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Abstract

We consider the problem of grasping novel objects,
speci cally ones that are being seen for the rst
time through vision. Grasping a previously un-
known object, one for which a 3-d model is not
available, is a challenging problem. Further, even
if given a model, one still has to decide where to
grasp the object. We present a learning algorithm
that neither requires, nor tries to build, a 3-d model
of the object. Given two (or more) images of an ob-
ject, our algorithm attempts to identify a few points
in each image corresponding to good locations at
which to grasp the object. This sparse set of points
is then triangulated to obtain a 3-d location at which
to attempt a grasp. This is in contrast to standard
dense stereo, which tries to triangulate every single
point in an image (and often fails to return a good
3-d model). Our algorithm for identifying grasp
locations from an image is trained via supervised
learning, using synthetic images for the training set.
We demonstrate this approach on two robotic ma-
nipulation platforms. Our algorithm successfully
grasps a wide variety of objects, such as plates,
tape-rolls, jugs, cellphones, keys, screwdrivers, sta-
plers, a thick coil of wire, a strangely shaped power
horn, and others, none of which were seen in the
training set. We also apply our method to the task
of unloading items from dishwashe's.

Introduction

jects that arobotis perceiving for the rsttime throughieis.

Modern-day robots can be carefully hand-programmed o
“scripted” to carry out many complex manipulation tasks,
ranging from using tools to assemble complex machinery, to
balancing a spinning top on the edge of a swiBtin-ichi
and Satoshi, 2040 However, autonomously grasping a pre-
viously unknown object still remains a challenging problem
If we are trying to grasp a previously known object, or if we

LA preliminary version of this work was described[iBaxenaet

al., 2006b; 2006k

g@cs.stanford.edu

Figure 1: Our robot unloading items from a dishwasher.

are able to obtain a full 3-d model of the object, then var-
ious approaches such as ones based on friction ddvias

son and Salisbury, 1985orm- and force-closuriBicchi and
Kumar, 2000, pre-stored primitivegMiller et al,, 2009, or
other methods can be applied. However, in practical scenar-
ios it is often very dif cult to obtain a full and accurate 3-

d reconstruction of an object seen for the rst time through
vision. For stereo systems, 3-d reconstruction is dif doit
objects without texture, and even when stereopsis workis wel
it would typically reconstruct only the visible portions tife
object. Even if more specialized sensors such as laser scan-
ners (or active stereo) are used to estimate the objectsesha
we would still only have a 3-d reconstruction of the frontdac

bf the object.

In contrast to these approaches, we propose a learning al-
gorithm that neither requires, nor tries to build, a 3-d mode
of the object. Instead it predicts, directly as a function of
the images, a point at which to grasp the object. Informally,
the algorithm takes two or more pictures of the object, and
then tries to identify a point within each 2-d image that cor-
responds to a good point at which to grasp the object. (For
example, if trying to grasp a coffee mug, it might try to iden-



Figure 2: Some examples of objects on which the graspingitigowas tested.

tify the mid-point of the handle.) Given these 2-d points in2 Related Work

each image, we use triangulation to obtain a 3-d position at ) ) ) o

which to actually attempt the grasp. Thus, rather than gryin Most work in robot manipulation assumes availability of a

to triangulate every single point within each image in ordercomplete 2-d or 3-d model of the object, and focuses on

to estimate depths—as in dense stereo—we only attempt @€signing control and planning methods to achieve a suc-

triangulate one (or at most a small number of) points correcessful and stable grasp. Here, we will discuss in detail

sponding to the 3-d point where we will grasp the object. ThisPrior work that uses learning or vision for robotic manip-

allows us to grasp an object without ever needing to obtain itulation, and refer the reader {@icchi and Kumar, 2000;

full 3-d shape, and applies even to textureless, transtaren Mason and Salisbury, 1985; Shimoga, 1pfi a more gen-

re ective objects on which standard stereo 3-d reconsioact  €ral survey of past work in robotic manipulation.

fares poorly (see Figure 6). In simulation environments (without real world experi-

ments), learning has been applied to robotic manipulation

for seve[r]al different purposes. For exampl@glossofet

: : : : . l., 2004 used Support Vector Machines (SVM) to esti-

d model is not available), including ones from novel objecta . .

classes, that we are perceiving for the rst ime using visio Mate the quality of a grasp given a number of features de-

scribing the grasp and the object[Hsiao et al, 2007;

This paper focuses on the task of grasp identi cation, andHsiao and Lozano-Perez, 2406sed partially observable

thus we will consider only objects that can be picked upmarkov decision processes (POMDP) to choose optimal con-

without performing complex manipulatichWe will attempt  trol policies for two- ngered hands. They also used imitati

to grasp a number of common of ce and household objectsearning to teach a robot whole-body grasgbliller et al.,

such as toothbrushes, pens, books, cellphones, mugs, maB0J used heuristic rules to generate and evaluate grasps for

tini glasses, jugs, keys, knife-cutters, duct-tape raitsew-  three- ngered hands by assuming that the objects are made

drivers, staplers and markers (see Figure 2). We will alsf basic shapes such as spheres, boxes, cones and cylinders

address the problem of unloading items from dishwashers. each with pre-computed grasp primitives. All of these meth-
The remainder of this paper is structured as follows. In0ds assumed full knowledge of the 3-d model of the object.

Section 2, we describe related work. In Section 3, we describFurther, these methods were not tested through real-werld
our learning approach, as well as our probabilistic model fo Periments, but were instead modeled and evaluated in a sim-
inferring the grasping point. In Section 4, we describe ourulator.
robotic manipulation platforms. In Section 5, we describe Some work has been done on using vision for real world
the motion planning/trajectory planning for moving the ma- grasping experiments; however most were limited to grasp-
nipulator to the grasping point. In Section 6, we report theing 2-d planar objects. For uniformly colored planar ob-
results of extensive experiments performed to evaluate ouects lying on a uniformly colored table top, one can nd
algorithm, and Section 7 concludes. the 2-d contour of the object quite reliably. Using local
visual features (based on the 2-d contour) and other prop-
erties such as form- and force-closure, the methods dis-
2For example, picking up a heavy book lying aton a table might cussed below decide the 2-d locations at which to place
require a sequence of complex manipulations, such as teslise  (two or three) ngertips to grasp the objectPiater, 2002;
the book slightly past the edge of the table so that the méatipu ~ Coelhoet al, 2007 estimated 2-d hand orientation using K-
can place its ngers around the book. means clustering for simple objects (speci cally, squarie,

To the best of our knowledge, our work represents the rst
algorithm capable of grasping novel objects (ones where a



