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Abstract

We consider the problem of detecting past
activities as well as anticipating which activ-
ity will happen in the future and how. We
start by modeling the rich spatio-temporal
relations between human poses and objects
(called affordances) using a conditional ran-
dom field (CRF). However, because of the
ambiguity in the temporal segmentation of
the sub-activities that constitute an activity,
in the past as well as in the future, mul-
tiple graph structures are possible. In this
paper, we reason about these alternate pos-
sibilities by reasoning over multiple possi-
ble graph structures. We obtain them by
approximating the graph with only additive
features, which lends to efficient dynamic
programming. Starting with this proposal
graph structure, we then design moves to
obtain several other likely graph structures.
We then show that our approach improves
the state-of-the-art significantly for detecting
past activities as well as for anticipating fu-
ture activities, on a dataset of 120 activity
videos collected from four subjects.

1. Introduction

Being able to detect which activity is being performed
as well as being able to anticipate what is going to
happen next in an environment is important for ap-
plication domains such as robotics and surveillance.
In a typical environment, we have humans interact-
ing with the objects and performing a sequence of ac-
tivities. Recently, inexpensive RGB-D cameras (such
as Microsoft Kinect, see Figure 1) have enabled re-
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searchers to model such rich spatio-temporal interac-
tions in the 3D scene for learning complex human ac-
tivities. For example, Koppula, Gupta and Saxena
(2013) (KGS) used a conditional random field (CRF),
trained with max-margin methods, to model the rich
spatio-temporal relations between the objects and hu-
mans in the scene.

However, in previous works, emphasis has been on
modeling the relations between components in the
scene (human pose, objects, etc.), and performing
learning and inference given the spatio-temporal struc-
ture of the model (i.e., for a given CRF structure in
the case of KGS). However, it is quite challenging to
estimate this structure because of two reasons. First,
an activity comprises several sub-activities, of vary-
ing temporal length, performed in a sequence. This
results in an ambiguity in the temporal segmentation
and thus a single graph structure may not explain the
activity well. Second, there can be several possible
graph structures when we are reasoning about activi-
ties in the future (i.e., when the goal is to anticipate
future activities, different from just detecting the past
activities). Multiple spatio-temporal graphs are possi-
ble in these cases and we need to reason over them in
our learning algorithm.

In our work, we start by using a CRF to model the
sub-activities and affordances of the objects, how they
change over time, and how they relate to each other.
In detail, we have two kinds of nodes: object and sub-
activity nodes. The edges in the graph model the pair-
wise relations among interacting nodes, namely the
object—object interactions, object—sub-activity inter-
actions, and the temporal interactions (see Figure 1).
This model is built with each spatio-temporal segment
being a node. Figure 2 shows two possible graph struc-
tures for an activity with two objects. We then reason
about the possible graph structures for both past and
future activities. The key idea is to first sample a few
segmentations that are close to the ground-truth seg-
mentation using our CRF model instantiated with a
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Figure 1. An example activity from the CAD-120 dataset
(top row) and one possible graph structure (bottom row).
Top row shows the RGB image (left), depths (middle),
and the extracted skeleton and object information (right).
(Graph in the bottom row shows the nodes at only the tem-
poral segment level, the frame level nodes are not shown.)

subset of features, and then explore the space of seg-
mentation by making merge and split moves to create
new segmentations. We do so by approximating the
graph with only additive features, which lends to effi-
cient dynamic programming.

In extensive experiments over 120 activity videos col-
lected from four subjects, we showed that our ap-
proach outperforms the state-of-the-art results both
in the tasks of activity and affordance detection. We
achieved an accuracy of 85.4% for affordance, 70.3%
for sub-activity labeling and 83.1% for high-level ac-
tivities respectively for detection. Furthermore, we
obtain an accuracy of 67.2% and 49.6% for anticipat-
ing affordances and sub-activities respectively in fu-
ture time-frames.

2. Related Work

There has been a considerable amount of previous
work on detection of human activities from still im-
ages as well as videos (e.g., Maji et al., 2011; Yang
et al., 2010; Xing et al., 2008; Ryoo, 2011; Hoai & De
la Torre, 2012a). Similar to our setting some recent
works have shown that modeling the mutual context
between human poses and objects (either the category
label or affordance label, Jiang et al. 2012a) is use-
ful for activity detection (Gupta et al., 2009; Yao &
Fei-Fei, 2010; Delaitre et al., 2011; Prest et al., 2012;
Koppula et al., 2013).

