
Tell Me Dave: Context-Sensitive Grounding of
Natural Language to Manipulation Instructions

Dipendra K Misra, Jaeyong Sung, Kevin Lee and Ashutosh Saxena.
Computer Science Department, Cornell University (USA).

Email contact: {dkm,jysung,kkl53,asaxena}@cs.cornell.edu

AbstractÑ It is important for a robot to be able to interpret
natural language commands given by a human. In this paper,
we consider performing a sequence of mobile manipulation tasks
with instructions described in natural language (NL). Given a
new environment, even a simple task such as of boiling water
would be performed quite differently depending on the presence,
location and state of the objects. We start by collecting a
dataset of task descriptions in free-form natural language and
the corresponding grounded task-logs of the tasks performed
in an online robot simulator. We then build a library of verb-
environment-instructions that represents the possible instructions
for each verb in that environmentÑthese may or may not be valid
for a different environment and task context.

We present a model that takes into account the variations
in natural language and ambiguities in grounding them to
robotic instructions with appropriate environment context and
task constraints. Our model also handles incomplete or noisy
NL instructions. Our model is based on an energy function that
encodes such properties in a form isomorphic to a conditional
random Þeld.We evaluate our model on tasks given in a robotic
simulator and show that it successfully outperforms the state-of-
the-art with 61.8% accuracy. We also demonstrate a grounded
robotic instruction sequence on a PR2 robot through Learning
from Demonstration approach. 1

I. INTRODUCTION

For robots working in the presence of humans, it is impor-
tant for them to be able to ground a task described in natural
language for the given environment. In this paper, we present
a learning algorithm that maps natural language instruction to
a mobile manipulation instruction sequence depending upon
the environment context.

We consider a personal household robot setting as shown
in Figure 1 where the robot interacts with non-expert users
only using natural language and is asked to do different set
of tasks. For a given task described in a natural language
instruction, the robot must come up with a valid sequence
of instructions that accomplishes the task. This is challenging
for several reasons. Consider the task of boiling water shown
in Figure 2—it consists of a series of steps to be performed
that a user describes in natural language (NL). Each step is
challenging because there are variations in the natural lan-
guage, and because the environment context (i.e., the objects
and their state) determines how to perform it. For example, to
accomplish the instruction ‘heating the water’, one can either
use a stove for heating or a microwave (if it is available). For

1The first version of this work was presented at Robotics Science and
Systems (RSS) conference in July 2014 (Berkeley) (Misra et al., 2014).

Fig. 1: Personal household robot settingwhere user de-
scribes a task in natural language and the robot infers an action
plan based on the environment that accomplishes the task.

each option, several steps of grasping, placing, turning the
stove, etc. would need to be performed. In another example,
the NL instruction ‘fill the cup with water’ may require the
robot to pick up a cup and fill it with water either from the
tap (if there is one) or fill it from a fridge water-dispenser
or whatever other means are available in the environment. We
also note that if the cup already has water then we may need to
do nothing. This mapping (or grounding) of the NL instruction
into a sequence of mobile manipulation instructions thus varies
significantly with the task constraints and the environment
context. In this paper, our goal is to develop an algorithm
for learning this grounding.

Different aspects of the language grounding problem have
been explored by recent works (Beetz et al., 2011; Bollini
et al., 2012; Guadarrama et al., 2013; Marco et al., 2012;
Tellex et al., 2011). In particular, Guadarrama et al. (2013)
focused on using spatial relations to ground noun-phrases to
objects in the environment. They used an injective mapping
from verbs to controller instructions based on pre-defined
templates. As we show in our experiments, pre-defined tem-
plates do not work well with the variations in NL and with
changing environment and task context (see Figure 3 for an
example). Beetz et al. (2011) and Marco et al. (2012) consider
translating web recipe into a robot making pancakes and
focus on translating the knowledge into a knowledge reasoning
system. However, our problem requires data-driven retrieval of

Fig. 2: Natural Language Instructions to a sequence of controller instructionsfor a given new environment. Our approach
takes a description in natural language and sequences together robotic instructions that are appropriate for a given environment
and task. Note that the NL instructions are often ambiguous or incomplete.

relevant pieces of instructions that are contextually-relevant for
that sub-task. Therefore, our work focuses on considering large
variations in the NL instructions for generalizing to different
tasks in changing environments. Bollini et al. (2012) showed
that mapping from natural language to recipe is possible by
designing a probabilistic model for mapping NL instructions
to robotic instructions, and by designing an appropriate state-
action space. They then perform a tree search in the action
space to come up with a feasible plan. Since in our problem the
search space is very large, their tree search becomes infeasible.

Natural language instructions given in a task and envi-
ronment context are often incomplete since the remaining
information can be inferred from the context. Malmaud et al.
(2014) noticed many ambiguous and incomplete instructions
in the context of interpreting cooking recipes. This pattern was
found in our user study as well. Table I, shows some natural
language instructions from our dataset along with the different
challenges that exist in grounding them.

One key property of our model is that we can handle
missing or incomplete NL instructions, for which the robotic
instructions have to be inferred from context. For example,
the NL instruction ‘heat the pot’ does not explicitly say
that the pot must be placed on the stove first, and it has
to be inferred from the task constraints and the environment
context. Furthermore, sometimes one should not follow the NL
instructions precisely and instead come up with alternatives
that are suitable for the robot to perform in that particular
situation.

In this work, we focus on developing a method that models
the variations in NL and the ambiguities in grounding them
to robotic instructions given an environment context and task
constraints. Our model considers the trade-off in following NL
instructions as closely as possible while relying on previously-

seen contextually-relevant instructions in the training dataset.
In detail, we take a data-driven approach where we first
collect a database of NL instructions and robotic instructions
sequences performed for different tasks in an online simulated
game. Using this data, we build a verb-environment-instruction
library (VEIL). We then present a machine learning approach
that models the relations between the language, environment
states and robotic instructions. Our model is isomorphic to
a conditional random field (CRF), which encodes various
desired properties in the form of potential functions on the
edges. With a sampling based inference algorithm, we show
that our approach produces valid and meaningful instructions,
even when the environment is new or the NL instructions are
incomplete and not precisely valid for that environment.

We evaluate our approach on our VEIL dataset for six dif-
ferent tasks. Each task has 5 different environments with free-
form natural language instructions and robotic instruction logs,
collected from several users. The tasks comprise performing
several steps in sequence and there are often different ways
of performing the task in different environments. We compare
our method against our implementation of Guadarrama et al.
(2013) and Bollini et al. (2012), and show significant improve-
ments. More importantly, we find that our method handles
generalization to new environments and variations in language
well, and is also able to handle incomplete NL instructions in
many cases. Finally, we train our PR2 robot using Learning
from Demonstration approach for several robotic instructions
for several objects. We then test a full predicted sequence on
the PR2 robot for making a dessert, following NL instructions
given by a user.

In summary, the key contributions of this paper are:

¥ We encode the environment and task context into an
energy function over a CRF which allows grounding of

TABLE I: Dataset Examplesof natural language descriptions from VEIL-300 along with the difficulty in grounding them.
Our dataset shows that users may often provide minimal information in their instructions if the context of the problem is clear.

Task Natural Language Description Challenges
Cooking Ramen Heat up the water, then cook the ramen Ambiguous (How to cook?)
Serving Affogato Drop a scoop of ice cream, drizzle syrup on top, then add coffee to the bowl. Missing object (Add drizzle on top of what?)

Making Coffee Add milk, sugar and coffee to a cup. Next ignite the stove and place the cup Verb with many arguments
on the stove and wait. After 5 minutes close the stove and take out the cup.

Boiling Water Microwave for 20 minutes and place the cup on the desk. Missing object with resolution in future.
High level verb (microwave)

Serving Affogato Microwave the coffee, scoop some ice cream, and drizzle syrup on top. Incomplete (adding scoops to coffee not specified)

Cooking Ramen Fill the pot with ramen and water. Microwave it. Ambiguous (How to fill?).
Anaphoric reference (Microwave what?).

the NL instructions into environment for tasks.
¥ Our model is able to handle missing NL instructions and

free-form variations in the language.
¥ Our method can handle mobile manipulation tasks with

long instruction sequence. Our setting has a large state
space of the objects, and a large robotic action space.

¥ We contribute an online data collecting method, and
the resulting VEIL dataset comprising free-form natural
language instructions and corresponding robot instruction
logs. Our experiments show good results on the dataset
and our model outperforms the related work.

The paper is organized as follows. We give a summary
of related works and their limitations in the context of this
problem in Section II. We give an overview of our algorithm
and the representation of input - environment and language and
the output - controller instruction sequence in Section III. We
describe our model in Section IV and the VEIL dataset format
that we use for solving the model in Section V. We provide
details of the features used by our model and the inference
and learning procedure in Section VI. Our crowd-sourcing
system that we developed for collecting the VEIL dataset is
described in section VII. We describe our experiments and
results and give details of our robot experiment in Section
VIII and IX respectively. We describe future work and discuss
the limitations of our approach in Section IX. We give the
concluding remarks in Section X.

II. RELATED WORK

In this section, we first describe related works in the field
of semantic parsing, environment representation and mobile
manipulation instructions. In this paper, we use several ideas
and results from these fields. We then describe related work
for the problem of grounding natural language.
Semantic Parsing.Semantic parsing is the problem of rep-
resenting natural language by a formal representation that
preserves the meaning. In spite of success in the area of
syntactic parsing, semantic parsing remains an open challeng-
ing task. For application in robotics, this problem is further
complicated by the presence of an environment context. This
often results in incomplete and ambiguous natural language
instructions which implicitly use context—environment and
task objective, for resolution. As an example, consider the

following sentence from our dataset: “Microwave the coffee,
scoop some ice cream, drizzle syrup on top”. This sentence is
incomplete since it does not specify that ice-cream should be
added to the coffee after scooping it and that syrup needs to
be drizzled on top of the coffee cup. However, these missing
instructions are obvious to humans since drizzling syrup on
the floor will make little sense.