(a) Martini glass (b) Mug (c) Eraser (d) Book (e) Pencil

Figure 3: The images (top row) with the corresponding laig®wn in red in the bottom row) of the ve object classes used
for training. The classes of objects used for training weegtmi glasses, mugs, whiteboard erasers, books and pencil

angle and round “blocks”)[Moraleset al., 2002a; 2002b  bly be improved if a 3-d model of the object were available,
calculated 2-d positions of three- ngered grasps from Ze o  but they typically do not require such models. For exam-
ject contours based on feasibility and force closure ddter ple, that an object is cup-shaped can often be inferred di-
[Bowers and Lumia, 20Q3also considered the grasping of rectly from a 2-d image. Our approach takes a similar di-
planar objects and chose the location of the three ngers of aection, and will attempt to infer grasps directly from 2-d
hand by rst classifying the object as circle, triangle, aggi  images, even ones containing clutt¢Saxenaet al,, 2005;

or rectangle from a few visual features, and then using pre2007d also showed that given just a single image, it is often
scripted rules based on fuzzy logi¢Kamonet al, 1994 possible to obtain the 3-d structure of a scene. While kngwin
used Q-learning to control the arm to reach towards a spherthe 3-d structure by no means implies knowing good grasps,
cal object to grasp it using a parallel plate gripper. this nonetheless suggests that most of the informationdn th

I the desired location of the grasp has been identi ed, tech 3-d structure may already be contained in the 2-d images, and
niques such as visual servoing that align the gripper to éhe d SU9gests that an approach that learns directly from 2-desiag
sired locatior{Kragic and Christensen, 20p8r haptic feed- holds promise. Indee@arottaet al, 2004 showed that hu-
back [Petrovskayat al, 2006 can be used to pick up the Mans can grasp an object using only one eye.
object. [Plattet al, 2009 learned to sequence together ma- Our work also takes inspiration froifCastiello, 2004
nipulation gaits for four speci ¢, known 3-d objects. How- Which showed that cognitive cues and previously learned
ever, they considered fairly simple scenes, and used onlingowledge both play major roles in visually guided grasping
learning to associate a controller with the height and widthn humans and in monkeys. This indicates that learning from
of the bounding ellipsoid containing the object. For gragpi Prévious knowledge is an important component of grasping

known objects, one can also use Learning-by-DemonstratiofPVel objects. o
[Hueseret al, 2006, in which a human operator demon- Further[Goodaleet al., 1991 showed that there is a disso-

strates how to grasp an object, and the robot learns to graéﬁation between recognizing objects and grasping them, i.e
that object by observing the human hand through vision.  there are separate neural pathways that recognize objetts a
Th K of identifvi h bi fth that direct spatial control to reach and grasp the objeaisTh

e task of identifying where to grasp an object (of the i en only 4 quick glance at almost any rigid object, most pri
sort typically found in the home or of ce) involves solving

; : . X mates can quickly choose a grasp to pick it up, even without
a dif cult perception problem. This is because the ObJeCtSknowledge of the object type. Our work represents perhaps a

vary widely in appearance, and because background clutiq grep towards designing a vision grasping algorithmethi
ter (e.g., dishwasher prongs or a table top with a pattern),. 4o the same.

makes it even more dif cult to understand the shape of a
scene. There are numerous robust learning algorithms the\xj; L ing the G ing Point

can infer useful information about objects, even from a-clut earning the Lrasping Foin

tered image. For example, there is a large amount of worlkVe consider the general case of grasping objects—even ones
on recognition of known object classes (such as cups, mugsot seen before—in 3-d cluttered environments such as in a
etc.), e.g.[Schneiderman and Kanade, 1999 he perfor- home or of ce. To address this task, we will use an image of
mance of these object recognition algorithms could probathe object to identify a location at which to grasp it.



Because even very different objects can have similar sub-
parts, there are certain visual features that indicate good
grasps, and that remain consistent across many different ob
jects. For example, jugs, cups, and coffee mugs all have
handles; and pens, white-board markers, toothbrushesyscr
drivers, etc. are all long objects that can be grasped rgqughl
at their mid-point (Figure 3). We propose a learning ap-
proach that uses visual features to predict good grasping
points across a large range of objects.

In our approach, we will rst predict the 2-d location of
the grasp in each image; more formally, we will try to iden-
tify the projection of a good grasping point onto the image
plane. Then, given two (or more) images of an object taken
from different camera positions, we will predict the 3-d pos
tion of a grasping point. If each of these points can be perFigure 4: An illustration showing the grasp labels. The la-
fectly identi ed in each image, then we can easily “triangu- beled grasp for a martini glass is on its neck (shown by a black
late” from these images to obtain the 3-d grasping pointe (Secylinder). For two predicted grasping poirfs andP,, the
Figure 8a.) In practice it is dif cult to identify the projec error would be the 3-d distance from the grasping region, i.e
tion of a grasping point into the image plane (and, if thege ar d1 andd, respectively.
multiple grasping points, then the correspondence problem
e, dgcidin_g WhiCh grasp_ing point in one image correspnon(_jthe grasping point in each image. Collecting real-worldadat
:Jc:(\)’m}%] %O;Eigﬂe?nec’;ggé:g‘;tgg_bymiﬁ;2:?30?%§|?g\:§g%’n1—€ésof this sort is cumlbersome, and manual labeling is prone to
tween the camera and the robot arm, and by uncertainty errors. Thus, we instead chose to generate, and learn from,

-7 ’ .synthetic data that is automatically labeled with the ottrre

the camera position if the camera was mounted on the arm '%ras <
self. To address all of these issues, we develop a probtabilis PS.

: . : : : In detail, we generate synthetic images along with cor-

model over possible grasping points, and apply it to infer a . . :
e ; ; rect grasps (Figure 3) using a computer graphics ray tfacer.
good position at which to grasp an object. There is a relation between the quality of the synthetically

3.1 Grasping Point generated images and the accuracy of the algorithm. The

. : . . better the quality of the synthetically generated images$ an
For most objects, there is typically a small region that agraphical realism, the better the accuracy of the algorithm

humar) .(us_mg a two- ngered plnqh grasp) woulld. choose tOTherefore, we used a ray tracer instead of faster, but cruder
grasp It W.'th some abuse 9f term_mology, er will '“for”?a!'y OpenGL style graphics.[Michels et al, 2009 used syn-

refer to this region as the “grasping point,” and our train e qnenGL images to learn distances in natural scenes.
set will contain labeled examples of this region. Example owever, because OpenGL style graphics have less realism,

of gras_p!ng points include the center region of the neck fortheir learning performance sometimascreasedvith added
a martini glass, the center region of the handle for a COﬁeegraphical details in the rendered images

mug, etc. (See Figure 3.) The advantages of using synthetic images are multi-fold.

