form a shared representation that has some in-
variance to audio or video inputs. During super-
vised training, we provide the algorithm data
solely from one modality (e.g., audio) and later
tested only on the other modality (e.g., video).
In essence, we are telling the supervised learner
how the digits “1”, “2”, etc. sound like and ask-
ing it to figure out how to visually recognize
digits – “hearing to see” (Table 3). If our model
indeed learns a shared representation that has
some invariance to the presented modality, it
will be able to perform this task well.

On the “hearing to see” task, the deep autoencoder obtains an accuracy of 29.4%, while simple
baselines perform at chance (10%). Similarly, on the “seeing to hear” task, the model obtains 27.5%.
This shows that our learned shared representation is partially invariant to the input modality.

4.6 Visualization of learned features

By visualizing our features, we found that the visual bases captured lip motions and articulations.
In particular, the learned features include different mouth articulations, opening and closing of the
mouth, exposing teeth, among others. We present some visualizations of the learned features in
Figure 4.

Figure 4: Visualization of Learned Representations. These figures correspond to two deep
hidden units, where we visualize the most strongly connected first layer features. The units are
presented in audio-visual pairs (we have found it generally difficult to interpret the connection
between the pair).

4.7 McGurk effect

The McGurk effect [1] refers to an audio-visual perception phenomenon where a visual /ga/ with a
audio /ba/ is perceived as /da/ by most subjects. Since our model learns a multimodal representation,
it would be interesting to see if the model was able to replicate a similar effect. We obtained data
from 23 volunteers speaking 5 repetitions of /ga/, /ba/ and /da/.

Audio / Visual Model prediction
Setting /ga/ /ba/ /da/
Visual /ga/, Audio /ga/ 82.6% 2.2% 15.2%
Visual /ba/, Audio /ba/ 4.4% 89.1% 6.5%
Visual /ga/, Audio /ba/ 28.3% 13.0% 58.7%

Table 4: McGurk Effect

Using the learned bimodal deep autoen-
coder features, we trained a linear SVM
on a 3-way classification task. The model
was tested on three conditions that simu-
late the McGurk effect. When the visual
and audio data matched at test time, the
model was able to predict the correct class
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/ba/ and /ga/ with an accuracy of 82.6% and 89.1% respectively. On the other hand, when a vi-
sual /ga/ with a voiced /ba/ was mixed at test time, the model was most likely to predict /da/, even
though /da/ neither appears in the visual or audio inputs. This is consistent with the McGurk effect
on people.

4.8 Additional Control Experiments

Recall that we trained the bimodal deep autoencoder with two-thirds of data having one modal-
ity missing. To evaluate the role of such a training scheme, we performed a control experiment
where we trained the bimodal deep autoencoder without removing any of the modalities. In this
experiment, we found that training without any missing data resulted in inferior performance.6 By
inspecting the models, we found that training without missing data led to more modality specific
units in the shared representation layer. Conversely, the model trained with the data with missing
modalities had more connections to both modalities in the shared representation layer. This supports
the hypothesis that having training data with missing modalities is required for the model to learn a
shared representation and show cross modality learning.

To evaluate whether a deep architecture is needed or a shallow one would suffice, we trained a
bimodal shallow model by training a sparse RBM over the concatenated audio and video data (Figure
2b). However, the correlations between the audio and video modality are highly non-linear and not
easily captured by a shallow model. As a result, we find that the model learns largely separate audio
and video features. In particular, we find hidden units that have strong connections to variables
from either modality but few units that connect across the modalities. Thus, the shallow model is
effectively learning two separate representations.

5 Related Work

While we present special cases of neural networks here for multimodal learning, we note that prior
work on audio-visual speech recognition [13, 24, 25] has also explored the use of neural networks.
Yuhas et al. [24] trained a neural network to predict the auditory signal given the visual input. They
showed improved performance in a noisy setting when they combined the predicted auditory signal
(from the network using visual input) with a noisy auditory signal. Duchnowski et al. [13, 25] trained
separate networks to model phonemes and visemes and combined the predictions at a phonetic layer
to predict the spoken phoneme. They also attempted combining the representations using the hidden
layer from each modality.

In contrast to these approaches, we explicitly use the hidden units to build a new representation of
our data. Furthermore, we do not explicitly model phonemes or visemes, which require expensive
labeling efforts. Finally, we build deep bimodal representations by modeling the correlations across
the learned shallow representations.

6 Conclusion

Hand-engineering task-specific features is often difficult and time consuming. For example, it is not
immediately clear what the appropriate features should be for lipreading with visual only data. This
difficulty is more pronounced with multimodal data as the features have to relate multiple disparate
data sources. In this paper, we employed deep learning architectures to learn multimodal features
from unlabeled data and also to improve single modality features through cross modality learning.
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