Speech Recognition and Graph Transformer Networks

Awni Hannun, awni@fb.com

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Goal: Input speech \rightarrow output transcription

Improved significantly in the past 8 years

But not yet solved!

- Conversation: Fully conversational speech with multiple speakers
- Noise: Lot's of background noise
- **Bias:** Substantially worse performance for underrepresented groups

But not yet solved!

[Submitted on 28 Mar 2021 (v1), last revised 1 Apr 2021 (this version, v2)]

Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg

But not yet solved!

[Submitted of 28 Mar 2021 v1), ast revised 1 Apr 2021 (this version, v2)] Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg

But not yet solved!

[Submitted of 28 Mar 2021 v1), ast revised 1 Apr 2021 (this version, v2)] Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg

"...state-of-the-art (SotA) ASRs **struggle** with the large variation in speech due to e.g., **gender, age, speech impairment, race, and accents**"

Question: Why has ASR gotten so much

Pre 2012 ASR system:

- Alphabet soup: Too many handengineered components
- Data: Small and not useful
- **Cascading errors:** Combine modules only at the inference
- Complex: Difficult to do research

Question: Why has ASR gotten so much better?

Answer: End-to-end in research

Answer: End-to-end in research

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Goal: Given

1. Input speech
$$X = [x_1, ..., x_T]$$

2. Output transcription
$$Y = [y_1, ..., y_U]$$

Compute:

$$\log P(Y \mid X; \theta)$$

Goal: Given

1. Input speech
$$X = [x_1, ..., x_T]$$

2. Output transcription
$$Y = [y_1, ..., y_U]$$

Compute:

$$\log P(Y \mid X, \theta)$$
 Ideally differentiable w.r.t.

Example:

- 1. Input speech $X = [x_1, x_2, x_3]$
- 2. Output transcription Y = [c, a, t]

Compute:

 $\log P(c \,|\, x_1) + \log P(a \,|\, x_2) + \log P(t \,|\, x_3)$

Example:

- **1**. Input speech $X = [x_1, x_2, x_3]$
- 2. Output transcription Y = [c, a, t]

Compute:

 $\log P(c \,|\, x_1) + \log P(a \,|\, x_2) + \log P(t \,|\, x_3)$

Example:

1. Input speech $X = [x_1, x_2, x_3, x_4]$

 x_2

а

 x_3

 x_4

 x_1

С

2. Output transcription Y = [c, a, t]

Compute:

 $\log P(c | x_1) + \log P(a | x_2) + \log P(t | x_3) + \log P(?? | x_4)$

Alignment: One or more of each input maps to an output.

Alignment: One or more of each input maps to an output.

Alignment: One or more of each input maps to an output.

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

A: All of them!

 $\log P(Y \mid X) = \log \left[P(A_1 \mid X) + P(A_2 \mid X) + P(A_3 \mid X) \right]$

Reminder: Use actual-softmax to sum log probabilities Want $\log(P_1 + P_2)$ from $\log P_1$ and $\log P_2$

actual-softmax(log
$$P_1$$
, log P_2) = log($P_1 + P_2$)
= log($e^{\log P_1} + e^{\log P_2}$)

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

A: All of them!

 $\log P(Y \mid X)$

 $= \log[P(A_1 \mid X) + P(A_2 \mid X) + P(A_3 \mid X)]$

 $= \underset{\text{facebook AI Research}}{\text{actual-softmax}[log P(A_1 \mid X), log P(A_2 \mid X), log P(A_3 \mid X)]}$

Aside: Alignment graph for Y = [c, a, t]

Problem: *X* has *T* frames and *Y* has *U* frames If T = 1000 and U = 100 there are $\approx 6.4 \times 10^{139}$ alignments!

(For a fun combinatorics exercise show the exact number is $\binom{T-1}{U-1}$, Hint: "Stars and Bars.")

Solution: The Forward algorithm (A.K.A. dynamic programming)

Forward variable: α_t^u the score for all alignments of length *t* which end in y_u .