For testing purposes, we would like to evaluate whether the.. . :
robot successfully picks up an object. For each object in ou?'rSt’ once a synthg'u_c model of an object has been_ created, a
arge number of training examples can be automatically gen-

test set, we de ne the successful grasp region to be the "rated by rendering the object under different (randoméych

gion where a human/robot using a two- ngered pinch grasp, en) lighting conditions, camera positions and orientegjo
would (reasonably) be expected to successfully grasp the O%tc.) Ingaddi%ion, to incre’ase the di?/ersity of the trainirat?d

ject. The error in predicting the grasping point (reported i enerated, we randomized different properties of the dbjec
Table 1) is then de ned as the distance of the predicted poing ' prop J

. ST : ; uch as color, scale, and text (e.g., on the face of a boolg). Th
from the closest point lying in this region. (See Figure 4sth time-consuming part of synthetic data generation was the cr

region is usually somewhat larger than that used in the-train__. fth h models of the obi H h
ing set, de ned in the previous paragraph.) Since our grlippeatlon of the mesh models of the objects. However, there are
' : ny objects for which models are available on the internet

(Figure 1) has some passive compliance because of at.taCh%gt can be used with only minor modi cations. We generated
foam/rubber, and can thus tolerate about 0.5cm error in pos

sitioning, the successful grasping region may extend #jigh 2500 gxamples from synthetic data,_comprising objects from
past the surface of the object. (E.g., the radius of the dglin ve object classes (see Figure ). Using synthetic dataaliso

in Figure 4 is about 0.5cm greater than the actual neck of th%OWS uls o gener]:a\te pergect Iabe:cs for thﬁ trg_lnlng Iset e t
martini glass.) xact location of a good grasp for each object. In contrast,

3.2 Synthetic Data for Training 3Ray tracing[Glassner, 1999is a standard image rendering

. . . ) . method from computer graphics. It handles many real-wopt-o
We apply supervised learning to identify patches that donta cal phenomenon such as multiple specular re ections, testsoft
grasping points. To do so, we require a labeled training setshadows, smooth curves, and caustics. We used PovRay, an ope
i.e., a set ofimages of objects labeled with the 2-d locatiion source ray tracer.



Objects exhibit different behaviors across different esal
and using multi-scale features allows us to capture these va
Figure 5. Examples of different edge and texture lIters (9 ations. In detail, we compute the 17 features describedebov
Laws' masks and 6 oriented edge lters) used to calculate thérom that patch as well as the 24 neighboring patches (in a 5x5
features. window centered around the patch of interest). This gives us
a feature vectox of dimensionl 17 3+24 17 =459.
Although we rely mostly on image-based features for pre-
dicting the grasping point, some robots may be equipped with
range sensors such as a laser scanner or a stereo camera. In
these cases (Section 6.3), we also compute depth-based fea-
tures to improve performance. More formally, we apply our
texture based lIters to the depth image obtained from a stere
camera, append them to the feature vector used in classi ca-
tion, and thus obtain a feature vectay 2 R%8. Applying
(a) (b) these texture based lters this way has the effect of comput-
Figure 6: (a) An image of textureless/transparent/re\eeti ing relative depths, and thus provides information abodt 3-
objects. (b) Depths estimated by our stereo system. Theroperties such as curvature. However, the depths given by a
grayscale value indicates the depth (darker being clogbeto stereo system are sparse and noisy (Figure 6) because many
camera). Black represents areas where stereo vision failed objects we consider are textureless or re ective. Evenrafte
return a depth estimate. normalizing for the missing depth readings, these featares
proved performance only marginally.

collecting and manually labeling a comparably sized set 08.4 Probabilistic Model

real images would have been extremely time-consuming. Usi . . :

We have made the data available online at: sing our mgge-ba_tsed features_, we will rst pr_ed|ct whethe

. _ each region in the image contains the projection of a grasp-
http://ai.stanford.edu/ asaxena/learninggrasp/data.html ing point. Then in order to grasp an object, we will statisti-
cally “triangulate” our 2-d predictions to obtain a 3-d gpas

3.3 Features ing point.
In our approach, we begin by dividing the image into small In detail, on our manipulation platforms (Section 4), we
rectangular patches, and for each patch predict if it costai have cameras mounted either on the wrist of the robotic arm
projection of a grasping point onto the image plane. (Figure 11) or on a frame behind the robotic arm (Figure 9).

Instead of relying on a few visual cues such as presencé/hen the camera is mounted on the wrist, we command the
of edges, we will compute a battery of features for each recta'm to move the camera to two or more positions, so as to
angular patch. By using a large number of different visual@cauire images of the object from different viewpoints. How
features and training on a huge training set (Section 3.8), weVer, there are inaccuracies in the physical positioninpef
hope to obtain a method for predicting grasping points that j &M, and hence there is some slight uncertainty in the posi-
robust to changes in the appearance of the objects and is algn of the camera when the images are acquired. We will
able to generalize well to new objects. now describe how we model these position errors.

We start by computing features for three types of lo- Formally, letC be the image that would have been taken if
cal cues: edges, textures, and co[@axenaet al, 2007c; the actual pose of the camera was exactly equal to the mea-
20073 We transform the image into YCbCr color space, sured pose (e.g., if the robot had moved exactly to the com-
where Y is the intensity channel, and Cb and Cr are colofmanded position and orientation, in the case of the camera
channels. We compute features representing edges by coR€ing mounted on the robotic arm). However, due to posi-
volving the intensity channel with 6 oriented edge ltersgF  tioning error, instead an imad® is taken from a slightly dif-
ure 5). Texture information is mostly contained within the ferent location. Le{u; v) be a 2-d position in imag€, and
image intensity channel, so we apply 9 Laws' masks to thiget (0;¢) be the corresponding image position¢h Thus
channel to compute the texture energy. For the_colc_;_r chanc(u;v) = &(0; %), whereC(u; v) is the pixel value afu; v)
nels, low frequency information is most useful forideniify ;1 imageC. The ‘errors in camera position/pose should usu-
grasps; our color features are computed by applying a loc lly be smalt* and we model the difference betwegn v)

averaging lter (the rst Laws mask) to the 2 color channels. and (0; 0) using an additive Gaussian moddl:= u +
We then compute the sum-squared energy of each of thesge— V_L v, where i; v N(: 2).