Recent availability of inexpensive RGB-D sensors has
enabled significant improvement in scene modeling
(Koppula et al., 2011; Anand et al., 2012; Jiang et al.,
2012b; 2013; Jia et al., 2013; Jiang & Saxena, 2013)
and estimation of human poses (Shotton et al., 2012;

Y
past frames

past frames future frames

Figure 2. Figure illustrating two possible graph structures
(top and bottom), with six observed frames in the past
and three anticipated frames in the future. This example
has one sub-activity node and two object nodes in each
temporal segment.

Ly et al.,, 2012). This, together with depth infor-
mation, has enabled some recent works (Sung et al.,
2011; Zhang & Parker, 2011; Ni et al., 2011; Sung
et al., 2012) to obtain good action recognition perfor-
mance. However, these methods only address detec-
tion over small periods of time, where temporal seg-
mentation (and thus knowledge of the spatio-temporal
graph structure) is not a big problem. KGS (Kop-
pula et al., 2013) proposed a model to jointly predict
sub-activities and object affordances by taking into ac-
count both spatio-temporal interactions between hu-
man poses and objects over longer time periods. How-
ever, KGS found that not knowing the graph structure
(i.e., the correct temporal segmentation) decreased the
performance significantly. This is because the bound-
ary between two sub-activities is often not very clear,
as people often start performing the next sub-activity
before finishing the current sub-activity. We compare
our proposed method with theirs and show consider-
able improvement over their state-of-the-art results.

In activity detection from 2D videos, much previous
work has focussed on short video clips, assuming that
temporal segmentation has been done apriori. Some
recent effort in recognizing actions from longer video
sequences take an event detection approach (Ke et al.,
2007; Simon et al., 2010; Nguyen et al., 2009), where
they evaluate a classifier function at many different
segments of the video and then predict the event pres-
ence in segments. Similarly, change point detection
methods (Xuan & Murphy, 2007; Harchaoui et al.,
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2008) work by performing a sequence of change-point
analysis in a sliding window along the time dimension.
However, these methods only detect local boundaries
and tend to over-segment complex actions which often
contain many changes in local motion statistics.

Some previous works consider joint segmentation and
recognition by defining dynamical models based on
kinematics (Oh et al., 2008; Fox et al., 2009), but these
works do not model the complex human-object inter-
actions. Hoai et al. (2011) and Hoai & De la Torre
(2012b) do not consider temporal context and only
perform activity classification and clustering respec-
tively. In related work, Ion et al. (2011) consider the
problem 2D image segmentation. They sample seg-
mentations of images for labeling using an Incremen-
tal Saddle Point estimation procedure which require
good initial samples. In contrast, our application re-
quires modeling of the temporal context (as compared
to just spatial). This work is closer to KGS, where they
also sample the segmentation space. However, in our
approach we use a discriminative approach, where we
model the energy function as composed of an additive
and a non-additive term. This allows us to efficiently
sample the potential graph structures.

One important application of our approach is in antic-
ipating future activities, where reasoning over future
possible graph structures becomes important. Antic-
ipating future activities has gained attention only re-
cently (Kitani et al., 2012; Koppula & Saxena, 2013).
Kitani et al. (2012) proposed a Markov decision pro-
cess to obtain a distribution over possible human navi-
gation trajectories in 2D from visual data. Koppula &
Saxena (2013) addressed the problem of anticipating
human activities at a fine-grained level of how humans
interact with objects in more complex activities such
as microwaving food or taking medicine. They repre-
sent the distribution of the possible futures with a set
of particles that are obtained by augmenting the CRF
structure of KGS with sampled future nodes. However,
they do not reason about the possible graph structures
for the past. In our work, we show that sampling the
spatio-temporal structure, in addition to sampling the
future nodes, results in better anticipation.