In order to map NL instructions into their meaning represen-
tations, Guadarrama et al. (2013) parse the NL instructions into
one of the many manually created templates.This approach
becomes unscalable with the increasing complexity of the task.

Recently, learning methods based on combinatory categorial
grammar(CCG) (Steedman, 1996, 2000) have been used with
success for different applications (Zettlemoyer and Collins,
2007). Matuszek et al. (2012a) use probabilistic CCG parsers
to convert natural language commands to a Robot Control
Language (subset of typed lambda calculi) such as given
below:

“exit the room and go left”
(do-sequentially (take-unique-exit) (turn-left))

Their approach does not handle the ambiguities of natu-
ral language that can be only be resolved by incorporating
environment in the parsing step, and neither can it handle
missing actions, incorrect or missing object references. The
probabilistic CCG parsers such as UBL (Kwiatkowski et al.,
2010) take a manually defined seed lexicon as input. This
seed lexicon contains lexical entries which represent mapping
between words and formal expressions, which is instruction
sequence in our case. The accuracy of these semantic parsers
is sensitive to this seed lexicon and providing it requires
domain expertise. Yet another challenge is that annotating the
NL instructions with their formal expressions in typed-lambda
calculi is tedious and requires expert knowledge. In contrast,
we show that collecting instruction sequence can be easily
crowd-sourced.

In another work, Matuszek et al. (2012b) jointly model
language and perception for the task of selecting a subset
of objects that are described by natural language. The joint
modeling gives significant improvement over separate models
for language and perception. However, they do not handle the

Fig. 3: Many-many correspondence between language and controller instructions depending on the environment.The two
sentences differ only in one object(water/milk) and they ground to two different or same instruction-sequences depending upon
the environment. This shows that the mapping is dependent upon both the objects in the given sentence and the environment.
This means that we cannot assume a fixed mapping for sentence template such as “fill x with y”.

complex sequence of manipulation tasks that we address in
this paper.

Some research have taken the direction to parse natural
language into intermediate representations instead of directly
parsing into formal semantic expressions. This is also the
direction we take in this paper. Tellex et al. (2011) use tree
of Spatial Description Clause (SDC) for this purpose. Others
use Linear Temporal Logic to represent the language task
which generates robot controllers which can be proven to
be correct (Finucane et al., 2010; Kress-Gazit et al., 2007;
Wongpiromsarn et al., 2010). However, these works focus
on creating formal descriptions and creating controllers, and
not on handling ambiguous NL variations or data-driven
grounding into the environment and task context.

Environment Representation.There has been a lot of work
done in the computer vision community on representing en-
vironment. Previous works represent environment as a graph
whose nodes represent objects such as cup, microwave, book,
television etc. and whose edges represent object-object rela-
tionships which can be spatial relations (e.g., near, far, left),
is-part of, or is-type of relationship etc.

Wu et al. (2014) produce a hierarchical labeling of a RGB-
D scene using is-part of and is-type of relationships between
objects. Aydemir et al. (2011) use spatial relations between
objects to search for a specified object. These works form the
ideas behind our environment representation. We use spatial
relations between solid objects such as microwave, fridge and
is-part of relationship between components of a given object
such as fridge-door, fridge-platform, main-fridge-body etc.

Mobile Manipulation Tasks. Previous decade has seen sig-
nificant work on different manipulation and navigational skills
such as grasping (Kroemer et al., 2010; Lenz et al., 2013),
mixing (Bollini et al., 2012), pushing (Srinivasa et al., 2010),
placing (Barry et al., 2013; Jiang et al., 2012), constructing
semantic maps (Walter et al., 2013), and high degree of free-
dom arm planners (e.g., (Alterovitz et al., 2011; Ratliff et al.,
2009)). These works form the building blocks for executing
the output instructions for our model. On the other hand, rather
than building specific manipulation or navigation primitives,
Learning from Demonstration (LfD) approach allows even
non-experts to train the robot by using the arms of the robot

(Argall et al., 2009). For actual robotic experiment on a PR2
robot, since our goal is to verify the applicability of grounded
robotic instruction sequences on a real robot, we take LfD-
based approach where we train the robot via our teleoperation
method among many other LfD alternatives.

Traditionally, symbolic planners (Rintanen, 2012) have been
used to accomplish sequencing complicated controller instruc-
tions. Since real environments have uncertainty and non-
determinism, Kaelbling and Lozano-Pérez (2011) start with
an abstract plan and recursively generate plans as needed. Or,
the tasks are defined through expert designed state machines
(Nguyen et al., 2013), which does not generalize well when
the environment or the task changes. Rather than relying on
symbolic representation of the environment, Sung et al. (2014)
rely on a set of visual attributes to represent each object in the
environment and dynamically choose the controller sequence
from a list of possible sequences that minimizes the score
function based on the current environment and the potential
candidate for the next instruction. Others use demonstrations
for learning different behaviors (Niekum et al., 2013). These
approaches solve only parts of the problem that we address in
this work—of creating valid plans and using a score function
for data-driven retrieval of instruction sequence. Our work ad-
dresses not only the validity of instruction sequences and data-
driven retrieval of low-level instructions, but it also models
the ambiguity and grounding of natural language instructions
in the environment context. Furthermore, the tasks considered
by our work are complex manipulation tasks requiring long
instruction sequences.

Grounding Natural Language. Several recent works in
robotics have looked at the problem of grounding natural
language. This has been driven by advances in HRI, better
vision algorithms and more reliable manipulation instructions.
Other than the works discussed in the introduction (Beetz
et al., 2011; Bollini et al., 2012; Guadarrama et al., 2013;
Marco et al., 2012), the problem of navigation has been
addressed by using learned models for verbs such as follow,
meet, go, and dynamic spatial relations such as walk close to
the wall (Fasola and Matarić, 2013; Kollar et al., 2010). To
detail, Kollar et al. (2010) use a maximum-likelihood approach
to infer the path taken by the robot. Translation of such weakly

specified actions into robotic behaviors is very important and
form the ideas for our robotic instruction set in Table II. Artzi
and Zettlemoyer (2013) focus on mapping natural language
instructions representing navigational tasks, to a sequence of
instructions for a 2D world scenario. In contrast to these
works, the chief linguistic object of our investigation are
high level verbs such as serve, cook, throw which have more
complex representation than simple navigational verbs. In
contrast to Artzi and Zettlemoyer (2013), we also consider
more complex 3D scenarios with a larger set of manipulation
instructions.

Several works (Fasola and Matarić, 2013; Guadarrama et al.,
2013) have looked at the problem of grounding intricate noun-
phrases in the language to the objects in the environment.
Guadarrama et al. (2014) ground open vocabulary descriptions
of objects to the described objects in the environment. There
have also been success in grounding concepts (Chao et al.,
2011) and objects (Lemaignan et al., 2012; Ros et al., 2010)
through human-robot interaction. Works like Chu et al. (2013)
look at mapping from text to haptic signals. Kulick et al.
(2013) consider active learning for teaching robot to ground
relational symbols. The inverse problem of generating natural
language queries/commentaries has also seen increasing in-
terest in robotics (Chen et al., 2010; Tellex et al., 2013). In
a recent work, Duvallet et al. (2014) explored the direction
of using natural language as a sensor to come up with prior
distribution over unseen regions in the environment.

In the area of computer vision, some works have con-
sidered relating phrases and attributes to images and videos
(Farhadi et al., 2010a; Jiang et al., 2013; Koppula and Saxena,
2013; Koppula et al., 2011; Ramanathan et al., 2013; Wu
et al., 2014). These works focus primarily on labeling the
image/video by modeling the rich perceptual data rather than
modeling the relations in the language and the entities in the
environment. Thus, our work complements these works.

In NLP community a lot of literature exists on parsing
natural language sentences (e.g., (Klein and Manning, 2003))
and grounding text in different domains such as linking events
in a news archive and mapping language to database queries
(Berant et al., 2013; Nothman et al., 2012; Poon, 2013; Yu
and Siskind, 2013). These techniques form the basis of ours
in syntactic parsing and representation. However most of these
works use only text data, and do not address grounding the
physical task or the environment. In another work, Branavan
et al. (2010) consider mapping natural language queries to
sequence of GUI action commands for the windows operating
system. They also consider incomplete instructions and learn
environment model but they do not consider the real world 3D
environments that robots encounter nor the complex controller
instructions that a robot can perform.

III. OVERVIEW

In this section, we give an overview of our approach and
the representation we use for natural language, environment,
mobile manipulation instructions and the domain knowledge.

Given an environment E containing objects and the robot,
a human gives the instructions for performing a task in natural
language (see Figure 2). The instructions in natural language
L consist of a set of sentences, and our goal is to output
a sequence of controller instructions I that the robot can
execute. Each of these low-level robot instructions often have
arguments, e.g., grasp(object i).

E, L ! I

This mapping is hard to learn for two reasons: (a) the output
space I is extremely large, and (b) the mapping changes sig-
nificantly depending on the task context and the environment.

