Speech Recognition and Graph Transformer Networks

Awni Hannun, awni@fb.com

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Automatic Speech Recognition

Goal: Input speech \rightarrow output transcription

Automatic Speech Recognition

Improved significantly in the past 8 years

Automatic Speech Recognition

But not yet solved!

- Conversation: Fully conversational speech with multiple speakers
- Noise: Lot's of background noise
- Bias: Substantially worse performance for underrepresented groups

Automatic Speech Recognition

But not yet solved!
[Submitted on 28 Mar 2021 (v1), last revised 1 Apr 2021 (this version, v2)]

Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg

Automatic Speech Recognition

But not yet solved!
[Submitted ol 28 Mar 2021 V1;, ast revised 1 Apr 2021 (this version, v2)]

Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg

Automatic Speech Recognition

But not yet solved!

[Submitted of 28 Mar 2021 V1;, ast revised 1 Apr 2021 (this version, v2)]

Quantifying Bias in Automatic Speech Recognition

Siyuan Feng, Olya Kudina, Bence Mark Halpern, Odette Scharenborg
"...state-of-the-art (SotA) ASRs struggle
with the large variation in speech due to
e.g., gender, age, speech impairment,
race, and accents"

Automatic Speech Recognition

Question: Why has ASR gotten so much

Automatic Speech Recognition

Pre 2012 ASR system:

- Alphabet soup: Too many handengineered components
- Data: Small and not useful
- Cascading errors: Combine modules only at the inference
- Complex: Difficult to do research

Automatic Speech Recognition

Question: Why has ASR gotten so much

 better?

Automatic Speech Recognition

Automatic Speech Recognition

Automatic Speech Recognition

Automatic Speech Recognition

Answer: End-to-end production system

Automatic Speech Recognition

Answer: End-to-end in research

Automatic Speech Recognition

Answer: End-to-end in research

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

The CTC Loss

Goal: Given

1. Input speech $X=\left[x_{1}, \ldots, x_{T}\right]$
2. Output transcription $Y=\left[y_{1}, \ldots, y_{U}\right]$

Compute:

$$
\log P(Y \mid X ; \theta)
$$

The CTC Loss

Goal: Given

1. Input speech $X=\left[x_{1}, \ldots, x_{T}\right]$
2. Output transcription $Y=\left[y_{1}, \ldots, y_{U}\right]$

Compute:

$$
\log P(Y \mid X, \theta) \quad \begin{aligned}
& \text { Ideally differentiable w.r.t. } \\
& \text { model parameters }
\end{aligned}
$$

The CTC Loss

Example:

1. Input speech $X=\left[x_{1}, x_{2}, x_{3}\right]$
2. Output transcription $Y=[c, a, t]$

Compute:

$$
\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)+\log P\left(t \mid x_{3}\right)
$$

The CTC Loss

Example:

1. Input speech $X=\left[x_{1}, x_{2}, x_{3}\right]$
2. Output transcription $Y=[c, a, t]$

Compute:

$$
\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)+\log P\left(t \mid x_{3}\right)
$$

The CTC Loss

Example:

1. Input speech $X=\left[x_{1}, x_{2}, \sqrt{x}, x_{4}\right]$
2. Output transcription $Y=[c, a, t]$

Compute:
$\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)+\log P\left(t \mid x_{3}\right)+\log P\left(? ? \mid x_{4}\right)$

The CTC Loss

Alignment: One or more of each input

 maps to an output.

The CTC Loss

Alignment: One or more of each input

 maps to an output.

The CTC Loss

Alignment: One or more of each input

 maps to an output.

The CTC Loss

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

The CTC Loss

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

A: All of them!

$$
\log P(Y \mid X)=\log \left[P\left(A_{1} \mid X\right)+P\left(A_{2} \mid X\right)+P\left(A_{3} \mid X\right)\right]
$$

The CTC Loss

Reminder: Use actual-softmax to sum log probabilities
Want $\log \left(P_{1}+P_{2}\right)$ from $\log P_{1}$ and $\log P_{2}$

$$
\begin{aligned}
\operatorname{actual-softmax}\left(\log P_{1}, \log P_{2}\right) & =\log \left(P_{1}+P_{2}\right) \\
& =\log \left(e^{\log P_{1}}+e^{\log P_{2}}\right)
\end{aligned}
$$

The CTC Loss

Q: Which alignment should we use to compute $\log P(Y \mid X)$?