In terms of learning algorithms, probabilistic graphical
models are a workhorse of machine learning and have
been applied to a variety of applications. Frameworks
such as HMMs (Hongeng & Nevatia, 2003; Natarajan
& Nevatia, 2007), DBNs (Gong & Xiang, 2003), CRFs
(Quattoni et al., 2007; Sminchisescu et al., 2005; Kop-
pula et al., 2013), and semi-CRF's (Sarawagi & Cohen,
2004) have been previously used to model the tempo-
ral structure of videos and text. While most previous

works maintain their template graph structure over
time, in our work, new graph structures are possible.
Works on semi-Markov models (Sarawagi & Cohen,
2004; Shi et al., 2011) are quite related to our work
as they address the problem of finding the segmenta-
tion along with labeling. However, these methods are
limited since they are only efficient for feature maps
that are additive in nature. We build upon these ideas
where we use the additive feature map as only a close
approximation to the graph structure and then explore
the space of likely graph structure by designing moves.
We show that this improves performance while being
computationally efficient.

3. Modeling Spatio-Temporal Relations
for a Given Graph Structure

In our setting, our algorithm observes a scene contain-
ing a human and objects for time ¢ in the past, and our
goal is to detect activities in the observed past and also
anticipate the future activities for time d. Following
KGS, we discretize time to the frames of the video! and
group the frames into temporal segments, where each
temporal segment spans a set of contiguous frames cor-
responding to a single sub-activity. Therefore, at time
‘t” we have observed ‘t’ frames of the activity that are
grouped into ‘k’ temporal segments. (Figure 2 shows
two temporal segments for the past.)

We model the spatio-temporal structure of an activity
using a conditional random field, illustrated in Fig-
ure 1. For the past ¢t frames, we know the nodes of
the CRF but we do not know the temporal segmen-
tation, i.e., which frame level nodes are connected to
each of the segment level node. The node labels are
also unknown. For the future d frames, we do not even
know the nodes in the graph—there maybe different
number of objects being interacted with depending on
which sub-activity is performed in the future. Our goal
is to explore different possible past and future graph
structures (i.e., sub-activities, human poses, object lo-
cations and affordances). We will do so by augment-
ing the graph in time with potential object nodes, and
sampling several possible graph structures.

We first describe the CRF modeling given a fixed
graph structure for t observed frames. Let, s €
{1,..,N} denote a temporal segment and y =
(¥1,--,yn) denote the labeling we are interested in
finding, where y, is the set of sub-activity and ob-
ject affordance labels for the temporal segment s. Our
input is a set of features ®(x) extracted from the seg-

In the following, we will use the number of videos
frames as a unit of time, where 1 unit of time ~ 7lms
(=1/14, for a frame-rate of about 14Hz).
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mented 3D video. The prediction y is computed as
the argmax of an energy function F(y|®(x);w) that
is parameterized by weights w.

y= arg;naxE(yli’(X); w) (1)

This energy is expressed over a graph, G = (V, €) (asil-
lustrated in Figure 1), and consists of two terms—node
terms and edge terms. Each of these terms comprises
the label, appropriate features, and weights. Let yf be
a binary variable representing the node 7 having label
k, where K is the set of labels. Let ¢,,(7) and ¢.(i,7)
be the node and edge feature maps respectively. (De-
pending on the node and edge being used, the appro-
priate subset of features and class labels are used.) We
thus write the energy function as:

E|ox);w) =3 > o [wh - 6a()] |

i€V keK

+ 30 [wi’“-%(i,j)] (2)

(i,5)€E (Lk)EK X K

Note that the graph has two types of nodes: sub-
activity and object nodes, and it has four types of
edges: object—object edges, object—sub-activity edges,
object—object temporal edges, and sub-activity—sub-
activity temporal edges. Our energy function is a sum
of six types of potentials that define the energy of a
particular assignment of sub-activity and object affor-
dance labels to the sequence of segments in the given
video: E(y|®(x); W) = Eo+Ey+FEopo+Eoq+EL +EL .
However, we have written it compactly in Eq. (2).

Learning and Inference. As the structure of the
graph is fully known, we learn the parameters of the
energy function in Eq. (2) by using the cutting plane
method (Joachims et al., 2009).

However, during inference we only know the nodes in
the graph but not the temporal segmentation, i.e., the
structure of the graph in terms of the edges connecting
frame level nodes to the segment level label nodes.
We could search for the best labeling over all possible
segmentations, but this is very intractable because our
feature maps contain non-additive features (that are
important and are described in the next sub-section).