For a given E and L , certain instructions I are more likely
than others, and we capture this likelihood by using an energy
function ! (I|E, L). We will use this energy function to encode
desired properties and constraints in our problem. Once having
learned this energy function, for a given new language and
environment, we can simply minimize this energy function to
obtain the optimal sequence of instructions:

I ! = argmin I ! (I|E, L)

There are several steps that we need to take in order to
define this energy function: we need to convert the language
L into a set of verb clauses C, we need to represent the
environment E with a usable representation that contains
information about the objects, we need to describe what are
the low-level instructions I and how do they connect to the
actual execution on the robot, and we need to figure out how to
represent and store the training data for their use in inference.

A. Language Representations by a Set of Verb Clauses

We follow previous work (Tellex et al., 2011) in parsing
natural language commands into a structured intermediate
representation. These structured representations only contain
information relevant to the manipulation tasks and are easier to
work with. We use a sequence of verb clauses as the represen-
tation of natural language which are ordered temporally. Each
verb clause informally represents an atomic natural language
command dictated by the main verb; more formally, a verb
clause C is a tuple:

C = (! , [obj], ")

containing the verb ! , the set of language-objects [obj] on
which it acts and a relationship matrix " : obj " obj ! Rel
where Rel is the space of relationship (e.g., ‘with’, ‘from’).
For example, the following natural language command com-
prises of four verb clauses:

T ake the cup with water and
! "# $

(take ,[cup,water],with :cup" water)

then ignite the stove.
! "# $

(ignite ,[stove],#)

Now place the cup on the stove
! "# $

(place ,[cup,stove],on:cup" stove)

and wait.! "# $
(wait ,#,#)

In order to convert unconstrained natural language L to a
sequence of verb-clauses {C} we use the following steps:

TABLE II: List of Low-level Instructions that could be
executed by the robot. Each instruction is parametrized by the
required objects. We implement a subset of these instructions
on a PR2 robot (see Section IX).

Instruction Description
find (obj) Find obj in the environment

(Anand et al., 2012).

keep(obj1 , obj2 , R) Keeps obj1 with respect to obj2 such
that relation R holds (Jiang et al., 2012).

grasp (obj) Grasp obj (Lenz et al., 2013).
release (obj) Releases obj by opening gripper.
moveTo(obj) Move to obj by using motion planner

(Ratliff et al., 2009).

press (obj) Presses obj using end effector force
controller (Bollini et al., 2011).

turn (obj , angle) Turns the obj by a certain angle.
open(obj) Opens the obj (Endres et al., 2013).
close (obj) Closes the obj (Endres et al., 2013).
scoopFrom(obj1 , obj2) Takes scoop from obj2 into obj1 .
scoopTo(obj1 , obj2) Puts the scoop from obj1 into obj2 .

squeeze(obj1 , obj2 , rel) Squeezes obj1 satisfying relation rel
with respect to obj2 .

wait () Wait for some particular time.

¥ First, the constituency parse tree of L is found using the
Stanford Parser (Klein and Manning, 2003).

¥ A verb clause C is created for each corresponding node
of verb type in the parse tree. The clauses are ordered
by the order of their respective verb in L . The verbs are
also stemmed before being initialized as ! .

¥ Next, we compute the set of all maximal nouns, which
are noun-type nodes in the parse tree whose parents are
not noun-type nodes e.g., “get the red cup” has the node
[NP:the red cup] as the only maximal noun.

¥ These maximal nouns are attached to the clause whose
verb node is closest in the parse tree. In the ambiguous
case, the nodes get attached to the nearest immediate left
clause.

¥ Finally, all relationship-type nodes between maximal
nouns of the same clause are inserted in the corresponding
relationship matrix " .

Note that language-objects are not same as physical objects
in an environment and not all language-objects (e.g., water)
represent an actual physical object.

B. Object and Environment Representation Using Graphs

For performing a task in the environment, a robot would
need to know not only the physical location of the objects
(e.g., their 3D coordinates and orientation), but also their
functions. These functions are often represented as symbolic
attributes (Anand et al., 2012; Farhadi et al., 2010b) or using
a more functional representation (Cakmak et al., 2007; Höfer
et al., 2014; Tenorth et al., 2010). For example, a microwave
consists of four parts: main body, door, buttons and display
screen. Each part has its own states (e.g., a door could be
open/closed), and sometimes its state is affected by another
part, e.g., a button when pressed could unlatch the microwave
door. We represent each object as a directed-graph G where
the vertices are parts of the object (also storing their states),

TABLE III: List of types of STRIPS predicate used to
represent precondition and effect of controller instruction
primitives which are listed in Table II.

STRIPS Predicate Truth Condition
state obj st Boolean state st of object obj has

value T rue
affordance type obj object obj has the given affordance
relationship type obj1 obj2 Given relationship exists between

object obj1 and obj2

and edges represent the functional dependency between two
object parts. Now for a given environment, we define E to
store aforementioned representation of every object in the
environment along with spatial relations between objects. Here
we consider five basic spatial relations: Grasping, Inside, On,
Below and Near.

C. Representing Robotic Instructions
We have defined a set of low-level instructions that could be

executed by the robot in Table II. Each controller instruction is
specified by its name and its parameters (if any). For example,
moveTo(obj) is an instruction which tells the robot to move
close to the specified object obj . We ground the parameters
in objects instead of operation-space constants such as ‘2m
North’ because it is objects that are relevant to the task
(Cakmak et al., 2007).

In order to completely execute a sub-task such as ‘keeping
a cup on stove’, we need a sequence of instructions I. An
example of such a sequence for the sub-task might look as:

find (cup1); moveTo(cup1); grasp(cup1); find (stove1);

moveTo(stove1); keep(cup1, stoveBurner3 , on)

Note that the space of possible sequence of instructions I is
extremely large, because of the number of possible permuta-
tions of the instructions and the arguments.

D. Representing Domain Knowledge
In this paper, the domain knowledge for a given set of

environment states and a set of controller instruction primitives
refer to the set of preconditions under which an instruction
can be executed in an environment and its effect on the
environment. In a more general setting, it can also include
post-conditions and transition probabilities between two envi-
ronments. The domain knowledge is provided as input to our
algorithm.

We use the STRIPS formal language (Fikes and Nilsson,
1972) to write the preconditions and effect of each instruction
listed in Table II. To make this representation scalable for
a large set of objects, we consider three types of predicates
as listed in Table III. We consider common affordances such
as- graspable, turnable, pourable etc. and five basic spatial
relationships as described earlier. Our set of object affordance
is inspired by previous work (Kjellström et al., 2011; Koppula
et al., 2013; Montesano et al., 2008).

This domain knowledge encodes high-level symbolic
information about the world such as—a cup is filled with

water if kept below an open tap. For example, this information
can be encoded by the following STRIPS function:

(:action keep :parameters (obj1 obj2 R)
:precondition (and (grasping Robot obj1) (near Robot obj2))
:effect (when (and (= obj2 sink) (= R on) (containable obj1))

(and (when (state sink TapIsOn) (state obj1 Water))
(on obj1 sink)))

This function describes an instruction primitive keep which
accepts three arguments, object obj1, obj2 and relationship R.
The second line defines the precondition for this instruction,
which evaluates to true only when the robot is grasping the
object obj1 and is near the object obj2. The third line defines
the effect of this instruction, which says that when the object
obj2 is sink, the relationship R is on and the object obj1 has
the containable affordance then fill the object obj1 with water
if the sink is open and also place the object obj1 on the sink.

Encoding this information for an environment is very te-
dious and there is a large body of literature on learning them
from observations (Mourao et al., 2012). While we use this
domain knowledge in our main model we also show that in
the absence of this knowledge, the accuracy of our algorithm
does not reduce significantly.

IV. MODEL

In this section we describe our energy function ! (I|L, E),
which is isomorphic to a conditional random field (Fig. 4) and
is comprised of several nodes and factors (#).

It has the following observed nodes: natural language
instruction L which is deterministically decomposed into a
sequence of verb clauses C and the initial environment E $

0.
As the instructions are executed, the state of the environment
changes, and we use Ei , E $

i to represent the environment-
state at step i . Our goal is to infer the sequence of controller
instructions I = {Ii ! , Ii }k

i =1 .
Note that for each clause Ci , we have two instruction

sequences Ii and Ii ! —this is because natural language in-
structions are often incomplete and Ii ! represents this missing
instruction sequence. For example, if the natural language
instruction is place cup in microwave, then one may need to
open the microwave door first (Ii !) and then place the cup
within (Ii).

Following the independence assumptions encoded in the
graphical model in Figure 4, the energy function is written
as a sum of the factor functions:

! (I|E, C) =
k%

i =1

i (Ii , Ci , Ei) + # $
i (Ii , Ci , E $

i)+

#i ! (Ii ! , E $
i %1) + # $

i ! (Ii ! , Ei)

We encode several desired properties into these factor func-
tions (we describe these in detail in Section VI):

¥ The sequence of instructions should be valid. Intuitively
#i (·) represents the pre-condition satisfaction score and
$

i (·) represents the post-condition satisfaction score.

Fig. 4: Graphical model representation of our energy func-
tion. The clauses C and initial environment E $

0 is given, and
we have to infer the instructions Ii , Ii ! and the environment at
other time steps. The # ’s are the factors in the energy function.

¥ The output instructions should follow the natural lan-
guage instructions as closely as possible. Thus, #i (·) and
$

i (·) depend on the clause Ci .
¥ Length of the instruction set. Shorter instruction se-

quences are preferred for doing the same task.
¥ Prior probabilities. An instruction sequence with too

many unlikely instructions is undesirable.
¥ Ability to handle missing natural language instructions.