A: All of them!

$$
\begin{aligned}
& \log P(Y \mid X) \\
& \quad=\log \left[P\left(A_{1} \mid X\right)+P\left(A_{2} \mid X\right)+P\left(A_{3} \mid X\right)\right]
\end{aligned}
$$

faccebook AReseack $=$ actual-softmax $\left[\log P\left(A_{1} \mid X\right), \log P\left(A_{2} \mid X\right), \log P\left(A_{3} \mid X\right)\right]$

The CTC Loss

Aside: Alignment graph for $Y=[c, a, t]$

The CTC Loss

Problem: X has T frames and Y has U frames
If $T=1000$ and $U=100$ there are $\approx 6.4 \times 10^{139}$
alignments!
(For a fun combinatorics exercise show the exact number is $\binom{T-1}{U-1}$, Hint:
"Stars and Bars.")

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

Forward variable: α_{t}^{u} the score for all alignments of length t which end in y_{u}.

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

$$
\begin{aligned}
& \text { Example: } X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t] \\
& \alpha_{2}^{c}=\log P\left(c \mid x_{1}\right)+\log P\left(c \mid x_{2}\right)
\end{aligned}
$$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

$$
\begin{aligned}
& \text { Example: } X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t] \\
& \alpha_{2}^{a}=\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)
\end{aligned}
$$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example: $X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t]$
$\alpha_{3}^{a}=$ actual-softmax $\left[\log P\left(A_{1}\right), \log P\left(A_{2}\right)\right]$

$$
\begin{equation*}
\log P\left(A_{1}\right)=\log P\left(c \mid x_{1}\right)+\log P\left(c \mid x_{2}\right)+\log P\left(c x_{3}\right) a \tag{a}
\end{equation*}
$$

$$
\log P\left(A_{2}\right)=\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)+\log P\left(a \mid x_{3}\right)
$$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example: $X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t] \alpha_{2}^{c}$
$\alpha_{3}^{a}=$ actuel-softmax $\left[\log P\left(A_{1}\right), \log \left[P\left(A_{2}\right)\right]\right.$
$\log P\left(A_{1}\right)=\log P\left(c \mid x_{1}\right)+\log P\left(d \mid x_{2}\right)+\log P\left(a \mid x_{3}\right)$
$\log P\left(A_{2}\right)=\log P\left(c \mid x_{1}\right)+\log P\left(a \mid x_{2}\right)+d 6 g P\left(a \mid x_{3}\right)$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example: $X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t]$
$\alpha_{3}^{a}=$ actual-softmax $\left[\log P\left(A_{1}\right), \log P\left(A_{2}\right)\right]$

$$
\log P\left(A_{1}\right)=\alpha_{2}^{c}+\log P\left(a \mid x_{3}\right)
$$

$$
\log P\left(A_{2}\right)=\alpha_{2}^{a}+\log P\left(a \mid x_{3}\right)
$$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

Example: $X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad Y=[c, a, t]$
$\alpha_{3}^{a}=$ actual-softmax $\left[\log P\left(A_{1}\right), \log P\left(A_{2}\right)\right]=$ actual-softmax $\left[\alpha_{2}^{c}, \alpha_{2}^{a}\right]+\log P\left(a \mid x_{3}\right)$
$\log P\left(A_{1}\right)=\alpha_{2}^{c}+\log P\left(a \mid x_{3}\right) \quad$ Exercise: prove this equality!
$\log P\left(A_{2}\right)=\alpha_{2}^{a}+\log P\left(a \mid x_{3}\right)$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

General recursion:
$X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{T}\right], \quad Y=\left[y_{1}, y_{2}, \ldots, y_{U}\right]$
$\alpha_{t}^{u}=$ actual-softmax $\left[\alpha_{t-1}^{u}, \alpha_{t-1}^{u-1}\right]+\log P\left(y_{u} \mid x_{t}\right)$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

General recursion:
$X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{T}\right], \quad Y=\left[y_{1}, y_{2}, \ldots, y_{U}\right]$
$\alpha_{t}^{u}=$ actual-softmax $\left[\alpha_{t-1}^{u}, \alpha_{t-1}^{u-1}\right]+\log P\left(y_{u} \mid x_{t}\right)$
Final score: $\log P(Y \mid X)=\alpha_{T}^{U}$