Iter outputs. This gives us an initial feature vector of cim-

S'O_P 17. dict if tch tai . int | li “The robot position/orientation error is typically smalbgition
0 predictir a patch contains a grasping point, local Imaggq usually accurate to withiimm), but it is still important to model

features centered on the patch are insuf cient, and one hagjs error. From our experiments (see Section 6), if we et 0,
to use more global properties of the object. We attempt tane triangulation is highly inaccurate, with average eiropredict-
capture this information by using image features extraated ing the grasping point being5:4 cm, as compared th:8 cm when
multiple spatial scales (3 in our experiments) for the patchappropriate 2 is chosen.

Uy



(a) Coffee Pot (b) Duct tape (c) Marker (d) Mug (e) Synthetic Martini Glass

Figure 7: Grasping point classi cation. The red points icle@mage show the locations most likely to be a grasping pamt
predicted by our logistic regression model. (Best vieweddlor.)

Now, to predict which locations in the 2-d image are grasp-
ing points (Figure 7), we de ne the class lalz€li; v) as fol-
lows. For each locatiokfu;Vv) in an imageC, z(u;v) = 1
if (u;v) is the projection of a grasping point onto the image
plane, andz(u;v) = 0 otherwise. For a corresponding loca-
tion (0; ¢) in imageC, we similarly de ne2(0; ¢) to indicate
whether positior{{}; %) represents a grasping point in the im-
ageC. Since(u;Vv) and(1; ¢) are corresponding pixels i@
andC, we assume((; ) = z(u;v). Thus:

P(z{u;y) = 1jC) = P(2(0;9) =1jC)
= P(u; MP@U+ yv+ )=1jC)d 4d (1)

Here,P( y; v) is the (Gaussian) density over and . We
then use logistic regression to model the probability ofd
position(u+ 4;v+ ) in € being a good grasping point:

P@RU+ wiv+ )=1jC)= P(2u+ u;v+ )=1jx; )
. From each camera locatian= 1;:::;;N, one image is
=1=(1+e” ) taken. In imageC;, let the ray passing througfu;v) be
(2)  denotedr;(u;v). Let Gij(u;v) G be the set of grid-
wherex 2 R*?° are the features for the rectangular patchCellS through which the raRg; (u; v) passes. Lety;:r 2
centered afu + v+ ) inimage€ (described in Sec- Gi(u;v) be the indices of the grid-cells lying on the ray

tion 3.3). The parameter of this model2 R*?° is learned Ri\(/\l;;\ll() ow that if ¢ the arid-cells alona th

using standard @aximum likelihood for logistic regression € Know that It any ot the grid-celly along the ray rep-
= argmax . P(zjxi; ), where(x;;z) are the syn- resent a grasping p.omt,_then. its projection is aE]rasp point

thetic training examples (image patches and labels), as gdore formally, zi(u;v) = 1 if and only if y,, = 1 or

scribed in Section 3.2. Figure 7a-d shows the result of apply”'2 ;I 1 or ali tprny. - é Forl_skimplicity, v;/_e us? _aégr-
ing the learned logistic regression model to some real (nonduably unrealistic) naive Bayes-like assumption of indepe
synthetic) images. dence, and model the relation betwee(g; (u;v) = 1jC;)

andP(y,, =1 or::: ory,, =1jCj)as

Figure 8: (a) Diagram illustrating rays from two imag@s
2. andC; intersecting at a grasping point (shown in dark blue).
(Best viewed in color.)

3-d grasp model Given two or more images of a new ob-

ject from different camera positions, we want to infer thd 3- P(zi(u;v) =0jCi) = P(yr, =055y =0jCi)

position of the grasping point. (See Figure 8.) Because lo- ¥

gistic regression may have predicted multiple graspingtsoi = P(yr, =0jC)) (3)
]

per image, there is usually ambiguity in the correspondence
problem (i.e., which grasping point in one image correspgond
to which graping point in another). To address this whil@als Assuming that any grid-cell along a ray is equally likely ® b
taking into account the uncertainty in camera position, wea grasping point, this therefore gives

propose a probabilistic model over possible grasping goint

in 3-d space. In detail, we discretize the 3-d work-space of P(y,, =1jCi)=1 (1 P(z(u;v)=1jG)* (4)

the robotic arm into a regular 3-d grtd  R3, and associate

with each grid elemerjta random variablg; , so thaty; = 1 Next, using another naive Bayes-like independence as-
if grid cell j contains a grasping point, agg = 0 otherwise.  sumption, we estimate the probability of a particular grédk

j=1



y; 2 G being a grasping point as: Here,P( u; v; w) is the (Gaussian) density over, , and
w- Now our logistic regression model is

PO =2 DPECsiOnlyi =1 b 000 ) = 1J6) = P(2(0; 0;W(0;0)) = 1 jx; s)

P(y; =1jCy;:i5Cn) =

P(Cy1;:5Cn) ( .
¥ =1=(1+e % s
= 5 2D T by =) ™
(CiCn) iy wherexs 2 R°® are the image and depth features for the
P(y; = 1) W P(y; = 1jCi)P(Ci) rectangular patch centered @; ¥) in imageC (described
= BN Ply =1) in Section 3.3). The parameter of this model2 R%8 is
LN Ty Yi = learned similarly.
W Now to use a stereo camera in estimating the 3-d grasping
I P(y; =1jC) point, we use
=1 P(y; =1jCi) = P(zi(u;v;w(u;v)) =1jCi)  (8)

®) in Eq. 5in place of Eq. 4 whe@; represents a stereo camera
whereP (y; = 1) is the prior probability of a grid-cell being iMage with depth information gu; v).
a grasping point (set to a constant value in our experiments) This framework allows predictions from both regular and
One can envision using this term to incorporate other availstereo cameras to be used together seamlessly, and also al-
able information, such as known height of the table when theows predictions from stereo cameras to be useful even when
robot is asked to pick up an object from a table. Using Equathe stereo system failed to recover depth information at the
tions 1, 2, 4 and 5, we can now compute (up to a constangredicted grasp point.
of proportionality that does not depend on the grid-cel§ th
probability of any grid-celly; being a valid grasping point, 3.5 MAP Inference
given the images. Given a set of images, we want to infer the most likely 3-d