The #i ! (·) and # $
i ! (·) represent the potential function for

the missing instruction set, and they do not depend on
any clause.

For each verb clause Ci , the first step is to sample a few
sequence of instructions I (s)

i from the training data. With the
sample of instructions for each clause obtained, we will then
run our inference procedure to minimize the energy function
to give a complete set of instructions satisfying the afore-
mentioned properties. We first describe how we obtain these
samples by building a verb-environment-instruction library
(VEIL) from the training data. This library plays the role of
a lexicon in our grounding approach.

V. VERB-ENVIRONMENT-INSTRUCTION LIBRARY (VEIL)
Space of all possible instruction sequence is countably

infinite, and even when the length of sequence is limited and
invalid instruction sequences are pruned, the sample space
still remains very large. Moreover the instruction sequence
structure is often shared between different tasks such as for
example between the NL commands “fill a cup with coke”
and “fill a mug with beer”. This motivates the sampling based
approach that we take.

For a given verb clause Ci , we use the training data
D to come up with a sample of the instruction-templates
{I (s)

i }. During training we collect a large set of verb clauses
C(j) , the corresponding instruction-sequence I (j) and the
environment E (j) . The parameters of the instructions in the
training dataset are specific values, such as cup01, and that
particular object may not be available in the new test envi-
ronment. Therefore, we replace the parameters in the train-
ing instructions with generalized variables Z . For example,
{moveTo(cup01); grasp(bottle01)} would be stored as

generalized instruction sequence {moveTo(z1); grasp(z2)}.
The original mapping {z1 ! cup01, z2 ! bottle01 } is
stored in $(j) .

In order to come up with proposal templates for a given
clause Ci , we return all entries containing the correspond-
ing verb clause, environment, instruction and the grounding:
D(i) = {(C(j) , E (j) , I (j) , $(j)) | ! (C(j)) = ! (Ci)} for j =
1. . . |D| in the dataset. The information in the particular sth

sample is represented as Ds = (Cs, Es, Is, $s). Note that we
capture both the language context C and the environment
context E in the structure of these samples.

A. Instantiation Algorithm
Since we only store generalized instructions (with actual

objects replaced by general variables Z), we need a way to
instantiate the generalized instructions for a new environment
and language context.

Given the sth instruction-template Ds = (Cs, Es, I s, $s),
a clause Cj and a new environment Ej , the aim of the
instantiation algorithm is to return the instantiated instruction
template Ij . In order to accomplish this task, we should find
a grounding of the generalized variables Z (s) to specific
objects in the environment Ej . In order to do so, we first
define the function Ground(a, E) which takes a language-
object a such as ‘mug’,‘stove’ etc. and an environment E
and returns the object in E which is being described by
the language-object. We use a simple syntax based similarity
between language-object a and categories of the environment
objects to perform this grounding e.g., the language object
‘milk’ has high syntactical similarity with the object milkBox
but not with mug. If no suitable match is found, such as
for non-physical language-objects like water or objects which
are mentioned in the language but not actually present, the
function returns Null .

We then take the following rule based approach:
1) We first map to the objects that have a relation. For

example, if we have cup on table in the clause and
the template contains z1 on z2, then we map z1, z2 to
the grounding of cup and table respectively. More
formally, #z1, z2 $ obj(Cs), #a, b$ obj(Cj) such that
" (Cs)[z1, z2] = " (Cj)[a, b] we map variable z1 %!
Ground(a, Ej) and z2 %!Ground(b, Ej).

2) For an unmapped variable z, we map it in the same
way as it was mapped in the sample s. More formally,
#z1 $ obj(Cs), a $ obj(Cj) such that the object $s(z1)
has the same category as Ground(a, Ej), we map z1 %!
Ground(a, Ej).

3) For every remaining unmapped variable z in Z (s), we
map it to the object in Ej that has the most common
state-value pairs with the object $s(z).

Each rule only maps the variables which are not already
mapped to an object. Also the mapping z %!Ground(a, E) is
performed only when Ground(a, E) is not Null . Note that the
last rule will always map every remaining unmapped variable.

The new mapping is stored as $ and the instructions returned
after replacing the variables using $ is given by Ij . We further

define the predicate replace such that replace(Is, Z (s), $)
will return the instantiated instruction sequence Ij after re-
placing all variables z $ Z (s) with the object $(z).

VI. ENERGY FUNCTION AND INFERENCE

Now for each clause Ci , we have obtained a sample in-
struction set I (s)

i (together with the clause and environment
data in Ds). We now need to come up with a full sequence
{I !

i ! , I !
i } based on these initial samples. Note that we only

have samples for Ii and not for Ii ! , which are for handling
the missing natural language instructions. Furthermore, the
sample instruction set is not consistent and valid, and also
does not apply directly to the current environment. Based on
these samples, we need to optimize and infer a sequence that
minimizes the energy function.

In the following subsections, we now describe the different
terms in the factor functions that encode the desired properties
aforementioned.

A. Term #i (Ii , Ci , Ei ; w)

This term consists of features that encapsulate properties
such as pre-condition score, instruction length, prior probabil-
ities, etc. For a given sample Ds = (Cs, Es, Is, $s), we define
the cost of setting Ii := replace(Is, Z, $) as:

! i (Ii , Ci ,E i |D s, " ; w) = wT

⇥
�env (D s , "); �nl (Cs , Ci); �sim (Z (s), "s , ");

�pcc (Ci , Cs); �jmp (Ii , E i); �dscpl (Ii);

�inpr (Ii); �para (Ii); �trim (Ii , Is)
⇤

We describe each term in the following:
1) Environmental Distance �env (D s , "): It is more likely to

have instructions that were made in similar environments in the
training data as compared to the test environment. Hence, if a
variable z $ Z (s) is mapped to a cup in the new environment
and was mapped to a pot in the original environment, then
we prefer the template Ds if cup and pot have similar state-
value pairs (e.g., both are empty). We encode it as the average
difference between states of objects $s(z) and $(z) and for all
z $ Z (s). We represent the union of the states of $s(z) and
$(z) by T(z).

�env (D s , ") =
1

|Z (s)|
X

z ! Z (s)

1
|T(z)|

X

t ! T (z)

1(" (z)[t] != "s (z)[t])

2) Natural Language Similarity �nl (Cs , Ci): We prefer to
use those instruction templates whose verb clause was similar
to the test case. Therefore, we measure the unordered similar-
ity between the language-objects of Cs and Ci by computing
their Jaccard index:

�nl (Cs , Ci) =
|obj(Cs) " obj(Ci)|
|obj(Cs) # obj(Ci)|

Algorithm 1: We use dynamic programming to minimize the energy function

1 global D, C, %
2 function Forward-Inference(j)
3 for each E $

j %1 such that %j %1[E $
j %1] is defined do

4 for Ds $ D(j) do // iterate over all VEIL templates with the same verb as ! (C)
5 I & instantiate (Is, Cs, Cj , E $

j %1) // instantiate the VEIL template using the test clause and the environment
6 for t $ [0..|I|] do
7 Ij = I[t · · ·] // trim the instantiated sequence as a check for noise
8 cstr = getContraints (Ij , E $

j %1) // find constraints needed to execute It by looking at STRIPS preconditions
9 Ij ! = callSymbolicP lanner (E $

j %1, cstr) /* Call the planner to find an instruction sequence such
10 that the resultant environment Ej satisfies the constraints */
11 Ej = " (E $

j %1, Ij !)
12 E $

j = " (Ej , Ij)
13 %j [E $

j] = min {%j [E $
j], %j %1[E $

j %1]+ #j (Ij , Cj , Ej) + # $
j (Ij , Cj , E $

j) + #j ! (Ij ! , E $
j %1) + # $

j ! (Ij ! , Ej)}

3) Parameter Similarity Cost �sim (Z (s), "s , "): We want
the objects in the instantiated sequence to be similar (i.e. have
same category) to the one in the training set. Therefore, we
define:

�sim (Z (s), "s , ") =
1

|Z (s)|
X

z ! Z (s)

1{"s (z) != " (z)}

4) Parameter Cardinality Cost �cvr (Ci , Cs): Different
clauses with the same verb can have different number of
language-objects. For example, the sentences ‘add ramen to
the crockpot’ and ‘add milk and sugar to the mug’ have
different number of language objects (2 and 3 resp.). We thus,
prefer to use the template which has the same number of
language objects as the given clause.

�pcc (Ci , Cs) = 1(|obj(Ci)| != |obj(Cs)|)

5) Jump Distance �jmp (Ii , E i): The jump distance is a
boolean feature which is 0 if program Ii can be executed by
the robot given the starting environment Ei and 1 otherwise.

6) Description Length �dscpl (Ii): Other things remaining
constant, we believe a smaller sequence is preferred. There-
fore, we compute the sum of norms of each instruction in the
sequence Ii , where we define norm of an instruction I as the
number of parameters that I takes plus 1.

7) Instruction Prior �inpr (Ii): We want our algorithm
to give preference to instruction sequence which are more
likely to occur. This is particularly useful while dealing
with ambiguous or incomplete sentences. For example, the
instruction keep(book, shelf , on) has higher prior probability
than keep(book, fridge , inside), although the later is not
restricted. Thus, if we have an incomplete sentence “keep the
book” then the grounded instruction sequence will be preferred
if its keeping the book on a shelf rather than inside a fridge.
We therefore add the average of prior probability prior (I) of
every instruction I in the sequence. We compute it by counting
the number of times it appears in the training set:

�inpr (Ii) =
1

||Ii ||
X

I ! I i

prior (I)

8) Parameter Instruction Prior �para (Ii): Here we add the
prior probability of how often a parameter (e.g., fridge) is
used for a particular instruction (e.g., grasp). We compute it
from the training data. Verb-Correlation score is the average
taken over all instructions in Ii of the probabilities that the
grounded parameter appears in the instruction at the specified
position.

