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Abstract

Many sequence classification models suffer from the label bias prob-
lem. Understanding the label bias problem and when a certain model
suffers from it is subtle but is essential to understand the design of
models like conditional random fields and graph transformer networks.

1 Introduction

Many sequence classification models suffer from the label bias problem. Un-
derstanding the label bias problem and when a certain model suffers from it
is subtle but is essential to understand the design of models like conditional
random fields and graph transformer networks.

The label bias problem mostly shows up in discriminative sequence models.
At its worst, label bias can cause a model to completely ignore the current
observation when predicting the next label. How and why this happens is the
subject of this section. How to fix it is the subject of the next section.

Suppose we have a task like predicting the parts-of-speech for each word in
a sentence. For example, take the sentence “the cat sat” which consists of
the tokens [the, cat, sat]. We’d like our model to output the sequence
[ARTICLE, NOUN, VERB].

A classic discriminative sequence model for solving this problem is the maxi-
mum entropy Markov model (MEMM) [McCallum et al., 2000]. The graphi-
cal model for the MEMM is shown in Figure 1. Throughout, X=[x1, . . . , xT ]
is the input or observation sequence and Y = [y1, . . . , yT ] is the output or
label sequence.
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Figure 1: The graphical model for the maximum entropy Markov model (MEMM).

The MEMM makes two assumptions about the data. First, yt is condition-
ally independent of all previous observations and labels given xt and yt−1.
Second, the observations xt are independent of one another. The first as-
sumption is more central to the model while the second sometimes varies
and is easier to relax. These assumptions can be seen from the graphical
model. Mathematically, the model is written as

p(Y | X) =
T∏
t=1

p(yt | xt, yt−1). (1)

The probabilities are computed with a softmax:

p(yt | xt, yt−1) =
es(yt,xt,yt−1)∑c
i=1 e

s(yi,xt,yt−1)
(2)

where c is the number of output classes and s(yt, xt, yt−1) is a scoring func-
tion which should give a higher score for yt which are likely to be the correct
label. Since we normalize over the set of possible output labels at each time
step, we say the model is locally normalized and p(yt | xt, yt−1) are the lo-
cal probabilities. The distribution p(Y | X) is valid since summing over all
possible Y of length T equals one, and all the values are non-negative.

Let’s return to our example of [the, cat, sat]. We can represent the
inference process on this sequence using a graph, as in Figure 2. The states
(or nodes) represent the set of possible labels. The transitions (or edges)
represent the possible observations along with the associated probabilities
p(yt | xt, yt−1).

To compute the probability of [ARTICLE, NOUN, VERB], we just follow the
observations along each arc leading to the corresponding label. In this case
the probability would be 1.0×0.9×1.0.
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Figure 2: An inference graph for the MEMM with the label set {ARTICLE, NOUN,

VERB}. Each arc is labelled with the probability of transitioning to the correspond-
ing state given the observation. The sum of the probabilities on arcs leaving a node
for a given observation should sum to one. For simplicity not all observation, score
pairs are pictured.

As another example, say we drop the article and just have the sequence
[cat sat]. While it’s not a great sentence, the correct label should be
[NOUN, VERB]. However, if we follow the probabilities we see that the score
for [ARTICLE, NOUN] is 0.9×0.3=0.27 whereas the score for [NOUN, VERB]

is 0.1×1.0=0.1.

The model is not used to seeing cat at the start of a sentence, so the
scores leading from the start state are poorly calibrated. What we need is
information about how uncertain the model is for a given observation and
previous label pair. If the model has rarely seen the observation cat from
the starting node <S> then we want to know that, and it should be included
in the scores.

It’s actually possible that the model did at some point implicitly store this
uncertainty information. However, by normalizing the outgoing scores for a
given observation, we are forcing this information to be discarded. Take a
look at the unnormalized inference graph in Figure 3.

The unnormalized inference graph corresponds exactly to the normalized in-
ference graph when the scores are exponentiated and normalized. However,
we see something interesting here. The outgoing scores for cat from <S>

are small. Recall lower scores are worse. This means the model is much less
confident about the observation cat from the start state than the observa-
tion the which has a score of 100. This information is completely erased
when we normalize. That’s one symptom of the label bias problem.
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Figure 3: An unnormalized inference graph for the MEMM with the label set
{ARTICLE, NOUN, VERB}. Each arc is labelled with the score of transitioning to
the corresponding state given the observation. For simplicity not all observation,
score pairs are pictured.

Notice in the unnormalized graph, the score for [ARTICLE, NOUN] is 5+21 =
26 while the score for [NOUN, VERB] is 3 + 100 = 103. The right answer
gets a better score in the unnormalized graph! Note, we are adding scores
here instead of multiplying them because the unnormalized scores are in
log-space. In other words p(yt | xt, yt−1) ∝ es(yt,xt,yt−1).