Stereo cameras Some robotic platforms have stereo cam—IOCation of the grasping point. Therefore, we will choose th
P grid cellj in the 3-d robot workspace that maximizes the con-

eras (e.g., the r(_)t_Jo_t in Figure 10)_; therefore we also_dScusditional log-likelihoodlogP (y; = 1jCi::::Cn) in Eq. 5
how our probabilistic model can incorporate stereo images,, . formally, let there b\ ]regular cameras ad  Ne.
From a stereo camera, since we also get a depth vlugv) stereo cameras. Now fromCEq. 4 and 8. we have: ¢

for each locatior(u; v) in the image® we now obtain a 3-d

imageC (u; v; w(u; v)) for 3-d positiongu; v; w). argmay; logP(y; = 1jCy;::;;Cn)
However because of camera positioning errors (as dis- W
cussed before), we gé&(0; ¢; W(0; ¢)) instead of actualim- ~ =argmax log  P(y; =1jC)
age C(u;v;w(u;v)). We again model the difference be- ! i=1
tween(u; v; w) and((; ¢; W) using an additive Gaussiah:= Nc
u+ 4, 9=v+ y,W=w+ ,,where,; , N(@O; 2). zargmax log 1 (1 P(zi(u;v)=1jG)*K
w N(O; 2). Now, for our class label(u; v; w) in the 3-d L

image, we have:

Xq .
P(afuiyiw) = 1iC) = P(2(0; 0:) = 1iC) * 10g (P (zi (U viw(uiv)) = 11C))O)

i=Nc¢+1
= P(u; vi w) where P(z(u;v) = 1jC;) is given by Eq. 1 and 2 and
v w P (z (u;\_/;w(u;v)) =1 iCi)is givgn by Eq. 6 a_n_d 7.
PU+ wiv+ v;w+ w)=1j€)d udvdw (6) A straightforward implementation that explicitly compste

the sum above for every single grid-cell would give good

W% of the trials described in Section 6.2 graspinggraSping performance, but be extremely inef cient (ove@11

failed because the algorithm found points in the imagesditahot seconQS). _Sln(_:e th_ere_are_ only afew placesin an Image where
actually correspond to each other. (E.g., in one image tl pe- P(2i(u;v) = 1jCi) IS signi c_antly greater _th_an Z€r0, we Im-
lected may correspond to the midpoint of a handle, and inferdiit ~ Plemented a counting algorithm that explicitly considertyo
image a different point may be selected that correspondslifies- ~ grid-cellsy; that are close to at least one may(u; v). (Grid-

ent part of the same handle.) Thus, triangulation usingetipeints  cells that are more thaB distance away from all rays are
results in identifying a 3-d point that does not lie on theeabj By  highly unlikely to be the grid-cell that maximizes the sum-
ensuring that the pixel values in a small window around edt¢hedo  mation in Eq. 9.) This counting algorithm ef ciently accu-
corresponding points are similar, one would be able to tejeme  mulates the sums over the grid-cells by iterating oveall

of these spurious correspondences. “images and ray®; (u;v),” and results in an algorithm that
The depths estimated from a stereo camera are very sparse,i.—
the stereo system nds valid points only for a few pixels ie im- "In practice, we found that restricting attention to rays wehe

age. (see Figure 6) Therefore, we still mostly rely on imagdres P (2i(u;v) = 1jC;i) > 0:1 allows us to further reduce the number
to nd the grasp points. The pixels where the stereo camera waof rays to be considered, with no noticeable degradatioreifiop-
unable to obtain a depth are treated as regular (2-d) imagdspi mance.



identi es a 3-d grasping position in 1.2 sec.

4 Robot Platforms

Our experiments were performed on two robots built for the
STAIR (STanford Al Robot) project.Each robot has an arm
and other equipment such as cameras, computers, etc. (See
Fig. 9 and 10.) The STAIR platforms were built as part of a
project whose long-term goal is to create a general purpose
household robot that can navigate in indoor environments,
pick up and interact with objects and tools, and carry olksas
such as tidy up a room or prepare simple meals. Our algo-
rithms for grasping novel objects represent perhaps a small
step towards achieving some of these goals.

STAIR 1 uses a harmonic arm (Katana, by Neuronics), and
is built on top of a Segway robotic mobility platform. Its
5-dof arm is position-controlled and has a parallel platp-gr
per. The arm has a positioning accuracy dfmm, a reach of
62cm, and can support a payload of 500g. Our vision system
used a low-quality webcam (Logitech Quickcam Pro 4000)
mounted near the end effector and a stereo camera (Bumble-
bee, by Point Grey Research). In addition, the robot has a
laser scanner (SICK LMS-291) mounted approximafiaty
above the ground for navigation purposes. (We used the we-
bcam in the experiments on grasping novel objects, and the
Bumblebee stereo camera in the experiments on unloading
items from dishwashers.) STAIR 2 sits atop a holonomic mo-
bile base, and its 7-dof arm (WAM, by Barrett Technologies)
can be position or torque-controlled, is equipped with a¢hr
ngered hand, and has a positioning accuracy @6 mm. It
has a reach dfm and can support a payload3Kg. Its vision
system uses a stereo camera (Bumblebee2, by Point Grey
search).

We used a distributed software framework called Switch-
yard [Quigley, 2007 to route messages between different
devices such as the robotic arms, cameras and computers.
Switchyard allows distributed computation using TCP mes-
sage passing, and thus provides networking and synchroniza
tion across multiple processes on different hardware plat-
forms.

Figure 9: STAIR 1 platform. This robot is equipped with a
ra-dof arm and a parallel plate gripper.

5 Planning

After identifying a 3-d point at which to grasp an object, we
needto nd an arm pose that realizes the grasp, and then plan
a path to reach that arm pose so as to pick up the object.

Given a grasping point, there are typically many end-
effector orientations consistent with placing the cenfahe
gripper at that point. The choice of end-effector oriertati
should also take into account other constraints, such as loc
tion of nearby obstacles, and orientation of the object.

5-dof arm. When planning in the absence of obstacles, we
found that even fairly simple methods for planning worked
well. Speci cally, on our 5-dof arm, one of the degrees of
freedom is the wrist rotation, which therefore does noteaffe
planning to avoid obstacles. Thus, we can separately censid
planning an obstacle-free path using the rst 4-dof, and de-
ciding the wrist rotation. To choose the wrist rotation ngsa

Figure 10: STAIR 2 platform. This robot is equipped with

TS . .
See http://www.cs.stanford.edu/group/stair for details 7-dof Barrett arm and three- ngered hand.