�para (Ii) =
1
|Ii |

X

I ! I i

1
|dI |

X

j ! [1 , |dI |]

P (nI , dI [j], j)

Here P(nI , dI [j], j) is the prior probability that the param-
eter dI [j] appears at position j for the instruction primitive
nI .

9) Trimming Cost �trim (Ii , Is): Often we do not use the
full sequence of instructions from the set Ds but trim them
a little bit. This removes irrelevant instruction belonging to
neighbouring clauses in the training corpus. We define this
trimming cost: �trim = (|Is | $ |Ii |)2 .

B. Term # $
i (Ii , Ci , E $

i ; w)

This term consists of a single consistency term, given as:

! "
i (Ii , Ci , E "

i ; w) = wcons �cons (E "
i , Ci)

The purpose of this consistency score # cons (E $
i , Ci) is to

capture the fact that at the end of execution of Ii , the resultant
environment E $

i should have fulfilled the semantics of the
clause Ci . Thus if the clause intends to ignite the stove then
the stove should be in on state in the environment E $

i . For this
we compute the probability table P(obj, s, v) from training
data using only those datapoints that have the same verb as
Ci , which gives the probability that obj in clause Ci can have
state s with value v. We use this table to find the average
probability that objects of clause C$

i have the given end state
values in E $

i .

C. Term #i ! (Ii ! , E $
i %1; w)

This term is for the instruction sequence I! that does not
correspond to a NL instruction—i.e., its purpose is to handle

Cooking Ramen in Kettle Pouring Coffee from Mug Variations in Environment

Fig. 5: [Left] Different ways of performing the same task: Users have multiple options to do a task, example ramen can be
cooked using a microwave or a stove. Thus, algorithm should closely follow the sentence specification and not simply work
with high level objective of making ramen. [Center] Unrestrictive actions: Actions are unrestricted and can be done even
when they have no semantic meaning. Example, coffee can be poured in a sink or on floor. [Right] Environment Variation:
Shows variations in an environment created by modifying object set, state values of objects and object-object relationship.

.

missing NL instructions. Therefore, it consists of a subset of
features used in #i :

! i ! (Ii ! , E "
i # 1; w) = wT ⇥�jmp (Ii ! , E "

i); �dscpl (Ii !);

�inpr (Ii !); �para (Ii !)
⇤

D. Term # $
il (Iil , Ei ; w)

This consists of a single consistency term:

! "
i (Iil , E i ; w) = wcons,l �cons,l (E "

i)

This consistency term is defined similarly to # cons however
since we do not have a given clause, we therefore build
the table P(obj, s, v) using all the datapoints in the training
dataset. This term prevents the robot from performing an
action which takes it into an unlikely environment.

E. Inference Procedure

Given the training dataset D, a sequence of clauses {C} and
the starting environment E $

0, the goal is to find the instruction
sequence that minimizes the energy function. Since the struc-
ture of our model is a chain, we use an approach similar to
the forward-backward inference to obtain the {I !

i ! , I !
i }k

i =1 .
The inference procedures computes the forward variable

%j [E $
j] which stores the cost of the minimum-cost assignment

to the node {Iil , Ii }i & j such that the environment at chain
depth j is E $

j . As a base case we have %0[E $
0] = 0 .

We also define the environment simulator " as taking an
environment E and an instruction sequence I and outputting
the final environment " (E, I) after simulating the execution
of the sequence in the given environment.

Our algorithm calls the function Forward-Inference(j)
(Algo. 1) to compute %j given %i #i<j . To do so, the algorithm
iterates over all samples D(j) for clause Cj which are created
as described in Sec. V. For the case when the verb ! (Cj) was
unseen in the training data, we define %j = %j %1.

Each sample Ds is instantiated as described in Sec. V-A
which gives us the instruction sequence I. Instantiation is
followed by all possible trimming of I giving us Ij = I[t · · ·]

for all t . We note here that the no-op is also considered when
I is totally trimmed.

The trimmed sequence Ij may not be executable due to
some missing instructions. To handle this, the sub-routine
getConstraints looks at the pre-condition of every instruction
in Ij to find the hard-constraints required for executing Ij .
These constraints along with the environment are passed onto a
symbolic-planner (Rintanen, 2012) which outputs the missing
instructions Ij ! . The cost of the new assignment Ij ! , Ij is
used to update the value of %j as shown in line 13.

Once the %j [E] has been computed #j and all reachable E ,
the optimum assignment is computed by backward-traversal.

F. Learning Method
For training in our experiments, we divide the dataset into

k-folds for cross-validation and use stochastic gradient descent
to learn the weights. While doing experiments, we manually
fixed the weight wjmp = ' since we do not want the inferred
sequence to be unexecutable. The remaining weights were
initialized to 0.

VII. ROBOT SIMULATOR FOR DATA COLLECTION.
To train our algorithm, we need a dataset in the VEIL format

as described in Section V. This is challenging for two rea-
sons: firstly, it is difficult to find natural language commands
paired with environment descriptions using approaches such
as web-mining; and secondly, it is difficult to elicit controller
instruction sequences from non-expert users.

We therefore designed a crowd-sourcing system to solve
these challenges. Our system consists of a virtual simulator
which presents a 3D environment to users. Figure 5 shows
sample environments that are presented to the users. Each
environment has around 30 objects of which around 50% are
interactive. The interactive objects have 2-5 states in addition
to location and orientation. The value of these states can be
boolean, real number or strings from a finite set, and can be
modified by the interaction of a user with the environment.
For example, the object of category mug has the follow-
ing states: percentage-filled, is-grasped, has-coffee, has-water,
has-ice cream, has-syrup. Objects also have affordances such

Fig. 6: Robotic Simulator. User points on the stove to see
the possible actions. User can also see different states of the
stove and the grasped kettle thus taking appropriate actions.
The natural language segment on which the user is working,
is shown above the simulator while the recorded instructions
are shown in the right panel.

as graspable, pourable, placeable, etc. There could be more
than one object of the same category and appearance.

Users of our system are presented with two type of tasks—
language task and game task. In the language task, they
write natural language commands for accomplishing a given
objective after exploring the environment. In the game task,
users are presented with natural language commands written
by other users and have to control the virtual robot to accom-
plish the given command. As shown in Figure 6, users can
point on objects to view their states and can modify them by
taking different actions. Whenever a user takes an action, it
is stored in the database in a symbolic form. For instance,
if a user drops a cup on a table then the action is recorded
as keep(cup, table , on). Since that may not have been the
intention of the user, therefore we also store the discretized
trajectory of the action.

In the following section, we describe how we use this
system to collect a VEIL dataset for testing our model.

VIII. EXPERIMENTS AND RESULTS

Dataset Details.For evaluating our approach, we have col-
lected a dataset called VEIL-300. Each data-point consists of a
natural language command, the starting environment, ground-
truth instruction sequence and the mapping between segments
of the command and the instruction sub-sequence.

The natural language command describes the high level
task but does not necessarily have the exact knowledge of the
environment (e.g., it may refer to a cup while there is no actual
cup in the environment). Furthermore, it may miss several
steps in the middle, and use ambiguous words for describing a
task. As we can see from the examples in Table I, the context
plays a very important part in grounding these sentences. For
example, in sentence 5 from Table I, scooping ice-cream using
a spoon and keeping it on a table would make little sense than
adding it to the coffee that has been just prepared.

The dataset is then processed to be in the VEIL format (see
Section V).

We considered six tasks: boiling water, making coffee,
making ramen, making affogato, prepare the room for party
and clean the room. Each task was performed in 5 different
environments and each environment had 10 natural language
commands (thus giving us a dataset of size 6x5x10=300).

For the first two tasks, we only gave 10 “general” natural
language instructions (5 " 10 = 50). This allowed us to
evaluate whether our algorithm can ground natural language
instructions in different environments.

For the last four tasks, there was a different natural language
instruction for each of the 50 datapoints. During training,
we use 10-fold cross validation, with the six tasks trained
in 3 pairs of 2 – {(task1, task2), (task3, task4), (task5,
task6)}. While testing, the algorithm always tests on a new
environment.
Evaluation Metric. We consider two different type of evalu-
ation metrics:
1) Instruction Edit Distance (IED). We use a string edit
distance namely the Levenshtein distance, for measuring the
edit distance between the two instruction sequence. This gives
some idea on how similar our model’s output öI is to the
ground-truth sequence Ig . However, it is limited in that it does
not handle the case where one wrong instruction in the middle
can completely change the resulting state. For instance, it is
not acceptable to forget filling a pot with water while making
ramen, even if the rest of the sequence is correct.
2) Environment Edit Distance (EED). This metric relies on that
a successful execution of a task given the NL instruction is the
attainment of a sequence of states for concerned objects in a
possibly time-ordered way. For this, the metric computes the
edit distance between the ground-truth sequence of environ-
ments (E g

k)m
k=0 and the predicted sequence of environments

(öEk)n
k=0 . However, there are two subtle issues: finding the set

of concerned objects &, and finding the correct representation
of difference, distenv (E g

i , E a
j), between two environments.

This is because not all the object states are important in an
environment, for a given task (e.g., closing the microwave door
after its use is irrelevant to the task of heating water).