3.1. Features: Additive and Non-Additive

We categorize the features into two sets: additive fea-
tures, ®4(x), and non-additive features, ®V4(x). We
compute the additive features for a set of frames cor-
responding to a temporal segment by adding the fea-
ture values for the frames belonging to the temporal
segment. Examples of the additive features include
distance moved and vertical displacement of an object
within a temporal segment. The features that do not

satisfy this property are referred to as the non-additive
features, for example, maximum and minimum dis-
tances between two objects. As we discuss in the next
section, additive features allow efficient joint segmen-
tation and labeling by using dynamic programming,
but may not be expressive enough.

Non-additive features sometimes provide very useful
cues for discriminating the sub-activity and affordance
classes. For example, consider discriminating cleaning
sub-activity from a moving sub-activity: here the total
distance moved could be similar (an additive feature),
however, the minimum and maximum distance moved
being small may be strong indicator of the activity be-
ing cleaning. In fact, when compared to our model
learned using only the additive features, the model
learned with both additive and non-additive features
improves macro precision and recall by 5% and 10.1%
for labeling object affordance respectively and by 3.7%
and 6.2% for labeling sub-activities respectively.

In detail, we use the same features as described by
KGS. These features include the node feature maps
0o(i) and ¢, () for object node i and sub-activity node
j respectively, and edge feature maps ¢ (4, j) capturing
the relations between various nodes. The object node
feature map, ¢, (%), includes the (z,y, z) coordinates of
the object’s centroid, the coordinates of the object’s
bounding box and transformation matrix w.r.t. to the
previous frame computed at the middle frame of the
temporal segment, the total displacement and the to-
tal distance moved by the object’s centroid in the set
of frames belonging to the temporal segment. The
sub-activity node feature map, ¢,(j), gives a vector
of features computed using the noisy human skeleton
poses obtained from running Openni’s skeleton tracker
on the RGBD video. We compute the above described
location (relative to the subject’s head location) and
distance features for each the upper-skeleton joints ex-
cluding the elbow joints (neck, torso, left shoulder, left
palm, right shoulder and right palm).

The edge feature maps, ¢:(4, ), include relative geo-
metric features such as the difference in (x,y, z) coor-
dinates of the object centroids and skeleton joint lo-
cations and the distance between them. In addition
to computing these values at the first, middle and last
frames of the temporal segment, we also consider the
min and max of their values across all frames in the
temporal segment to capture the relative motion in-
formation. The temporal relational features capture
the change across temporal segments and we use the
vertical change in position and the distance between
corresponding object and joint locations. We perform
cumulative binning of all the feature values into 10
bins for each feature.
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4. Sampling Spatio-Temporal Graphs

Efficient Inference with Additive Features. We
express the feature set, ®(x), as the concatenation of
the additive and non-additive feature sets, ®(x) and
®N4(x) respectively. Therefore, by rearranging the
terms in Eq. (2), the energy function can written as:
Bly|®(x); w) = B(y|®(x); w) + E(y|®V4 (x); w)
We perform efficient inference for the energy term
E(y|®4(x); w) by formulating it as a dynamic pro-
gram (see Eq. (3)). In detail, let L denote the max
length of a temporal segment, i denote the frame in-
dex, s denote the temporal segment spanning frames
(i —1) to i, and (s — 1) denote the previous segment.
We write the energy function in a recursive form as:

V(i,k) = max Vz—lk: -I-Zys [wn i ( )]

k/,1=1
keK

+Zys[

keEK

65— 1,9)] (3)

Here, ¢/(s) and ¢ (s — 1,5) denote the additive fea-
ture maps and can be efficiently computed by using the
concept of integral images.? The best segmentation
then corresponds to the path traced by max, V (¢, a),
where t is the number of video frames.

Using E(y|®”(x); w), we find the top-k scored seg-
mentations and then evaluate them using the full
model E(y|®(x); w) in order to obtain more accurate
labelings.