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example:
$$X = [x_1, x_2, x_3, x_4], Y = [c, a, t]$$
 (x_1) (x_2)
 $\alpha_2^c = \log P(c | x_1) + \log P(c | x_2)$ (c) (c)

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example:
$$X = [x_1, x_2, x_3, x_4], Y = [c, a, t]$$
 (x_1) (x_2)
 $\alpha_2^a = \log P(c | x_1) + \log P(a | x_2)$ (c) (c)
Solution: The Forward algorithm (A.K.A. dynamic programming)

Example:
$$X = [x_1, x_2, x_3, x_4], Y = [c, a, t]$$

 $\alpha_3^a = \text{actual-softmax}[\log P(A_1), \log P(A_2)]$
 \circ

*x*₂ ,

 x_2

а

 x_1

$$\log P(A_1) = \log P(c | x_1) + \log P(c | x_2) + \log P(c | x_3) = (a_1) + \log P(c | x_2) + \log P(c | x_3) = (a_2) + \log P(c | x_3) = (a_3) + (a_3) + \log$$

 $\log P(A_2) = \log P(c | x_1) + \log P(a | x_2) + \log P(a | x_3)$

Example:
$$X = [x_1, x_2, x_3, x_4], Y = [c, a, t] \alpha_2^c$$

 $\alpha_3^a = \text{actual-softmax}[\log P(A_1), \log P(A_2)]$
 $\log P(A_1) = \log P(c | x_1) + \log P(c | x_2) + \log P(a | x_3)$
 $\log P(A_2) = \log P(c | x_1) + \log P(a | x_2) + d \mathfrak{G} \mathfrak{g} P(a | x_3)$

Example:
$$X = [x_1, x_2, x_3, x_4], Y = [c, a, t]$$

 $\alpha_3^a = \text{actual-softmax}[\log P(A_1), \log P(A_2)]$
 $\log P(A_1) = \alpha_2^c + \log P(a \mid x_3)$
 $\log P(A_2) = \alpha_2^a + \log P(a \mid x_3)$

Example:
$$X = [x_1, x_2, x_3, x_4], \quad Y = [c, a, t]$$

 $\alpha_3^a = \operatorname{actual-softmax}[\log P(A_1), \log P(A_2)] = \operatorname{actual-softmax}[\alpha_2^c, \alpha_2^a] + \log P(a \mid x_3)$
 $\log P(A_1) = \alpha_2^c + \log P(a \mid x_3)$
Exercise: prove this equality!
 $\log P(A_2) = \alpha_2^a + \log P(a \mid x_3)$

Solution: The Forward algorithm (A.K.A. dynamic programming)

General recursion:

$$X = [x_1, x_2, x_3, \dots, x_T], \quad Y = [y_1, y_2, \dots, y_U]$$

$$\alpha_t^u = \text{actual-softmax}[\alpha_{t-1}^u, \alpha_{t-1}^{u-1}] + \log P(y_u | x_t)$$

Solution: The Forward algorithm (A.K.A. dynamic programming)

General recursion:

$$X = [x_1, x_2, x_3, ..., x_T], \quad Y = [y_1, y_2, ..., y_U]$$

$$\alpha_t^u = \text{actual-softmax}[\alpha_{t-1}^u, \alpha_{t-1}^{u-1}] + \log P(y_u | x_t)$$

Final score: $\log P(Y | X) = \alpha_T^U$

Problem: Not every input corresponds to "speech"

Solution: Use a "garbage" or *blank* token:

Solution: Use a "garbage" or *blank* token:

Blank token is optional

Some allowed alignments:

Solution: Use a "garbage" or *blank* token:

Blank token is optional

Solution: Use a "garbage" or *blank* token:

Blank token is optional

Corresponds to "catt".

Solution: Use a "garbage" or *blank* token:

Blank token is optional ... except between repeats in $Y \downarrow \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_5$ Y = [f, o, o, d]f
o
o
o
d
Not optional!

CTC Recursion: Three cases

Case 1: Blank is optional

CTC Recursion: Three cases

Case 2: Output is not optional

CTC Recursion: Three cases

Case 3: Repeats, blank is not optional

Aside: The CTC graph

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Goal: Find the best *Y* (transcription) given an *X* (speech)

We have two models:

1. Acoustic model: $\log P(Y \mid X)$

2. Language model: $\log P(Y)$

Inference

Language Model: $\log P(Y)$

1. Trained on much larger text corpus

2. Fine-tuned for given application (or even user!)

3. Typically word-level *n*-gram with *n* between three and five

Goal: Find the best *Y* (transcription) given an *X* (speech)

We have two models:

1. Acoustic model: $\log P(Y \mid X)$

2. Language model: $\log P(Y)$

Find:

$$Y^* = \operatorname{argmax}_Y \quad \log P(Y \mid X) + \log P(Y)$$

Goal: Find the best (lowest scoring) path in the graph

facebook AI Research

Goal: Find the best (lowest scoring) path in the graph

facebook AI Research

Goal: Find the best (lowest scoring) path in the graph

Goal: Find the best (lowest scoring) path in the graph

Algorithm:

Repeat:

1. Extend current candidates by all possibilities

2. Sort by score and keep N best

N = 3

facebook AI Research

facebook AI Research

N = 3*b*/3 6 *b*/1 7 3 *c*/3 *a*/3 9 *c*/1 *c*/4 *b*/1 5 6 facebook AI Research

Return N-best list:

[c, c, b], score=6

[a, b, b], score=7

[a, b, c], score=9

Goal: Find the best *Y* (transcription) given an *X* (speech)

Use beam search to find

 $Y^* \approx \operatorname{argmax}_Y \log P(Y \mid X) + \log P(Y)$
Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Weighted Finite State Automata (WFSA)

Remember: Alignment graph for Y = [c, a, t]

GTN: WFSAs with automatic differentiation.