We can see the label bias problem quantitatively. This observation is due
to Denker and Burges [1994]. Suppose our scoring function s(yt, xt, yt−1)
factorizes into the sum of two functions f(yt, xt, yt−1) and g(xt, yt−1). Sup-
pose further that f(·) mostly cares about how good the predicted label yt
is given the observation xt, whereas g(·) mostly cares about how good the
observation xt is given the previous label yt−1. If we compute the local
probabilities using this factorization, we get:

p(yt | xt, yt−1) =
ef(yt,xt,yt−1)+g(xt,yt−1)∑c
i=1 e

f(yi,xt,yt−1)+g(xt,yt−1)
=

ef(yt,xt,yt−1)∑c
i=1 e

f(yi,xt,yt−1)
. (3)

The contribution of g(·) in the numerator and denominator cancels. This
causes all the information about how likely the observation is given the
previous state to be erased.

1.1 Conservation of Score Mass

The label bias problem results from a “conservation of score mass” [Bot-
tou, 1991]. Conservation of score mass just says that the outgoing scores
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Figure 4: An example of three states, A, B and C, which have uniform outgoing
transition distributions. Label bias will cause the inference procedure to favor paths
which go through state C.

from a state for a given observation are normalized. This means that all of
the incoming probability to a state must leave that state. An observation
can only dictate how much of the incoming probability to send where. It
cannot change the total amount of probability leaving the state. The net
result is any inference procedure will bias towards states with fewer outgoing
transitions.

Suppose we have three states, A, B and C, shown in Figure 4. State A has
four outgoing (nonzero) transitions, state B only has two and state C has
just one. Suppose all three states distribute probability mass equally among
their successor states: p(yt | xt, yt−1) is uniform.

Neither state A, B nor C are doing anything useful here, so we shouldn’t
prefer one over the other. But the inference procedure will bias towards
paths which go through state C over B and A. Paths which go through A will
be the least preferred. To understand this, suppose that the same amount of
probability arrives at the three states. State A will decrease the probability
mass for any path by a factor of four, whereas state B will only decrease a
given path’s score by a factor of two and state C won’t penalize any path at
all. In every case the observation is ignored, but the state with the fewest
outgoing transitions is preferred.

Even if outgoing transitions from states A and B did not ignore their obser-
vations, they would still reduce a paths score since the probabilities aren’t
likely to be one. This would cause state C to be preferred even though it
always ignores it’s observation.
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Figure 5: An example of three states, A, B and C, each with two possible outgoing
transitions. Each transition is labelled with the observation and probability pair
for two observations, a and b.

1.2 Entropy Bias

In a less contrived setting where the distribution p(yt | xt, yt−1) is not the
same for every observation, our model will bias towards states which have a
low entropy distribution over next states given the previous state. Note this
is distinct from the distribution p(yt | xt, yt−1) which can have low entropy
without directly causing label bias. However, if the conditional distribution
p(yt | yt−1) has low entropy then we are potentially in trouble. For example,
in the figure above, p(y | B) has lower entropy than p(y | A).

Consider the three in Figure 5. In each case there are two possible ob-
servations a and b and two possible successor states. We’d like to know
which one will introduce the most label bias into the model. To answer
that question, we need to make an assumption about the prior proba-
bility over observations. Suppose that the prior, p(xt), is uniform (e.g.
p(a) = p(b) = 0.5).

We can calculate p(yt | yt−1) for any state since

p(yt | yt−1) =
∑
i

p(yt | xi, yt−1)p(xi) =
1

n

∑
i

p(yt | xi, yt−1) (4)

where we used the fact that p(xt) is uniform and there are n possible obser-
vations. In our case n = 2. Figure 6 shows p(yt | yt−1) on the corresponding
arc for each example.

Case (a) has the lowest entropy transition distribution whereas case (b) and
(c) are equivalent. Intuitively, we expect case (a) to be worse than case (b)
since it biases towards the upper path, whereas (b) does not bias towards
either. However, case (c) is interesting. In case (c), the observation can
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Figure 6: An example of three states, A, B and C, each with two possible outgoing
transitions. Each transition is labelled with the probability p(yt | yt−1) which are
computed from the probabilities in the figure above.

have a large effect on the outcome. While this effect might be wrong if the
probabilities are poorly calibrated, this case doesn’t cause label bias more
than case (b) under the assumption of a uniform prior.

1.3 Revising Past Mistakes

Another description of the label bias problem is that it does not allow a
model to easily recover from past mistakes. This follows from the conser-
vation of score mass perspective. If the outgoing score mass of a path is
conserved, then at each transition the mass can only decrease. In the fu-
ture, if a path encounters new evidence which makes it very likely to be
correct, it cannot increase the path’s score. The most this new evidence can
do is to not decrease the path’s score by preserving all of the incoming mass
for that path. So the model’s ability to promote a path given new evidence
is limited even if we are certain that the new observation makes this path
the correct one.