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)
Coss

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

The CTC Loss

Solution: The Forward algorithm (A.K.A. dynamic programming)

The CTC Loss

Problem: Not every input corresponds to "speech"

The CTC Loss

Solution: Use a "garbage" or blank token: 〈b>

The CTC Loss

Solution: Use a "garbage" or blank token: 〈b>
Blank token is optional

Some allowed
alignments:

The CTC Loss

Solution: Use a "garbage" or blank token: 〈b>
Blank token is optional

The CTC Loss

Solution: Use a "garbage" or blank token: 〈b>
Blank token is optional
No!

Corresponds to "catt".

The CTC Loss

Solution: Use a "garbage" or blank token: 〈b>
Blank token is optional ...

Not optional!

The CTC Loss

CTC Recursion: Three cases

Case 1: Blank is optional

The CTC Loss

CTC Recursion: Three cases

The CTC Loss

CTC Recursion: Three cases

Case 3: Repeats, blank is not optional

The CTC Loss

Aside: The CTC graph

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Inference

Goal: Find the best Y (transcription) given an X (speech)
We have two models:

1. Acoustic model: $\log P(Y \mid X)$
2. Language model: $\log P(Y)$

Inference

Language Model: $\log P(Y)$

1. Trained on much larger text corpus
2. Fine-tuned for given application (or even user!)
3. Typically word-level n-gram with n between three and five

Inference

Goal: Find the best Y (transcription) given an X (speech)
We have two models:

1. Acoustic model: $\log P(Y \mid X)$
2. Language model: $\log P(Y)$

Find:

$$
Y^{*}=\operatorname{argmax}_{Y} \log P(Y \mid X)+\log P(Y)
$$

Graph Shortest Path: Greedy

Goal: Find the best (lowest scoring) path in the graph

Graph Shortest Path: Greedy

Goal: Find the best (lowest scoring) path in the graph

Graph Shortest Path: Greedy

Goal: Find the best (lowest scoring) path in the graph

Graph Shortest Path: Greedy

Goal: Find the best (lowest scoring) path in the graph

Graph Shortest Path: Beam Search

Algorithm:

Repeat:

1. Extend current candidates by all possibilities
2. Sort by score and keep N best

Graph Shortest Path: Beam Search

$N=3$

Graph Shortest Path: Beam Search

Graph Shortest Path: Beam Search

$N=3$

Return N-best list:
[c, c, b], score=6
$[\mathrm{a}, \mathrm{b}, \mathrm{b}]$, $\operatorname{score}=7$
$[a, b, c]$, score $=9$

Inference

Goal: Find the best Y (transcription) given an X (speech)
Use beam search to find

$$
Y^{*} \approx \operatorname{argmax}_{Y} \log P(Y \mid X)+\log P(Y)
$$

Outline

- Modern Speech Recognition
- Deep Dive: The CTC Loss
- Deep Dive: Decoding with Beam Search
- Graph Transformer Networks

Weighted Finite State Automata (WFSA)

Remember: Alignment graph for $Y=[c, a, t]$
GTN: WFSAs with automatic differentiation.

Graph Transformer Networks (GTNs): History

- Developed by Bottou, Le Cun, et al. at AT\&T in the early 90s
- First used in a state-of-the-art automatic check-reading system

Graph Transformer Networks (GTNs): History

Gradient-Based Learning Applied to Document Recognition
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

For deep learning:
see pages 1-16

Fig. 15. Traditional neural networks, and multi-module systems communicate fixed-size vectors between layer. Multi-Layer Graph Transformer Networks are composed of trainable modules that operate on and produce graphs whose arcs carry numerical information

W

Example: WFSTs in Speech Recognition

Example: WFSTs in Speech Recognition

Why Differentiable WFSAs?

- Encode Priors: Conveniently encode prior knowledge into a WFST
- End-to-end: Use at training time avoids issues such as label bias, exposure bias
- Facilitate Research: Separate data (graph) from code (operations on graphs)!