Figure 11: The robotic arm picking up various objects: sahéver, box, tape-roll, wine glass, a solder tool holdeffee pot,
powerhorn, cellphone, book, stapler and coffee mug. (Segdpet.2.)

simpli ed version of our algorithm if Saxenzet al,, 20074, identi ed possible goal positions in con guration space us
we learned the 2-d value of the 3-d grasp orientation preféct ing standard inverse kinematifdason and Salisbury, 1985
onto the image plane (see Appendix). Thus, for example, ifve plan a path in 6-dof con guration space that takes the
the robot is grasping a long cylindrical object, it shoulthte  end-effector from the starting position to a goal position,
the wrist so that the parallel-plate gripper's inner suelaare  avoiding obstacles. For computing the goal orientation of
parallel (rather than perpendicular) to the main axis of thehe end-effector and the con guration of the ngers, we
cylinder. Further, we found that using simple heuristics toused a criterion that attempts to minimize the opening of
decide the remaining degrees of freedom worked Well. the hand without touching the object being grasped or other
When grasping in the presence of obstacles, such as whegarby obstacles. Our planner uses Probabilistic RoadsMap
unloading items from a dishwasher, we used a full motion(PRMs) [Schwarzeret al, 2005, which start by randomly
planning algorithm for the 5-dof as well as for the openingsampling points in the con guration space. It then congsuc
of the gripper (a 6th degree of freedom). Speci cally, hayin a “road map” by nding collision-free paths between nearby
points, and nally nds a shortest path from the starting po-
°Four degrees of freedom are already constrained by the end'ilt'(.)n to pOSSI_bIe target pOSItlons in this gra_ph. We also ex
effector 3-d position and the chosen wrist angle. To dedidefth perimented with a potential eld plannéKhatib, 1986, but
degree of freedom in uncluttered environments, we fountitrest ~ found the PRM method gave better results because it did not
grasps reachable by our 5-dof arm fall in one of two clasdemin-  get stuck in local optima.
wardgrasps andutwardgrasps. These arise as a direct consequence

of the shape of the workspace of our 5 dof robotic arm (Figure 1 )
A “downward” grasp is used for objects that are close to treetzf ~ 7-dof arm. On the STAIR 2 robot, which uses a 7-dof arm,

the arm, which the arm will grasp by reaching in a downwaredir we use the full algorithm ihSaxeneet al, 20074, for pre-

tion (Figure 11, rstimage), and an “outward” grasp is forjetts  dicting the 3-d orientation of a grasp, given an image of an
further away from the base, for which the arm is unable tolteac gbject. This, along with our algorithm to predict the 3-d
in a downward direction (Figure 11, second image). In peactio  grasping point, determines six of the seven degrees of free-
simplify planning we rst plan a path towards an approachipes, 4oy (j.e., the end-effector location and orientation). &er
which is set to be a xed distance away from the predicted ras ciding thé seventh degree of freedom, we use a criterion that

point towards the base of the robot arm. Then we move the end-"_ " .2 . the dist fth f the obstacl Sj
effector in a straight line forward towards the target graggpoint. maximizes the distance or the arm Irom the obstacles. >im-

Our grasping experiments in uncluttered environmentsti@e6.2)  ilar to the planning on the 5-dof arm, we then apply a PRM
were performed using this heuristic. planner to plan a path in the 7-dof con guration space.



Table 1: Mean absolute error in locating the grasping paintifferent objects, as well as grasp success rate for pickp the
different objects using our robotic arm. (Although traigiwas done on synthetic images, testing was done on the teatico
arm and real objects.)

OBJECTSSIMILAR TO ONES TRAINED ON NOVEL OBJECTS
TESTED ON MEAN ABSOLUTE GRASP-SUCCESS TESTED ON MEAN ABSOLUTE GRASP-SUCCESS
ERROR(CM) RATE ERROR(CM) RATE
STAPLER 1.9 90%
DucT TAPE 1.8 100%
MuGs 2.4 75% KEYS 1.0 100%
PENS 0.9 100% MARKERS SCREWDRIVER 1.1 100%
WINE GLASS 1.2 100% TOOTHBRUSHCUTTER 1.1 100%
Books 2.9 75% JuG 1.7 75%
ERASER/ TRANSLUCENTBOX 3.1 75%
CELLPHONE 1.6 100% POWERHORN 3.6 50%
COILED WIRE 1.4 100%
OVERALL 1.80 90.0% OVERALL 1.86 87.8%
6 Experiments etc. (See Figures 2 and 11.) We note that many of these

. . . objects are translucent, textureless, and/or re ectivakm
6.1 Experiment 1. Synthetic data ing 3-d reconstruction dif cult for standard stereo system
We rst evaluated the predictive accuracy of the algorithm o (Indeed, a carefully-calibrated Point Gray stereo systém,
synthetic images (not contained in the training set). (S3ge F Bumblebee BB-COL-20,—with higher quality cameras than
ure 7e.) The average accuracy for classifying whether a 2-dur web-camera—fails to accurately reconstruct the \sibl
image patch is a projection of a grasping point was 94.2%portions of 9 out of 12 objects. See Figure 6.)

(evaluated on a balanced test set comprised of the ve abject |n extensive experiments, the algorithm for predicting
in Figure 3). Even though the accuracy in classifying 2-dgrasps in images appeared to generalize very well. Despite
regions as grasping points was only 94.2%, the accuracy iBeing tested on images of real (rather than synthetic) thjec
predicting 3-d grasping points was higher because the probancluding many very different from ones in the training set,
bilistic model for inferring a 3-d grasping point automatly it was usually able to identify correct grasp points. We note
aggregates data from multiple images, and therefore “ xes"that test set error (in terms of average absolute error in the

some of the errors from individual classi ers. predicted position of the grasp point) on the real images was
. . . only somewhat higher than the error on synthetic images; thi
6.2 Experiment 2: Grasping novel objects shows that the algorithm trained on synthetic images trans-

We tested our algorithm on STAIR 1 (5-dof robotic arm, with fers well to real images. (Over all 5 object types used in the
a parallel plate gripper) on the task of picking up an objectsynthetic data, average absolute error was 0.81cm in the syn
placed on an uncluttered table top in front of the robot. Thetheticimages; and over all the 14 real test objects, avezage
location of the object was chosen randomly (and we usedior was 1.84cm.) For comparison, neonate humans can grasp
cardboard boxes to change the height of the object, see Figimple objects with an average accuracy of 1.5@Boweret
ure 11), and was completely unknown to the robot. The orienal., 1974
tation of the object was also chosen randomly from the set of Table 1 shows the errors in the predicted grasping points on
orientations in which the object would be stable, e.g., aawin the test set. The table presents results separately foctsbje
glass could be placed vertically up, vertically down, or in awhich were similar to those we trained on (e.g., coffee mugs)
random 2-d orientation on the table surface (see Figure 11and those which were very dissimilar to the training objects
(Since the training was performed on synthetic images of obte.g., duct tape). For each entry in the table, a total of four
jects of different types, none of these scenarios were in therials were conducted except for staplers, for which tealdri
training set.) were conducted. In addition to reporting errors in graspg-pos