Merge and Split Moves. The segmentations
generated by the approximate energy function,
E(y|®4(x); w), are often very close to the given
ground-truth segmentations. However, since the en-
ergy function used is only approximate, it sometimes
tends to over-segment or miss the boundary by a few
frames. In order to obtain a representative set of seg-
mentation samples, we also perform random merge
and split moves over these segmentations, and con-
sider them for evaluating with the full model as well.
A merge move randomly selects a boundary and re-
moves it, and a split move randomly chooses a frame
in a segment and creates a boundary.

2The additive features for temporal segments starting at
the first frame and ending at frame [, for [ = 1..t are pre-
computed, i.e., the segment features for a total of ¢ tempo-
ral segments are computed. This needs (n xt) summations,
where n is the number of features. Now the segment fea-
tures for a temporal temporal segment starting and ending
at any frame can be computed by n subtractions. There-
fore, the total feature computation cost is linear in the
number of possible segmentations.

Heuristic Segmentations. There is a lot of infor-
mation present in the video which can be utilized for
the purpose of temporal segmentation. For example,
smooth movement of the skeleton joints usually rep-
resent a single sub-activity and the sudden changes in
the direction or speed of motion indicate sub-activity
boundaries. Therefore, we incorporate such informa-
tion in performing temporal segmentation of the activ-
ities. In detail, we use the multiple segmentation hy-
potheses proposed by KGS. These include graph based
segmentation method proposed by (Felzenszwalb &
Huttenlocher, 2004) adapted to temporally segment
the videos. The sum of the Euclidean distances be-
tween the skeleton joints and the rate of change of
the Euclidean distance are used as the edge weights
for two heuristic segmentations respectively. By vary-
ing the thresholds, different temporal segmentations
of the given activity can be obtained. In addition to
the graph based segmentation methods, we also use
the uniform segmentation method which considers a
set of continuous frames of fixed size as the temporal
segment. There are two parameters for this method:
the segment size and the offset (the size of the first seg-
ment). However, these methods often over-segment a
sub-activity, and each segmentation would result in a
different graph structure for our CRF modeling.

We generate multiple graph structures for various val-
ues of the parameters for the above mentioned meth-
ods and obtain the predicted labels for each using
Eq. (1). We obtain the final labeling over the segments
by either using the second-step learning method pre-
sented in KGS, or by performing voting and taking
the label predicted by majority of the sampled graph
structures (our experiments follow the latter).

4.1. Anticipating and Sampling Future Nodes

For anticipating the next d time, we augment the CRF
structure with d frame nodes as proposed in (Kop-
pula & Saxena, 2013). Sampling this graph comprises
three steps. First, we need to sample the possible sub-
activity and the object nodes involved. Second, for
this segment-level graph, we sample the frame-level
nodes, starting with possible end-points of the physi-
cal location of the objects and human hands. Third,
given the end locations, we sample a variety of tra-
jectories. This sampling procedure gives us various
possible future nodes and their spatial relations. We
add these to the observed nodes and sample various
possible temporal segmentations as described above.

In the first step, we sample the object affordances and
activities based on a discrete distribution generated
from the training data. This distribution is based on
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the object type (e.g., cup, bowl, etc.) and object’s cur-
rent position with respect to the human in the scene
(e.g., in contact with the human hand, etc.). For ex-
ample, if a human is holding an object of type ‘cup’
placed on the table, then the affordances drinkable
and movable with their corresponding sub-activities
(drinking and moving respectively) have equal proba-
bility, with all others being 0.

In the second step, given the sampled affordances and
sub-activity, we sample the corresponding object loca-
tions and human poses for the d anticipated frames.
In order to have meaningful object locations and hu-
man poses we take the following approach. We model
object affordances using a potential function based on
how the object is being interacted with, when the cor-
responding affordance is active. The affordance poten-
tial has the form ¢, = [[, Yaist, [[; ori;, where Yaise,
is the i*" distance potential and o, is the j*" relative
angular potential. We model each distance potential
with a Gaussian distribution and each relative angu-
lar potential with a von Mises distribution and find the
parameters from the training data. We can now score
the points in the 3D space using the potential function,
whose value represents the strength of the particular
affordance at that location. Therefore, for the chosen
affordance, we sample the object’s most likely future
location using the affordance potentials.