We use the objects in the ground-truth sequence Ig as the set
of concerned objects &. Further we define distenv as a 0-1 loss
function on whether the two environments completely agree
on the states of &. The recursive equation for computing EED
is given below, where EED (., ., i, j) represents the distance
between (E g

k)m
k= i ,(öEk)n

k= j

EED((E g
k)m

k =0 , (öEk)n
k =0 , i = 0 , j = 0) =

min{EED(·, ·, i, j + 1) , EED(·, ·, i + 1 , j) + dist env (E g
i , öEj , #)}

where EED(·, ·, i, j) = m $ i if i = m or j = n

We normalize these two metrics and report them as percent-
ages in Table IV, where higher numbers are better.
Baselines.We compare our model against the following:

¥ Chance: Randomly chooses an instruction sequence of
fixed length. This shows how large the output space is.

TABLE IV: Quantitative results on six different tasks from our dataset. Results of baselines, different variants of our method
are reported on two different metrics— IED and EED, which are normalized to 100 with larger numbers being better.

making coffee boiling water making ramen making affogato party night clean room Average
IED EED IED EED IED EED IED EED IED EED IED EED IED EED

Chance 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Predefined Templates (Guadarrama et al., 2013) 14.3 22.8 21.5 38.8 32.8 28.7 14.0 17.0 7.1 10.0 16.7 13.7 17.8 21.8
Instruction-Tree (Bollini et al., 2012) 14.4 25.7 11.2 38.8 26.3 25.6 12.5 15.9 22.7 49.7 20.5 14.3 17.9 28.3
No NL Instructions 39.2 43.9 21.8 43.3 1.2 15.7 12.8 11.5 15.0 17.9 10.8 9.4 16.8 23.6
Nearest Environment Instantiation 63.4 47.3 43.5 50.1 52.1 51.4 45.4 49.2 47.5 58.3 61.7 41.7 52.3 49.7
Our model, No Domain Knowledge 78.6 71.7 55.7 55.2 66.1 49.5 51.2 51.3 51.8 56.4 69.2 47.1 62.1 55.2
Our model, No latent nodes. 78.9 73.8 57.0 58.4 66.3 53.9 51.5 51.2 53.5 62.6 66.2 51.5 62.2 58.6
Our full model. 76.5 78.3 54.5 61.3 67.3 49.4 53.5 56.2 53.2 62.6 66.0 51.5 61.8 59.9

¥ Predefined Templates, based on Guadarrama et al. (2013)
We developed a method similar to Guadarrama et al.
(2013), in which we manually created a library of
proposal-templates for every verb. For a given situation,
we disambiguate the language-objects and accordingly in-
stantiate the templates. We further extend their approach
by also considering many-many mappings.

¥ Instruction-Tree Search, based on Bollini et al. (2012):
We define a log-linear reward function that searches over
the sequence of instructions for every clause and chooses
the one which maximizes the reward. The reward function
contains bag-of-word features (correlation between words
in the clause and objects in the instruction sequence).
Invalid instruction sequences are pruned and gradient
descent is used for training the parameters.

¥ Nearest Environment Instantiation: This method looks
up for the nearest template by minimizing the distance
between the given environment and that of the template,
from the VEIL library. Template is instantiated according
to the new environment, following Section V-A.

¥ Our model - No NLP. Our model in which we do not give
the natural language command, i.e., the given clauses C
are missing in the model. However, all the other terms
are present.

¥ Our model - No Domain Knowledge. Our model in which
the robot does not have the knowledge of the results of
its action on the environment, and instead relies only
on the training data. (This is to compare against the
symbolic planner based approaches.) For this we disable
the latent, jump features and post-condition features. We
also simplify the inference procedure 1, which uses the
simulator " and hence the domain knowledge, by doing
a greedy assignment based on the initial environment.

¥ Our model - No latent nodes. Our model in which the
latent instruction and environment nodes are missing.
This model cannot handle the missing natural language
instructions well.

¥ Our full model. This is our full model.
Results.Table IV shows our results. We note that the chance
performance is very low because the output space (of instruc-
tion sequence) is very big, therefore the chances of still getting
a correct sequence are very low.

We compare our results to our implementation of two recent
notable works in the area. Table IV shows that the method

Predefined Templates (Guadarrama et al., 2013) focused on
disambiguating spatial relations but was extremely brittle to
ambiguity in grounding, therefore giving low performance.

Method Instruction-Tree (Bollini et al., 2012) was able to
give reasonable results for some datapoints. However this
approach has problem working with large search trees. Fur-
thermore, the bag-of-word features do not take into account
the environment context; for instance, the natural language
instruction might say “keep the cup in microwave” but the cup
might already be inside the microwave (unless such constraints
are hard-coded). This approach thus fails when the language
is vague, for example, for the following sentence, “heat the
water and add ramen”. However, our approach takes this
vague sentence and grounds it in the environment using our
model. Our energy function incorporates several features and
thus is able to often give reasonable output for such natural
language instructions.

Following are some natural language instructions that our
algorithm was able to ground successfully:

¥ “serve the chips and then bring the pillows to the couches
and turn on the tv”

¥ “clean up the trash and replace the pillows and turn off
the tv”

¥ “fill the pot with ramen and water and then cook it”
and following are some natural language instructions that our
algorithm was not able to ground:

¥ “throw away the chips and throw away the remaining
bag”

¥ “Microwave for 12 minutes and place it on the table”
¥ “heat up water in the pot and place ramen inside pot”
Common reasons for errors include the required VEIL

template not being present, incorrect object grounding and
other linguistic complications that we are not handling in this
paper such as conditionals, quantifiers etc.

We analyze the results in light of the following questions:
Is Language important? If we enforce all the constraints of
the task and provide the end-state of the environment, one may
argue that just using a symbolic planner may give reasonable
programs. However, the success of a task depends on the way
how things are done. Natural language gives an approximate
guide that our model tries to follow. For example, though we
may provide that the cup has water in the goal environment.
But if the natural language command is “fill a cup with water

Fig. 7: Shows IED accuracy on Making Affogato dataset
versus size of test data. Cross-validation is used with test-
data of the given size. In another experiment, we add Making
Ramen samples to the training and we see an improvement of
1-2% for test data of size 5 and 10. This shows that samples
from other task were useful.

Fig. 8: The demonstration system using Leap motion sensor.
The expert demonstrates the instruction for object shown on
the screen by hovering over the sensor and moving the gripper
of the PR2 on the screen.

from the sink” then an instruction sequence that uses fridge to
fill the cup with water will result in failure.

We see that Our Model - No NLP gives 16.8% on average
on the IED metric as compared to 61.8% for our full model.

In fact, we see evidence of such behavior in our results
also. While our model can handle ambiguous and incomplete
NL instructions, e.g., ‘heat up the water and then cook the
ramen’ that resulted in success, in some of the test cases the
NL instructions were quite ambiguous, e.g., ‘Microwave for
12 minutes and place it on the table’ on which our model
failed.

How important is the latent node? Overall, Table IV shows
that the results improve by about 1.3% on the EED metric
after adding the latent node. We found that it was especially
helpful in scenarios where instructions were partially missing.

Fig. 10: Snapshots of PR2using microwave for making coffee
when only microwave is available for heating the water and
preparing ramen.

For example, for the instruction in Fig. 2 -
“place the pot on the tap and turn the tap on. . . Turn the

tap off and heat the pot.”
there is no template that can fit in for the first clause

(place , [pot , tap], on : pot ! tap). One such template after
initialization has the form-

moveTo(sink); keep(pot , sink , on)

However the robot cannot execute this sequence since it is
not already grasping the pot . In such cases, the latent nodes
help us with modeling these missing instructions and gives us
the following executable output-
moveTo(pot); grasp(pot); moveTo(sink); keep(pot , sink , on)

How well does our model generalize to new environments
and tasks?In this test, we wanted to examine how well our
model can make use of examples from different environment
and tasks. It is not obvious whether the templates learned for
one task, such as making ramen will be useful for another
task such as making affogato. For studying this, we performed
another experiment in which we trained and tested the model
on making affogato task only and then we added samples
from making ramen to the training. We found that because the
VEIL library from the making ramen task was not available
for training, the performance dropped by 1.5-2% on the IED
metric. The results are shown in Figure 7. This suggests that
examples from other tasks are helpful.
How does the algorithm handle noisy and incomplete
sentences?The algorithm handles noisy object references as
part of the instantiation procedure. For example, consider
that the robot is asked to get a cup of water and there is
no object of category cup in the given environment. In this
case, the function Ground(ÒcupÓ, E) will return Null and
the instantiation procedure V-A will then find an object in
the given environment which shares the most state-value pairs
with the object that it saw in the training environment. This
object is then taken as the intended object.

Our algorithm also handles several incomplete sentences
such as “microwave a cup of water”, which does not specify
filling the cup with water in case it is empty, or opening the
door of the microwave if it is closed etc. The algorithm handles
this in two ways– either by using a similar sample, that was
present in the VEIL template which contains the missing steps;
or if the missing steps constitute a hard constraint (such as

Fig. 9: Robot Experiment. Given the natural language instruction for making the ‘Affogato’ dessert: “Take some coffee in a
cup. Add ice-cream of your choice. Finally, add raspberry syrup to the mixture.”, our algorithm outputs a controller instruction
sequence that the PR2 uses to make the dessert. (Please see the video.)

opening the door of a microwave before trying to put a cup in)
then they are handled by the latent node I! using a symbolic
planner.
What if the robot does not know the result of its action?
The algorithm implicitly assumes that the robot knows the
result of its interaction with the environment (It is being
used to compute certain features, doing the planning and in
inference). In order to test how crucial it is, we ran the baseline
Our Model - No Domain Knowledge and as the results in
Table IV show, the accuracy falls by only 4.7 % on the EED
metric. However, without the domain knowledge the guarantee
that the output sequence is executable is lost. The robot will
then have to recover at run-time if the lower level controllers
fail.