Sequence Criteria with WFSAs

Many loss functions are the difference of two
WFSTs
the graph A is a function of the input X (e.g.
speech) and target Y (e.g. transcription)
The graph z is a function of only the input X
The loss is given by:

$$
\log P(Y \mid X)=\text { forwardScore }\left(A_{X, Y}\right)-\text { forwardScore }\left(Z_{X}\right)
$$

Sequence Criteria with WFSTs

Many criteria are the difference of two WFSTs
Includes common loss functions in ASR such:

- Automatic Segmentation Criterion (ASG)
- Connectionist Temporal Classification (CTC)
- Lattice Free MMI (LF-MMI)

Sequence Criteria with WFSTs

Lines of code for CTC: Custom vs GTN

	Lines of Code
Warp-CTC	9,742
wav2letter	2,859
PyTorch	1,161
GTN	30

Sequence Criteria with WFSTs

Lines of code for CTC: Custom vs GTN

	Lines of Code
Warp-CTC	9,742
wav2letter	2,859
PyTorch	1,161
GTN	30

Same graphs work
for decoding!

Weighted Finite-State Acceptor (WFSA)

A simple WFSA which recognizes aa or ba

- The score of aa is $0+2=2$
- The score of ba is $1+2=3$

Weighted Finite-State Transducer (WFST)

A simple WFST which transduces ab to xz and bb to yz.

- The score of $a b \rightarrow x z$ is

$$
1.1+3.3=4.4
$$

- The score of bb $\rightarrow \mathrm{yz}$ is

More WFSAs and WFSTs

Cycles and self-loops are allowed

More WFSAs and WFSTs

Multiple start and accept nodes are allowed

More WFSAs and WFSTs

ϵ transitions are allowed in WFSAs

More WFSAs and WFSTs

ϵ transitions are allowed in WFSTs

- The score of $a b a \rightarrow x$ is 3.6

Operations: Union

The union accepts a sequence if it is accepted by any of the input graphs.

Recognizes \{ac\}

Recognizes \{ba\}

Recognizes \{ac, ba,

union $(\{g 1, ~ g 2, ~ g 3\}) \rightarrow$

Operations: Kleene Closure

Accepts any sequence accepted by the input graph repeated 0 or more times.

Recognizes \{aba\}

Recognizes $\{\epsilon$, aba, abaaba, ...\}

Operations: Intersect

1. Any path accepted by both WFSAs is accepted by the intersection.
2. The score of the path in the intersected graph is the sum of the scores of the paths in the input graphs.

Operations: Intersect

Operations: Intersect

Intersected graph:

Operations: Intersect

Intersected graph:

Operations: Intersect

Intersected graph:

Operations: Intersect

No match!
Intersected graph:

Operations: Intersect

Intersected graph:

Operations: Intersect

Operations: Intersect

No match!

Operations: Intersect

Operations: Intersect

Intersected graph:

Operations: Intersect

Intersected graph:

$$
(0,0) \xrightarrow{a} \xrightarrow{(0,0.4)} \text { No arcs to explore! }
$$

Operations: Intersect

Intersected graph:

$$
(0,0) \xrightarrow{\mathrm{a} / 0.4}(0,1) \xrightarrow{\mathrm{b} / 0.8} \xrightarrow{(1,2)}
$$

Operations: Intersect

Graph g1
Graph g2

Operations: Compose

1. If $x \rightarrow y$ in the first graph and $y \rightarrow z$ in the
second graph then $x \rightarrow z$ in the composed graph.
2. The score of the composed path is the sum of the scores of the paths in the input graphs.

Operations: Compose

Graph g1

Graph g2

Operations: Forward Score

Accumulate the scores of all possible paths:

1. Assumes the graph is a DAG
2. Efficient dynamic programming algorithm

Operations: Forward Score

The graph accepts three paths:

- aca with score=1.1+1.4+2.1
- ba with score=3.2+2.1
- ca with score=1.4+2.1
forwardScore(g) is the actual-softmax of the path scores.