In the third step, for every sampled target object
location, we generate a set possible trajectories fol-
lowing which the object can be moved form its cur-
rent location to the sampled target location. We
use parametrized cubic equations, in particular Bézier
curves, to generate human hand like motions (Faraway
et al., 2007). We estimate the control points of the
Bézier curves from the training data.

Sampling Augmented Graphs. In order to sample
the future graphs, we augment our observed frames
with these sampled future frames, and then sample
the augmented graph structures (for different tempo-
ral segmentations) as described in Section 4. We then
use the energy function in Eq. (2) to obtain the best
labeling for each sampled graph. The node potentials
score how well the features extracted from the antici-
pated object locations and human poses match the af-
fordance and sub-activity labels respectively, and the
edge potentials score how likely are the anticipated
sub-activities and affordances likely to follow the ob-
served ones. Therefore, the value of the energy func-
tion provides a ranking over the sampled augmented
graphs for the future time. For obtaining anticipa-
tion metrics, we report the highest ranked one (and
compare it with what was actually performed in the
future).

5. Experiments

Data. We test our model on the Cornell Activity
Dataset-120 (CAD-120) (Koppula et al., 2013). It con-
tains 120 3D videos of four different subjects perform-
ing 10 high-level activities, where each high-level activ-
ity was performed three times with different objects.
It contains a total of 61,585 total 3D video frames. The
activities have a long sequence of sub-activities, which
vary from subject to subject significantly in terms of
length of the sub-activities, order of the sub-activities
as well as in the way they executed the task. The
dataset is labeled with both sub-activity and object af-
fordance labels. The high-level activities are: {making
cereal, taking medicine, stacking objects, unstacking
objects, microwaving food, picking objects, cleaning ob-
jects, taking food, arranging objects, having a meal}.
The sub-activity labels are: {reaching, moving, pour-
ing, eating, drinking, opening, placing, closing, scrub-
bing, null} and affordance labels are: {reachable, mov-
able, pourable, pourto, containable, drinkable, openable,
placeable, closable, scrubbable, scrubber, stationary}.

Evaluation: For comparison, we follow the same
train-test split described in KGS and train our model
on activities performed by three subjects and test on
activities of a new subject. We report the results ob-
tained by 4-fold cross validation by averaging across
the folds. We consider the overall micro accuracy
(P/R), macro precision and macro recall of the de-
tected sub-activities, affordances and overall activity.
Micro accuracy is the percentage of correctly classified
labels. Macro precision and recall are the averages of
precision and recall respectively for all classes. We
also computed these metrics for the anticipated sub-
activity and affordances.

Detection Results. Table 1 shows the performance
of our proposed approach on object affordance, sub-
activity and high-level activity labeling for past activi-
ties. Rows 3-5 show the performance for the case where
ground-truth temporal segmentation is provided and
rows 6-9 show the performance for the different meth-
ods when no temporal segmentation is provided. With
known graph structure, the model using the the full set
of features (row 4) outperforms the model which uses
only the additive features (row 5): macro precision
and recall improve by 5% and 10.1% for labeling ob-
ject affordance respectively and by 3.7% and 6.2% for
labeling sub-activities respectively. This shows that
additive features bring us close, but not quite, to the
optimal graph structure.

When the graph structure is not known, the perfor-
mance drops significantly. Our graph sampling ap-
proach based on the additive energy function (row 6)
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Table 1. Results on CAD-120 dataset for detection, showing average micro precision/recall, and average macro
precision and recall for affordances, sub-activities and high-level activities. Computed from 4-fold cross validation with

testing on a new human subject in each fold. Standard error is also reported.
With ground-truth segmentation.

Object Affordance Sub-activity High-level Activity
micro macro micro macro micro macro
method P/R Prec. Recall P/R Prec. Recall P/R Prec. Recall
chance 8.3 (0.0) 8.3(0.0) 8.3(0.0) [10.0 (0.0) 10.0 (0.0) 10.0 (0.0) | 10.0 (0.0) 10.0 (0.0) 10.0 (0.0)
maz class 65.7 (1.0) 65.7 (1.0) 8.3 (0.0) |29.2 (0.2) 29.2 (0.2) 10.0 (0.0) | 10.0 (0.0) 10.0 (0.0) 10.0 (0.0)
KGS (Koppula et al., 2013) 91.8 (0.4) 90.4 (2.5) 74.2 (3.1) | 86.0 (0.9) 84.2 (1.3) 76.9 (2.6) | 84.7 (2.4) 85.3 (2.0) 84.2 (2.5)
Our model: all features 93.9 (0.4) 89.2 (1.3) 82.5 (2.0)|89.3 (0.9) 87.9 (1.8) 84.9 (1.5)|93.5 (3.0) 95.0 (2.3) 93.3 (3.1)
Our model: only additive features 92.0 (0.5) 84.2 (2.2) 72.4 (1.2) | 86.5 (0.6) 84.2 (1.3) 78.7 (1.9) | 90.3 (3.8) 92.8 (2.7) 90.0 (3.9)