In these experiments, we used a web-camera, mounted dipns, we also report the grasp success rate, i.e., thédnact
the wrist of the robot, to take images from two or more loca-of times the robotic arm was able to physically pick up the
tions. Recall that the parameters of the vision algorithmewe object. For a grasp to be counted as successful, the robot had
trained from synthetic images of a small set of ve object to grasp the object, lift it up by abodft, and hold it for 30
classes, namely books, martini glasses, white-board rstase seconds. On average, the robot picked up the novel objects
mugs/cups, and pencils. We performed experiments on co7.8% of the time.
fee mugs, wine glasses (empty or partially lled with water)  For simple objects such as cellphones, wine glasses, keys,
pencils, books, and erasers—but all of different dimersiontoothbrushes, etc., the algorithm performed perfectlyun o
and appearance than the ones in the training set—as wedkperiments (100% grasp success rate). However, grasping
as a large set of objects from novel object classes, such abjects such as mugs or jugs (by the handle) allows only
rolls of duct tape, markers, a translucent box, jugs, knife-a narrow trajectory of approach—where one “ nger” is in-
cutters, cellphones, pens, keys, screwdrivers, stajterth-  serted into the handle—so that even a small error in the grasp
brushes, a thick coil of wire, a strangely shaped power horning point identi cation causes the arm to hit and move the ob-



Figure 12: Example of a real dishwasher image, used foFigure 13: Grasping point detection for objects in a dish-
training in the dishwasher experiments. washer. (Only the points in top ve grasping regions are
shown.)

ject, resulting in a failed grasp attempt. Although it may be
possible to improve the algorithm's accuracy, we beliewat th

- Table 2: Grasp-success rate for unloading items from a dish-
these problems can best be solved by using a more advanc

. ; X sher.
robotic arm that is capable of haptic (touch) feedback.
) : ) TESTEDON  GRASP-SUCCESSRATE

In many instances, the algorithm was able to pick up PLATES 100%
completely novel objects (a strangely shaped power-horn, BOWLS 30%
duct-tape, solder tool holder, etc.; see Figures 2 and 11). MUGS 60%
Perceiving a transparent wine glass is a dif cult problem WINE GLASS 80%
for standard vision (e.g., stereopsis) algorithms becaidse OVERALL 80%

re ections, etc. However, as shown in Table 1, our algorithm
successfully picked it up 100% of the time. Videos showingon multiple objects even in the presence of clutter and ecclu

the robot grasping the objects are available at sion. The robot then uses these grasps and the locations of
the obstacles (perceived using a stereo camera) to plama pat
http://ai.stanford.edu/ asaxena/learninggrasp/ while avoiding obstacles, to pick up the object. When plan-

ning a path to a grasping point, the robot chooses the grasp-
. . N ing point that is most accessible to the robotic arm using a

6.3 Experiment 3: Unloading items from criterion based on the grasping point's height, distandféo
dishwashers robot arm, and distance from obstacles. The robotic arm then

The goal of the STAIR project is to build a general purposelémoves the rst object (Figure 14) by lifting it up by about
household robot. As a step towards one of STAIR's envi-1ft and placing it on a surface on its right using a pre-writte
sioned applications, in this experiment we consideredable t SCript, and repeats the process above to unload the next item
of unloading items from dishwashers (Figures 1 and 14). Thié\s objects are removed, the visual scene also changes, and
is a dif cult problem because of the presence of backgroundhe algorithm will nd grasping points on objects that it had
clutter and occlusion between objects—one object that we armissed earlier.
trying to unload may physically block our view of a second We evaluated the algorithm quantitatively for four object
object. Our training set for these experiments also inaude classes: plates, bowls, mugs and wine glasses. (We have
some hand-labeled real examples of dishwasher images (Figuccessfully unloaded items from multiple dishwashergi-ho
ure 12), including some images containing occluded oljectsever we performed quantitative experiments only on one-dish
this helps prevent the algorithm from identifying grasping washer.) We performed ve trials for each object class (each
points on the background clutter such as dishwasher prong#ial used a different object). We achieved an average grasp
Along with the usual features, these experiments also useiig success rate of 80.0% in a total of 20 trials (see Table 2).
the depth-based features computed from the depth image oBur algorithm was able to successfully pick up objects such
tained from the stereo camera (Section 3.3). Further, isethe as plates and wine glasses most of the time. However, due to
experiments we did not use color information, i.e., the iesg the physical limitations of the 5-dof arm with a parallelgla
fed to the algorithm were grayscale. gripper, it is not possible for the arm to pick up certain ob-
In detail, we asked a person to arrange several objectécts, such as bowls, if they are in certain con guratiores(s
neatly (meaning inserted over or between the dishwashdrigure 15). For mugs, the grasp success rate was low because
prongs, and with no pair of objects lying ush against eachof the problem of narrow trajectories discussed in Secti@n 6
other; Figures 10 and 11 show typical examples) in the upper We also performed tests using silverware, speci cally ob-
tray of the dishwasher. To unload the items from the dishjects such as spoons and forks. These objects were often
washer, the robot rst identi es grasping points in the ineag placed (by the human dishwasher loader) against the corners
Figure 13 shows our algorithm correctly identifying graspsor walls of the silverware rack. The handles of spoons and



Figure 14: Dishwasher experiments (Section 6.3): Our licla unloads items from a dishwasher.

forks are only about 0.5cm thick; therefore a larger cleaean in response to a verbal request and cooking simple kitchen
than 0.5cm was needed for them to be grasped using our pameals. In situations such as these, the robot would know
allel plate gripper, making it physically extremely dif tito ~ which object it has to pick up. For example, if the robot was
do so. However, if we arrange the spoons and forks with parasked to fetch a stapler from an of ce, then it would know that
of the spoon or fork at least 2cm away from the walls of theit needs to identify grasping points for staplers only. Eaer
silverware rack, then we achieve a grasping success rate &dre, in this experiment we study how we can use information
about 75%. about object type and location to improve the performance of
Some of the failures were because some parts of the objettie grasping algorithm.
were not perceived; therefore the arm would hit and move the Consider objects lying against a cluttered background such
object resulting in a failed grasp. In such cases, we believas a kitchen or an of ce. If we predict the grasping points
an algorithm that uses haptic (touch) feedback would signi using our algorithm trained on a dataset containing all ve
cantly increase grasp success rate. Some of our failures weobjects, then we typically obtain a set of reasonable gnaspi
also in cases where our algorithm correctly predicts a grasppoint predictions (Figure 16, left column). Now suppose we
ing point, but the arm was physically unable to reach thaknow the type of object we want to grasp, as well as its ap-
grasp. Therefore, we believe that using an arm/hand witlproximate location in the scene (such as from an object recog
more degrees of freedom, will signi cantly improve perfor- nition algorithm[Gould et al, 2007). We can then restrict
mance for the problem of unloading a dishwasher. our attention to the area of the image containing the object,
and apply a version of the algorithm that has been trained
using only objects of a similar type (i.e., using objecteayp
speci c parameters, such as using bowl-speci ¢ parameters
when picking up a cereal bowl, using spoon-speci ¢ param-
eters when picking up a spoon, etc). With this method, we
obtain object-speci c grasps, as shown in Figure 16 (right
column).