Graph Transformer Networks (GTNs): History

- Developed by Bottou, Le Cun, et al. at AT&T in the early 90s
- First used in a state-of-the-art automatic check-reading system

Graph Transformer Networks (GTNs): History

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

For GTNs: see pages 16-42

Fig. 15. Traditional neural networks, and multi-module systems communicate fixed-size vectors between layer. Multi-Layer Graph Transformer Networks are composed of trainable modules that operate on and produce graphs whose arcs carry numerical information.

	Neural Networks	<u>GTNs</u>
<u>Core data structure</u>	Tensor	Graph (WFSA)
	Matrix multiplication	Compose
Core operations	Reduction operations (sum, prod,)	Shortest distance ops (forward, viterbi)
	Unary and binary operations (negate, add, subtract,)	Unary and binary operations (closure, union, concatenate,)

Example: WFSTs in Speech Recognition

Example: WFSTs in Speech Recognition

Why Differentiable WFSAs?

- Encode Priors: Conveniently encode prior knowledge into a WFST
- End-to-end: Use at training time avoids issues such as label bias, exposure bias
- Facilitate Research: Separate data (graph) from code (operations on graphs)!

Sequence Criteria with WFSAs

Many loss functions are the difference of two WFSTS The graph A is a function of the input X (e.g. speech) and target Y (e.g. transcription)

The graph z is a function of only the input X

The loss is given by:

 $\log P(Y \mid X) = \text{forwardScore}(A_{X,Y}) - \text{forwardScore}(Z_X)$

Sequence Criteria with WFSTs

Many criteria are the difference of two WFSTs

Includes common loss functions in ASR such:

- Automatic Segmentation Criterion (ASG)
- Connectionist Temporal Classification (CTC)
- Lattice Free MMI (LF-MMI)

Sequence Criteria with WFSTs

Lines of code for CTC: Custom vs GTN

	Lines of Code
Warp-CTC	9,742
wav2letter	2,859
PyTorch	1,161
GTN	30

Sequence Criteria with WFSTs

Lines of code for CTC: Custom vs GTN

	Lines of Code	
Warp-CTC	9,742	
wav2letter	2,859	
PyTorch	1,161	
GTN	30	Same graphs wor for decoding!

Weighted Finite-State Acceptor (WFSA)

A simple WFSA which recognizes aa or ba

- The score of aa is 0 + 2 = 2
- The score of ba is 1 + 2 = 3

Weighted Finite-State Transducer (WFST)

A simple WFST which transduces ab to xz and bb to yz.

• The score of $ab \rightarrow xz$ is 1.1 + 3.3 = 4.4

Cycles and self-loops are allowed

Multiple start and accept nodes are allowed

 $\boldsymbol{\varepsilon}$ transitions are allowed in WFSAs

- $\boldsymbol{\varepsilon}$ transitions are allowed in WFSTs
 - \cdot The score of <code>aba \rightarrow x</code> is 3.6

Operations: Union

The union accepts a sequence if it is accepted by any of the input graphs.

Recognizes {ba}

a/0

Recognizes {ac, ba,

c/0

b/0

a/0

a/0

a/0

Recognizes $\{aba*\}a/0$

b/0

Operations: Kleene Closure

Accepts any sequence accepted by the input graph repeated 0 or more times.

- 1. Any path accepted by both WFSAs is accepted by the intersection.
- 2. The score of the path in the intersected graph is the sum of the scores of the paths in the input graphs.

Intersected graph:

No match!

Intersected

graph:

Intersected

graph:

b/0.8 <u>a/0.4</u> (0,0) (0,1) (1,2) No arcs to explore!

Intersected

graph:

b/0.8 <u>a/0.4</u> (0,0) (0,1) (1,2)

Operations: Compose

- 1. If $x \rightarrow y$ in the first graph and $y \rightarrow z$ in the second graph then $x \rightarrow z$ in the composed graph.
- 2. The score of the composed path is the sum of the scores of the paths in the input graphs.