Without ground-truth segmentation.

Our DP sey. 836 (1.1) 705 (23) 53.6 (4.0) [71.5 (1.4) 71.0 (3.2) 60 1 (37) 806 (41) 861 (25) 800 (4.2)
Our DP seg. + moves 84.2 (0.9) 72.6 (2.3) 58.4 (5.3) | 71.2 (1.1) 70.6 (3.7) 615 (4.5) | 83.1 (5.2) 88.0 (3.4) 82.5 (5.4)
heuristic seg. (KGS) 83.9 (1.5) 75.9 (4.6) 64.2 (4.0) | 68.2 (0.3) 711 (1.9) 62 2 (4.1) | 80.6 (1.1) 818 (2.2) 80.0 (1.2)
Our DP seq. + moves + heuristic seg.|85.4 (0.7) 77.0 (2.9) 67.4 (3.3)| 70.3 (0.6) 74.8 (1.6) 66.2 (3.4)| 83.1 (3.0) 87.0 (3.6) 82.7 (3.1)
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Figure 3. Confusion matrix for affordance labeling (left), sub-activity labeling (middle) and hlgh—level activity labeling
(right) of the test RGB-D videos.

Activity: Making Cereal

achieves 83.6% and 71.5% micro precision for label-
ing object affordance and sub-activities, respectively.
This is improved by sampling additional graph struc-
tures based on the Split and Merge moves (row 7).
Finally, when combining these segmentations with the
other heuristically generated segmentations presented
by KGS, our method obtains the best performance

ow 9) and significantly i oves the previous state-
(row 9) and significantly improves previous Figure 4. Illustration of the ambiguity in temporal

of-the-art (KGS, row 8). segmentation. We compare the sub-activity labeling of
Figure 3 shows the confusion matrix for labeling af- ~ various segmentations. Here, making cereal activity com-
fordances, sub-activities and high-level activities us- ~ Prises the SUb‘aCt{VltleS: reaching, moving, pouring and
ing our method (row 9). We can see that there is a placing as colored in red, green, blue and magenta respec-
strong diagonal with a few errors such as powring mis- tively. The x-axis denotes the time axis numbered with
classified as moving, and picking objects misclassified frame numbers. It can be seen that the various individual
! segmentation methods are not perfect.

as having a meal. Figure 4 shows the labeling out- & P

put of the different methods. The bottom-most row Anticipation Results. Table 2 shows the frame-
show the ground-truth segmentation, top-most row is  Jevel metrics for anticipating the sub-activity and ob-
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the labeling obtained when the graph structure is pro-  ject affordance labels for 3 seconds in the future on
vided, followed by three heuristically generated seg-  the CAD-120 dataset. We compare our anticipation
mentations. The fifth row is the segmentation gen- method against the following baselines:

erated by our sampling approach and the sixth and
seventh rows are the labeling obtained by combining
the multiple segmentations using a simple max-voting
and by the multi-segmentation learning of KGS. Note
that some sub-activity boundaries are more ambigu-
ous (high variance among different methods) than the
others. Our method has an end-to-end (including fea-
ture computation cost) frame rate of 4.3 frames/sec
compared to 16.0 frames/sec of KGS.

1. Chance. Labels are chosen at random.

2. Nearest Neighbor. It first finds an example from
the training data which is the most similar (based
on feature distance) to the activity observed in the
last temporal segment. The sub-activity and ob-
ject affordance labels of the frames following the
matched frames from the exemplar are predicted
as the anticipations.
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Table 2. Results for Anticipating Future Sub-activities and Affordances, computed over 3 seconds in the future
(similar trends hold for other anticipation times). Computed from 4-fold cross validation with a new human subject in

each fold. Standard error is also reported.