Achieving larger goals, such as cooking simple kitchen
meals, requires that we combine different algorithms such
as object recognition, navigation, robot manipulatiorc. et
These results demonstrate how our approach could be used
in conjunction with other complementary algorithms to ac-
complish these goals.

6.5 Experiment5: Grasping using 7-dof arm and
three- ngered hand.

In this experiment, we demonstrate that our grasping point
prediction algorithm can also be used with other robotic
manipulation platforms. We performed experiments on the
TAIR 2 robot, which is equipped with a 7-dof arm and a
ree- ngered Barrett hand. This is a more capable manipu-
lator than a parallel plate gripper, in that its ngers camnfio
a large variety of con gurations; however, in this experime
we will use the hand only in a limited way, speci cally, a con-
guration with the two ngers opposing the third one, withi al
. ) . . ngers closing simultaneously. While there is a large space
6.4 Ex_perlment 4: Grasping kitchen and of ce of hand con gurations that one would have to consider in or-
objects der to fully take advantage of the capabilities of such a hand
Our long-term goal is to create a useful household robot thaidentifying a point at which to grasp the object still remmin
can perform many different tasks, such as fetching an objecn important aspect of the problem, and is the focus of the

Figure 15: Dishwasher experiments: Failure case. For som
con gurations of certain objects, it is impossible for our 5
dof robotic arm to grasp it (even if a human were controlling
the arm).



Kitchen

Of ce

Figure 17: Barrett arm grasping an object using our algo-
rithm.

algorithms described in this paper to try to enable STAIR to

. . . L prepare simple meals using a normal home kitchen.
Figure 16: Grasping point classi cation in kitchen and cé ¢
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In particular, we asked a person to place several objects iRS
front of the STAIR 2 robot. The bowls were placed upright - ‘ot ; ;
at a random location on a table (with height unknown to theAppenle' Predicting orientation .
robot), and the plates were stacked neatly in a rack (also iff! [Saxenaet al, 20078, we presented an algorithm for pre-
a random location). Using our algorithm trained on a dataseflicting the 3-d orientation of an object from its image. Here
containing the ve synthetic objects described in Sectigh 3 for the sake of simplicity, we will present the learning al-
the robot chose the best grasp predicted from the image, ar@Prithm in the context of grasping using our 5-dof arm on
attempted to pick up the object (Figure 17). It achieved aTAIR 1. . . ) .
grasping success rate of 60% for cereal bowls, and 80% for AS discussed in Section 5, our task is to predict the 2-d

plates (5 trials for each object). wrist orientation of the gripper (at the predicted grasping
point) given the image. For example, given a picture of a

7 Conclusions closed book (which we wpulq like to grasp at ||ts edge), we
) ] should choose an orientation in which the robot's two ngers

We proposed an algorithm for enabling a robot to grasp amyre parallel to the book's surfaces, rather than perpetaticu

object that it has never seen before. Our learning algorithno the book's cover.

neither tries to build, nor requires, a 3-d model of the ob- since our robotic arm has a parallel plate gripper compris-

ject. Instead it predicts, directly as a function of the i®8g ing two ngers that close in parallel, a rotation ofresults in

a point at which to grasp the object. In our experiments, thesimilar con guration of the gripper. This results in a diseo

algorithm generalizes very well to novel objects c_';md eMAI0 tinuityat = , in that the orientation of the gripper at

ments, and our robot successfully grasped a wide variety ok equivalentto = 0. Therefore, to handle this symmetry,

objects in different environments such as dishwasherseof e will represent angles vig ) = [cos(2 );sin(2 )] 2 R2.

and kitchen. , _ Thus,y( + N )=[cos(2 +2N );sin(2 +2N )] =y( ).
The ability to pick up novel objects represents perhaps a Now, given images features we model the conditional

tiny rst step towards the STAIR project's larger goal of en- distribution ofy as a multi-variate Gaussian:
abling robots to perform a large variety of household tasks,

such as fetching an item in response to a verbal request, tidy P(yix;w;K)=(2 ) "2Kj?
ing up a room, and preparing simple meals in a kitchen. In

1 T\T T
the short term, we are working on applying variations of the exp Q(y wix) K (y wix)



whereK 1 is a covariance matrix. The parameters of this[Hsiao and Lozano-Perez, 2J0&. Hsiao and T. Lozano-Perez.

modelw andlg?are learnt by maximizing the conditional log

likelihoodlog = ; P (yijxi;w).
Now when given a new image, our MAP estimate yos
given as follows. Sincgyijj. = 1, we will choose

y =arg max logP(yjx;w;K)=arg max y'Kq
yiiiyii 2=1 yiiivii2=1
for g = w' x. (This derivation assumed = 2| for some

2, which will roughly hold true if is chosen uniformly in
the training set.) The closed form solution of thisyis=
Kg=jjKajjz. _ _ _

In our robotic experiments, typicall30 accuracy is re-

Imitation learning of whole-body grasps. IEEE/RJS Inter-
national Conference on Intelligent Robots and Systems $)RO
2006.

[Hsiaoet al, 2007 K. Hsiao, L. Kaelbling, and T. Lozano-Perez.
Grasping POMDPs. Imternational Conference on Robotics and
Automation (ICRA)2007.

[Hueseret al, 2006 M. Hueser, T. Baier, and J. Zhang. Learning of
demonstrated grasping skills by stereoscopic trackinguofidm
hand con guration. Irnternational Conference on Robotics and
Automation (ICRA)2006.

[Kamonet al, 1994 1. Kamon, T. Flash, and S. Edelman. Learning
to grasp using visual information. International Conference on
Robotics and Automation (ICRA)996.

quired to successfully grasp an object, which our algorithmKhatib, 198¢ O. Khatib. The potential eld approach and opera-
almost always attains. In an example, Figure 18 shows the tional space formulation in robot contrghdaptive and Learning

predicted orientation for a pen.

Figure 18: Predicted orientation at the grasping point for.p
Dotted line represents the true orientation, and solid lape
resents the predicted orientation.
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