Operations: Compose

Operations: Forward Score

- Accumulate the scores of all possible paths:
- 1. Assumes the graph is a DAG
- 2. Efficient dynamic programming algorithm

Operations: Forward Score

The graph accepts three paths:

- aca with score=1.1+1.4+2.1
- ba with score=3.2+2.1
- ca with score=1.4+2.1

forwardScore(g) is the actual-softmax of the path scores.

Simple ASG (AutoSegCriterion) with WFSTs

Target graph Y

Emissions graph E

Simple ASG with WFSTs

Target constrained graph A

Normalization graph **Z**=**E**

loss = -(forwardScore(A) - forwardScore(E))

Make the target graph

import gtn

```
# Make the graph:
target = gtn.Graph(calc_grad=False)
```

```
# Add nodes:
```

```
target.add_node(start=True)
target.add_node()
target.add_node(accept=True)
```

Add arcs:

target.add_arc(src_node=0, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=2, label=1)
target.add_arc(src_node=2, dst_node=2, label=1)

Draw the graph:
label_map = {0: 'a', 1: 'b'}
gtn.draw(target, "target.pdf", label_map)

Make the emissions graph

import gtn

```
# Emissions array (logits)
emissions_array = np.random.randn(4, 3)
```

```
# Make the graph:
emissions = gtn.linear_graph(4, 3, calc_grad=True)
```

```
# Set the weights:
emissions.set_weights(emissions_array)
```


ASG in GTN

Step 1: Compute the graphs

from gtn import *

def ASG(emissions, target):

- # Compute constrained and normalization graphs:
- A = intersect(target, emissions)

Z = emissions

Forward both graphs: A_score = forward_score(A) Z_score = forward_score(Z)

Compute loss:
loss = negate(subtract(A_score, Z_score))

Clear previous gradients: emissions.zero_grad()

Compute gradients: backward(loss, retain_graph=False) return loss.item(), emissions.grad()

ASG in GTN

Step 1: Compute the graphs

Step 2: Compute the loss

from gtn import *

def ASG(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

Forward both graphs: A_score = forward_score(A) Z_score = forward_score(Z)

Compute loss: loss = negate(subtract(A_score, Z_score))

Clear previous gradients: emissions.zero_grad()

Compute gradients: backward(loss, retain_graph=False) return loss.item(), emissions.grad()

ASG in GTN

Step 1: Compute the graphs Step 2: Compute the loss

Step 3: Automatic gradients!


```
from gtn import *
```

```
def ASG(emissions, target):
    # Compute constrained and normalization graphs:
    A = intersect(target, emissions)
    Z = emissions
```

```
# Forward both graphs:
A_score = forward_score(A)
Z_score = forward_score(Z)
```

```
# Compute loss:
loss = negate(subtract(A_score, Z_score))
```

Clear previous gradients: emissions.zero_grad()

Compute gradients: backward(loss, retain_graph=False) return loss.item(), emissions.grad()

ASG in GTN

Step 1: Compute the graphs Step 2: Compute the loss

Step 3: Automatic gradients!

from gtn import *

def ASG(emissions, target):

- # Compute constrained and normalization graphs:
- A = intersect(target, emissions)

Z = emissions

Forward both graphs: A_score = forward_score(A) Z_score = forward_score(Z)

Compute loss: loss = negate(subtract(A_score, Z_score))

Clear previous gradients: emissions.zero_grad()

Compute gradients: backward(loss, retain_graph=False) return loss.item(), emissions.grad()

Example: CTC in GTN

CTC in GTN

from gtn import *

def CTC(emissions, target):
 # Compute constrained and normalization graphs:
 A = intersect(target, emissions)
 Z = emissions

Forward both graphs: A_score = forward_score(A) Z_score = forward_score(Z)

Compute loss: loss = negate(subtract(A_score, Z_score))

Clear previous gradients: emissions.zero_grad()

```
# Compute gradients:
backward(loss, retain_graph=False)
return loss.item(), emissions.grad()
```

Example: CTC in GTN

CTC in GTN

Thanks!

References and Further Reading:

СТС

- Connectionist Temporal Classification : Labelling Unsegmented Sequence Data with Recurrent Neural Networks , Graves, et al. 2006, ICML
- Sequence Modeling with CTC, Hannun. 2017, Distill, https://distill.pub/2017/ctc/

GTNs

- Gradient-based learning applied to document recognition, LeCun, et al. 1998, Proc. IEEE
- Global Training of Document Processing Systems using Graph Transformer Networks, Bottou, et al. 1997, CVPR
- More references: <u>https://leon.bottou.org/talks/gtn</u>

Modern GTNs

- Code: <u>https://github.com/facebookresearch/gtn</u>, pip install gtn
- Differentiable Weighted Finite-State Transducers, Hannun, et al. 2020, https://arxiv.org/abs/2010.01003