Sequence Criteria with WFSTs

Simple ASG (AutoSegCriterion) with WFSTs

Target graph Y
Emissions graph E

intersect(Y, E)

Target constrained graph A

Sequence Criteria with WFSTs

Simple ASG with WFSTs

Target constrained graph A

Normalization graph $\mathrm{z}=\mathrm{E}$

Sequence Criteria with WFSTs

Make the target graph


```
import gtn
# Make the graph:
target = gtn.Graph(calc_grad=False)
# Add nodes:
target.add_node(start=True)
target.add_node()
target.add_node(accept=True)
# Add arcs:
target.add_arc(src_node=0, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=1, label=0)
target.add_arc(src_node=1, dst_node=2, label=1)
target.add_arc(src_node=2, dst_node=2, label=1)
# Draw the graph:
label_map = {0: 'a', 1: 'b'}
gtn.draw(target, "target.pdf", label_map)
```


Sequence Criteria with WFSTs

Make the emissions graph

```
import gtn
# Emissions array (logits)
emissions_array = np.random.randn(4, 3)
# Make the graph:
emissions = gtn.linear_graph(4, 3, calc_grad=True)
# Set the weights:
emissions.set_weights(emissions_array)
```


Example: ASG in GTN

ASG in GTN

Step 1: Compute the graphs

Example: ASG in GTN

ASG in GTN


```
rom gtn import *
def ASG(emissions,
# Compute constrained and normalization graphs
A = intersect(target, emissions)
Z = emissions
# Forward both graphs:
A_score = forward_score(A)
Z_score = forward_score(Z)
# Compute loss:
loss = negate(subtract(A_score, Z_score))
emissions.zero_grad()
# Compute gradients:
backward(loss, retain_graph=False)
return loss.item(), emissions.grad()
```


Example: ASG in GTN

ASG in GTN


```
rom gtn import *
def ASG(emissions, target):
    # Compute constrained and normalization graphs
    A = intersect(target, emissions)
    Z = emissions
    # Forward both graphs:
    Z_score = forward_score(Z)
loss = negate(subtract(A_score, Z_score))
# Clear previous gradients:
emissions.zero_grad()
# Compute gradients:
backward(loss, retain_graph=False)
return loss.item(), emissions.grad()
```


Example: ASG in GTN

ASG in GTN

Step 1: Compute the graphs
 Step 2:
 Compute the loss

Step 3:

Automatic gradients!

```
from gtn import *
def ASG(emissions, target):
    # Compute constrained and normalization graphs:
    A = intersect(target, emissions)
    Z = emissions
    # Forward both graphs:
    A_score = forward_score(A)
    Z_score = forward_score(Z)
    # Compute loss:
    loss = negate(subtract(A_score, Z_score))
    # Clear previous gradients:
    emissions.zero_grad()
    # Compute gradients:
    backward(loss, retain_graph=False)
    return loss.item(), emissions.grad()
```


Example: CTC in GTN

CTC in GTN

```
from gtn import *
def CTC(emissions, target):
    # Compute constrained and normalization graphs:
    A = intersect(target, emissions)
    Z = emissions
    # Forward both graphs:
    A_score = forward_score(A)
    Z_score = forward_score(Z)
    # Compute loss:
    loss = negate(subtract(A_score, Z_score))
    # Clear previous gradients:
    emissions.zero_grad()
    # Compute gradients:
    backward(loss, retain_graph=False)
    return loss.item(), emissions.grad()
```


Example: CTC in GTN

CTC in GTN

```
from gtn import *
def CTC(emissions, target):
    # Compute constrained armormalization graphs:
    A = intersect(target, emisotions)
    Z = emissions
    # Forward both graphs:
    A_score = forward_score(A)
    Only difference!
    Z_score = forward_score(Z)
    # Compute loss:
    loss = negate(subtract(A_score, Z_score))
    # Clear previous gradients:
    emissions.zero_grad()
    # Compute gradients:
    backward(loss, retain_graph=False)
    return loss.item(), emissions.grad()
```


Thanks!

References and Further Reading:

CTC

- Connectionist Temporal Classification : Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves, et al. 2006, ICML
- Sequence Modeling with CTC, Hannun. 2017, Distill, https://distill.pub/2017/ctc/

GTNs

- Gradient-based learning applied to document recognition, LeCun, et al. 1998, Proc. IEEE
- Global Training of Document Processing Systems using Graph Transformer Networks, Bottou, et al. 1997, CVPR
- More references: https://leon.bottou.org/talks/gtn

Modern GTNs

- Code: https://github.com/facebookresearch/gtn, pip install gtn
- Differentiable Weighted Finite-State Transducers, Hannun, et al. 2020, https://arxiv.org/abs/2010.01003