Anticipated Object Affordance Anticipated Sub-activity
model micro macro micro macro
P/R Precision Recall P/R Precision Recall
chance 83 (0.1) 83 (0.1) 83 (0.1) 10.0 (0.1) 10.0 (0.1) 10.0 (0.1)
Nearest neighbor 48.3 (1.5) 18.4 (1.2) 16.2 (0.9) 22.0 (0.9) 10.7 (0.7) 10.5 (0.5)
KGS+ co-occurance 55.9 (1.7) 10.5 (0.4) 12.9 (0.4) 28.6 (1.8) 9.9 (0.2) 12.8 (0.8)
Ours-segment 59.5 (1.5) 11.3 (0.3) 13.6 (0.4) 34.3 (0.8) 10.4 (0.2) 14.7 (0.2)
Koppula & Sazena (2013) | 66.1 (1.9) 71.5 (5.6) 24.8 (1.6) 477 (1.6) 611 (4.1)  27.6 (2.0)
Ours-full 67.2 (1.1)  73.4(18) 29.1(1.7) | 49.6 (1.4) 63.6 (1.2)  29.9 (L.7)
3. Co-occurrence Method. The transition probabil- . e axona (2013) QU melod e 015)
ities for sub-activities and affordances are com- . ke  cooccurante kG x co-omomencs
puted from the training data. The observed e ~ “ohane o s
frames are first labelled using the CRF model pro- fp— ] E’—\

posed by KGS. The anticipated sub-activity and
affordances of the objects for the future frames
are predicted based on the transition probabili-
ties given the inferred labeling of the last frame.

4. Our Method - segment. Our method that only
samples the segment level nodes for future sub-
activities and object affordances and uses the
ground-truth segmentation.

5. Koppula & Sazena (2013). Our method that sam-
ples the future nodes (both segment and frame
level) as described in Section 4, and uses a fixed
temporal structure, which in this case is the seg-
mentation output of KGS.

Our method outperforms all the baseline algorithms.
Sampling future frame level nodes in addition to just
sampling the segment level nodes (row 4) increases the
accuracy of affordance and sub-activity anticipation by
6.6% and 13.4% respectively. Our method of sampling
the whole graph structure (row 6) achieves the best
performance with an increase in macro precision and
recall over the best baseline results (row 5) — 1.9% and
4.3% for anticipating object affordances and 2.5% and
2.3% for anticipating sub-activities, respectively. This
shows that sampling the graph structures enables us
to reason about the spatial and temporal interactions
that can happen in the future, which is essential to
obtain good anticipation performance.

Figure 5 shows how the macro F1 scores changes with
the anticipated time. The average duration of a sub-
activity in the CAD-120 dataset is around 3.6 seconds,
therefore, an anticipation duration of 10 seconds is
over two to three sub-activities. With the increase in
anticipation time, the performance of the others ap-
proach that of a random chance baseline. Our method
outperforms the baselines for all anticipation times and
its performance declines gracefully with increase in the
anticipation time. The code and videos are available
at: http://pr.cs.cornell.edu/anticipation/.
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Figure 5. Plots showing how macro F1 score changes with
the anticipation time for anticipating sub-activities (left)

and object affordances (right).

6. Conclusion

In this paper, we considered the task of detecting the
past human activities as well as anticipating the fu-
ture human activities using object affordances. In the
task of detection, most previous works assume ground-
truth temporal segmentation is known or simply use
some heuristic methods. Since modeling human activ-
ities requires rich modeling of the spatio-temporal re-
lations, fixing the temporal segmentation limited the
expressive power of CRF-based model in the previ-
ous works. In this work, we proposed a method to
first obtain potential graph structures that are close
to the ground-truth ones by approximating the graph
with only additive features. We then designed moves
to explore the space of likely graph structures. Our
approach also enabled us to anticipate the future ac-
tivities where considering multiple possible graphs is
critical. In the recently growing field of RGB-D vi-
sion, our work thus shows a considerable advance by
improving the state-of-the-art results on both the de-
tection and anticipation tasks.
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