IX. ROBOT EXPERIMENT

We use our grounding algorithm in an end to end robotic
system, which can take NL instructions from users and manip-
ulate real world objects to achieve the task. In this section we
describe our robotic system for the task of making affogato
dessert. We take the following NL instruction, given by a user,
as our working example: “Take some coffee in a cup. Add
ice cream of your choice. Finally, add raspberry syrup to the
mixture.”

Grounded instruction sequence given by our grounding
algorithm consists of instruction listed in Table II, with appro-
priate parameters which are chiefly objects. Although there are
many related works for each instruction (Anand et al., 2012;
Bollini et al., 2011; Endres et al., 2013; Jiang et al., 2012;
Lenz et al., 2013; Ratliff et al., 2009), it is still a very active
area of research and it is quite challenging to execute these
instructions reliably in a sequence. Thus, we take a Learning
from Demonstration approach (Argall et al., 2009) for the set
of instructions relevant to the task, in order to test the validity
of the grounded sequence given by our model.

First, the robot observes the scene using RGB-D sensor
(Microsoft Kinect). Given the point cloud from the sensor, the
scene is segmented into smaller patches representing object
parts (Anand et al., 2012). In order to reuse demonstrations
regardless of orientation and location of the object, the object
frame using the segmented object part is found for the use of
demonstration and execution. Reliable frame of the object can
be established by aligning axis with the principal axis of the

point cloud computed using PCA (Hsiao et al., 2010). The
segmentation and alignment of the axis with the segmented
point-cloud allows the manipulation to be location and orien-
tation invariant when the demonstration is trained with respect
to this frame.

Among many approaches of Learning from Demonstration
such as kinesthetic teaching, teleoperation, and so forth (Ar-
gall et al., 2009), we use teleoperation-based approach for
demonstrating the task to the robot. Figure 8, shows our
system built using the Leap motion sensor where a user can
teach the robot how to execute the instruction with certain
parameters (objects). By observing the object shown on screen,
the user controls the gripper of the robot by hovering over
the Leap motion sensor. The center of the object frame
is virtually placed few centimeters above the Leap Motion
sensor, which allows an expert to easily demonstrate the
sequence by controlling the gripper with his palm. Rather than
recording the full movement of the demonstrator which could
be not smooth, the recorded sequence for the robot to execute
is based on a sequence of keyframe similar to (Akgun et al.,
2012). Each keyframe is recorded by pressing the key as the
user demonstrates the instruction. Also, rather than recording
the full joint configuration, each keyframe records only the
location and orientation of the end-effector so that it can used
regardless of the location of the object relative to the robot.

For the robotic experiment, demonstration given by the
user can be executed in a new setting by segmenting the
point cloud, finding the object frame and then executing
the demonstration using the trajectory controller. We utilize
the impedance controller (ee_cart_imped) (Bollini et al.,
2011) for our PR2 robot to follow the end-effectory trajectory
of learned demonstration. Once the object frame is centered
correctly, the robot can successfully execute the instruction, as
long as there is no collision and the object is in the workspace
of the robot. This is because each control sequence was trained
with respect to the object frame.

Figure 9 and Figure 10 shows several snapshots of PR2
making Affogato, making coffee, and preparing ramen and
a full video of PR2 making affogato dessert is available at:
http://tellmedave.com

X. FUTURE WORK

There are many directions in which we can extend the
approach presented in this paper. In brief, following are some

TABLE V: Neo-Davidsonian semantics for representing verbs
with varying number of arguments, modifiers and relative
clauses. Variable e is the Neo-Davidsonian event.

Sentence Neo-Davidsonian Semantics
1. “move to the cup” ! e.moveto(e) " to (e, cup02)
2. “slowly move to the cup” ! e.moveto(e) " to (e, cup02)

" speed(e, slow)
3. “slowly move to the cup ! e.moveto(e) " to (e, cup02)"

by staying close to the wall” speed(e, slow) " close (e, wall)

such directions:

Improving the Language Model: In this paper, our main
focus has been on grounding high level verbs which posses
the most complex semantic structure. For grounding noun-
phrases such as “the white cup”, “red mug by the door”; we
used a simple syntactical matching based on object categories.
While this worked relatively well for our dataset, this needs
to be improved to handle complex object descriptions. These
complex object descriptions can contain determiners (e.g.,
“bring me the cup”), anaphoric reference (e.g., “keep it on
the table”), recursive object descriptions (e.g., “microwave
the cup which is on the table, close to fridge”) etc.

As mentioned before, there are several works (Guadarrama
et al., 2013, 2014) which aim to solve this problem. These
algorithm can be easily integrated into our model by replacing
the Ground function in Section V-A with them.

Besides handling complex object descriptions, the language
model needs to handle conditionals (e.g., “if there is a cup”),
quantifiers as well as domain specific expressions such as
time (e.g., “microwave the cup for 12 minutes”) and quantity
(e.g., “take 2 ounces of potatos”). Each of these challenge
is an interesting problem in the field of natural language
understanding. We refer the interested readers to Artzi and
Zettlemoyer (2013) for parsing quantifiers and spatial relations
and Lee et al. (2014) for parsing time expressions.
Richer Representations: In this paper, we ground natural
language commands to a sequence of instructions, each having
a single predicate– controller -name(arguments). These
instructions are then mapped onto trajectories (see Section IX).
One advantage of this is that instructions with one predicate
can be easily recorded in our crowd-sourcing system from
user interaction. However, single predicate instructions cannot
handle variable number of arguments which may be present
in the natural language command. For example, the verb move
can accept varied number of arguments and modifiers as shown
in Table V. A single predicate cannot handle all of these
cases. Whereas having a predicate for every situation leads to
combinatorial explosion. In the field of semantics, a solution
is to use Neo-Davidsonian semantics which defines a common
event shared between multiple atoms (instantiated predicate).
Table V shows examples of Neo-Davidsonian semantics.
In future, we want to ground natural language to a sequence

of instruction where each instruction is a conjunction of atoms
coupled by a Neo-Davidsonian event.
Learning Environment Model : As mentioned before, in

this paper we assume access to domain knowledge of the
environment. We also assumed that the world is deterministic.
In future, we want to learn the environment model along with
learning to ground natural language. One direction could be
to use the reinforcement learning setting of Branavan et al.
(2010).
Real-time Inference: The inference algorithm presented in
this paper uses all the samples corresponding to a verb, which
makes the algorithm impractical for a very large dataset. In
future, we plan to use better approximate inference techniques
to make the inference real-time while maintaining accuracy.

In future, we also want to test our algorithm on much larger
datasets as well as improving our crowd-sourcing system by
integrating it with the RoboBrain platform (Saxena et al.,
2014).

XI. CONCLUSION

In this paper, we presented a novel approach for grounding
free-form natural language instructions into a controller
instruction sequence for a given task and environment, that
can be executed by a robot to perform the task. This is
challenging since the grounding is highly dependent on the
environment. Another challenge is that the natural language
instructions can be incomplete and ambiguous as shown in
Table I. To solve these issues, we represented this context
in a VEIL dataset format which was collected using crowd-
sourcing. We presented a new learning model that encodes
certain desired properties into an energy function—expressed
as a model isomorphic to a conditional random field with
edges representing relations between natural language,
environment and controller instructions. We showed that
our model handles incomplete natural language instructions,
variations in natural language, as well as ambiguity in
grounding. We also showed that we outperform related work
in this area on both syntax-based and semantic-based metrics.

ACKNOWLEDGEMENT

We thank Claire Cardie for useful discussions and Kejia Tao
and Aditya Jami for help with the crowd-sourcing system. This
work was supported in part by ONR Grant N00014-14-1-0156,
and Microsoft Faculty Fellowship and NSF Career award to
Saxena.

REFERENCES

B. Akgun, M. Cakmak, K. Jiang, and A. Thomaz, “Keyframe-based
learning from demonstration,” International Journal of Social
Robotics, vol. 4, no. 4, pp. 343–355, 2012.

R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion
planning,” in ICRA, 2011.

A. Anand, H. Koppula, T. Joachims, and A. Saxena, “Contextually
guided semantic labeling and search for 3d point clouds,” IJRR,
2012.

B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” RAS, 2009.

Y. Artzi and L. Zettlemoyer, “Weakly supervised learning of semantic
parsers for mapping instructions to actions,” ACL, 2013.

A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, and P. Jensfelt,
“Search in the real world: Active visual object search based on
spatial relations,” in ICRA. IEEE, 2011, pp. 2818–2824.

J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipula-
tion with multiple action types,” in Exp Robo., 2013, pp. 531–545.

M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner,
D. Pangercic, T. Ruhr, and M. Tenorth, “Robotic roommates
making pancakes,” in Humanoids, 2011.

J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on
freebase from question-answer pairs,” in Proceedings of EMNLP,
2013.

M. Bollini, J. Barry, and D. Rus, “Bakebot: Baking cookies with the
pr2,” in The PR2 Workshop, IROS, 2011.

M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus, “Interpreting
and executing recipes with a cooking robot,” in ISER, 2012.

S. Branavan, L. Zettlemoyer, and R. Barzilay, “Reading between the
lines: Learning to map high-level instructions to commands,” in
ACL. ACL, 2010, pp. 1268–1277.

M. Cakmak, M. Dogar, E. Ugur, and E. Sahin, “Affordances as a
framework for robot control,” in EpiRob, 2007.

C. Chao, M. Cakmak, and A. Thomaz, “Towards grounding concepts
for transfer in goal learning from demonstration,” in ICDL, 2011.

D. L. Chen, J. Kim, and R. J. Mooney, “Training a multilingual
sportscaster: Using perceptual context to learn language,” Journal
of Artificial Intelligence Research, vol. 37, no. 1, pp. 397–436,
2010.

V. Chu, I. McMahon, L. Riano, C. McDonald, Q. He, J. Perez-Tejada,
M. Arrigo, N. Fitter, J. Nappo, T. Darrell et al., “Using robotic
exploratory procedures to learn the meaning of haptic adjectives,”
in IROS, 2013.

F. Duvallet, M. R. Walter, T. Howard, S. Hemachandra, J. Oh,
S. Teller, N. Roy, and A. Stentz, “Inferring maps and behaviors
from natural language instructions,” in Proceedings of the Inter-
national Symposium on Experimental Robotics (ISER), 2014.

F. Endres, J. Trinkle, and W. Burgard, “Learning the dynamics of
doors for robotic manipulation,” in IROS, 2013.

A. Farhadi, I. Endres, and D. Hoiem, “Attribute-centric recognition
for cross-category generalization,” in CVPR, 2010.

A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian,
J. Hockenmaier, and D. Forsyth, “Every picture tells a story:
Generating sentences from images,” in Computer Vision–ECCV
2010. Springer, 2010, pp. 15–29.

J. Fasola and M. Matarić, “Using semantic fields to model dynamic
spatial relations in a robot architecture for natural language in-
struction of service robots,” in IROS, 2013.

R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the
application of theorem proving to problem solving,” Artificial
intelligence, vol. 2, no. 3, pp. 189–208, 1972.

C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting
with language, temporal logic and robot control,” in IROS, 2010.

S. Guadarrama, L. Riano, D. Golland, D. Gouhring, Y. Jia, D. Klein,
P. Abbeel, and T. Darrell, “Grounding spatial relations for human-
robot interaction,” in IROS, 2013.

S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Don-
ahue, and T. Darrell, “Open-vocabulary object retrieval,” in RSS,
2014.

S. Höfer, T. Lang, and O. Brock, “Extracting kinematic background
knowledge from interactions using task-sensitive relational learn-
ing,” in ICRA, 2014.

K. Hsiao, S. Chitta, M. Ciocarlie, and E. Jones, “Contact-reactive
grasping of objects with partial shape information,” in IROS, 2010.

Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new
objects in a scene,” IJRR, vol. 31, no. 9, 2012.

Y. Jiang, H. Koppula, and A. Saxena, “Hallucinated humans as the
hidden context for labeling 3d scenes,” in CVPR, 2013.

L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

H. Kjellström, J. Romero, and D. Kragić, “Visual object-action recog-
nition: Inferring object affordances from human demonstration,”
Computer Vision and Image Understanding, vol. 115, no. 1, pp.
81–90, 2011.

D. Klein and C. Manning, “Accurate unlexicalized parsing,” in ACL,
2003.

T. Kollar, S. Tellex, D. Roy, and N. Roy, “Grounding verbs of motion
in natural language commands to robots,” in ISER, 2010.

H. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response,” in RSS, 2013.

H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from rgb-d videos,” IJRR, vol. 32, no. 8,
pp. 951–970, 2013.

H. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3d point clouds for indoor scenes,” in NIPS, 2011.

H. Kress-Gazit, G. Fainekos, and G. Pappas, “From structured english
to robot motion,” in IROS, 2007.

O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active
learning and reactive control for robot grasping,” RAS, vol. 58,
no. 9, pp. 1105–1116, 2010.

J. Kulick, M. Toussaint, T. Lang, and M. Lopes, “Active learning for
teaching a robot grounded relational symbols,” in IJCAI, 2013.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman,
“Inducing probabilistic ccg grammars from logical form with
higher-order unification,” in EMNLP. ACL, 2010, pp. 1223–1233.

K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer, “Context-dependent
semantic parsing for time expressions,” in ACL, 2014.

S. Lemaignan, R. Ros, E. A. Sisbot, R. Alami, and M. Beetz,
“Grounding the interaction: Anchoring situated discourse in ev-
eryday human-robot interaction,” IJSR, vol. 4, no. 2, pp. 181–199,
2012.

I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” in RSS, 2013.

J. Malmaud, E. Wagner, N. Chang, and K. Murphy, Cooking with
Semantics. ACL 2014 Workshop on Semantic Parsing, 2014, pp.
33–38.

D. Marco, M. Tenorth, K. Häussermann, O. Zweigle, and P. Levi,
“Roboearth action recipe execution,” in IAS, 2012.

C. Matuszek, N. Fitzgerald, L. Zettlemoyer, L. Bo, and D. Fox,
“A joint model of language and perception for grounded attribute
learning,” in ICML, 2012, pp. 1671–1678.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
parse natural language commands to a robot control system,” in
ISER, 2012.

D. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me dave: Context-
sensitive grounding of natural language to mobile manipulation
instructions,” in RSS, 2014.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor,
“Learning object affordances: From sensory–motor coordination
to imitation,” Robotics, IEEE Transactions on, vol. 24, no. 1, pp.
15–26, 2008.

K. Mourao, L. Zettlemoyer, R. Petrick, and M. Steedman, “Learning
strips operators from noisy and incomplete observations,” UAI,
2012.

H. Nguyen, M. Ciocarlie, J. Hsiao, and C. C. Kemp, “Ros commander
(rosco): Behavior creation for home robots,” in ICRA, 2013.

S. Niekum, S. Chitta, A. Barto, B. Marthi, and S. Osentoski,
“Incremental semantically grounded learning from demonstration,”
in RSS, 2013.

J. Nothman, M. Honnibal, B. Hachey, and J. Curran, “Event linking:
Grounding event reference in a news archive,” in ACL, 2012.

H. Poon, “Grounded unsupervised semantic parsing,” in ACL, 2013.
V. Ramanathan, P. Liang, and L. Fei-Fei, “Video event understanding

using natural language descriptions,” in ICCV, 2013.
N. Ratliff, M. Zucker, D. Bagnell, and S. Srinivasa, “Chomp: Gradient

optimization techniques for efficient motion planning,” in ICRA,
2009.

J. Rintanen, “Planning as satisfiability: Heuristics,” Artificial Intelli-
gence, 2012.

R. Ros, S. Lemaignan, E. A. Sisbot, R. Alami, J. Steinwender,
K. Hamann, and F. Warneken, “Which one? grounding the referent
based on efficient human-robot interaction,” in RO-MAN, 2010, pp.
570–575.

A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S.
Koppula, “Robobrain: Large-scale knowledge engine for robots,”
arXiv preprint arXiv:1412.0691, 2014.

S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. Weghe,
“Herb: a home exploring robotic butler,” Autonomous Robots,
vol. 28, no. 1, pp. 5–20, 2010.

M. Steedman, Surface structure and interpretation. MIT press, 1996.
——, The syntactic process. MIT Press, 2000, vol. 35.
J. Sung, B. Selman, and A. Saxena, “Synthesizing manipulation

sequences for under-specified tasks using unrolled markov random
fields,” in IROS, 2014.

S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation.” in AAAI, 2011.

S. Tellex, R. A. Knepper, A. Li, T. M. Howard, D. Rus, and
N. Roy, “Assembling furniture by asking for help from a human
partner,” Collaborative Manipulation workshop at Human-Robot
Interaction, 2013.

M. Tenorth, L. Kunze, D. Jain, and M. Beetz, “Knowrob-map-
knowledge-linked semantic object maps,” in Humanoids, 2010.

M. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. Teller,
“Learning semantic maps from natural language descriptions,” in
RSS, 2013.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications.” in HSCC, 2010.

C. Wu, I. Lenz, and A. Saxena, “Hierarchical semantic labeling for
task-relevant rgb-d perception,” in Robotics: Science and Systems
(RSS), 2014.

H. Yu and J. Siskind, “Grounded language learning from videos
described with sentences,” in ACL, 2013.

L. Zettlemoyer and M. Collins, “Online learning of relaxed ccg
grammars for parsing to logical form,” in EMNLP-CoNLL-2007.
Citeseer, 2007.

	Introduction
	Related Work
	Overview
	Language Representations by a Set of Verb Clauses
	Object and Environment Representation Using Graphs
	Representing Robotic Instructions
	Representing Domain Knowledge

	Model
	Verb-Environment-Instruction Library (VEIL)
	Instantiation Algorithm

	Energy Function and Inference
	Term i(Ii , Ci, Ei; w)
	Environmental Distance env(Ds,)
	Natural Language Similarity nl(Cs,Ci)
	Parameter Similarity Cost sim(Z(s),s,)
	Parameter Cardinality Cost cvr(Ci, Cs)
	Jump Distance jmp(Ii,Ei)
	Description Length dscpl(Ii)
	Instruction Prior inpr(Ii)
	Parameter Instruction Prior para(Ii)
	Trimming Cost trim(Ii,Is)

	Term i'(Ii , Ci, Ei'; w)
	Term i(Ii , Ei-1'; w)
	Term il'(Iil , Ei; w)
	Inference Procedure
	Learning Method

	Robot Simulator for Data Collection.
	Experiments and Results
	Robot Experiment
	Future Work
	Conclusion