2 Overcoming the Label Bias Problem

As we observed in the [cat, sat] example above, if we don’t normalize
scores at each step, then the path scores can retain useful information. This
implies that we should avoid locally normalizing probabilities.

One option is that we don’t normalize at all. Instead, when training, we
simply tune the model parameters to increase the score
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s(X,Y ) =
T∑
t=1

s(yt, xt, yt−1) (5)

for every (X,Y ) pair in our training set. The problem with this is there
is no competition between possible outputs. This can result in the model
maximizing s(Y,X) while completely ignoring its inputs. So we need some
kind of competition between outputs. If the score of one output goes up,
then others should feel pressure to go down.

This can be achieved with global normalization. We compute the probability
as

p(Y | X) =
e
∑T

t=1
s(yt,xt,yt−1)∑

Y ′∈YT e
∑T

t=1
s(y′t,xt,y′t−1)

(6)

where YT is the set of all possible Y of length T . This is exactly a linear
chain conditional random field (CRF) [Lafferty et al., 2001]. The graphical
model and hence dependency structure is the same as the MEMM in the
previous section. The only difference is how we normalize the scores for a
given input.

With this normalization scheme, the label bias problem is no longer an issue.
In fact when performing inference, we need not normalize at all. The nor-
malization term is constant for a given X and hence the ordering between the
possible Y will be preserved without normalizing. What this means is that
the inference procedure operates on an unnormalized graph just like the one
we saw for the part-of-speech tagging example in the previous section.

Because transitions have unnormalized scores, they are free to affect the
overall path score anyway they please. If cat is very unlikely to follow
<s> the model can retain that information by keeping the scores for all
transitions out of <s> low. Then whenever we see cat following the state
<s>, the path score won’t be affected much since the model is uncertain of
what the correct next label is.

This freedom from the label bias problem comes at a cost. Computing the
normalization term exactly is more expensive with a CRF than with an
MEMM. With an MEMM we normalize locally. Each local normalization
costs O(c) where c is the number of classes, and we have to compute T of
them, so the total cost is O(cT ). With a linear chain CRF, on the other-
hand, the total cost using an efficient dynamic programming algorithm called
the forward-backward algorithm, is O(c2T ) [Sutton et al., 2012]. If c is large
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this can be a major hit to training time. For more complex structures where
there can be longer-range dependencies between the outputs, beam search
is usually the only option to approximate the normalization term [Collobert
et al., 2019].

3 A Brief History of the Label Bias Problem

The first recorded observation of the label bias problem was by Bottou
[1991]. The term “label bias” was coined in the seminal work of Lafferty
et al. [2001] introducing conditional random fields. Solving the label bias
problem was one of the motivations for developing the CRF. The CRF was
one of earliest discriminative sequence models to give a principled solution
to the label bias problem.

An even earlier sequence model which overcame the label bias problem was
the check reading system proposed by Denker and Burges [1994], though
they did not use the term label bias. This work motivated the graph
transformer networks of Bottou et al. [1997]. More references on graph
transformer networks can be found on Léon Bottou’s webpage on structure
learning systems1.

4 A Few Examples

In this section we’ll look at a few examples of models, some of which suffer
from label bias and some of which do not.

4.1 Hidden Markov Model

The hidden Markov model (HMM) is a generative model which makes two
assumptions about the data generating distribution. First, it assumes that
the observation xt is conditionally independent of all other y and x given the
hidden state (i.e. label) at time t, yt. Second, the HMM makes the usual
Markov independence assumption that yt is conditionally independent of all
previous y given yt−1. In equations

1https://leon.bottou.org/research/structured
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Figure 7: The graphical model for the hidden Markov model (HMM).
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Figure 8: An inference graph for the HMM with the label set {ARTICLE, NOUN,

VERB}. The scores for the given observation on each arc are not shown.

p(X,Y ) = p(y0)
T∏
t=1

p(xt | yt)p(yt | yt−1). (7)

This is a very different model from the MEMM. It’s generative, not dis-
criminative, so we estimate p(X,Y ) and not p(Y | X). Interestingly, the
only difference between the graphical model for an HMM (Figure 7) and the
MEMM is the direction of the arrows between xt and yt.

As a simple rule of thumb, generative models do not suffer from label bias.
One way to see this for the HMM specifically is to look at the corresponding
inference graph, as in Figure 8.

The scores on each edge associated with an observation are given by p(xt |
yt)p(yt | yt−1). In general the sum of these scores over all possible next
states is not required to be one:

c∑
i=1

p(xt | yi)p(yi | yt−1) 6= 1. (8)
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More importantly, the sum is not a constant, but can change depending on
the observation and the previous state. This implies that we do not have
conservation of score mass and hence label bias is not an issue.

4.2 Sequence-to-sequence Models

Sequence-to-sequence models with attention are very commonly used to la-
bel sequences. These models are discriminative and compute the probability
of an output given an input using the chain rule

p(Y | X) =
T∏
t=1

p(yt | y<t, X) where p(yt | y<t, X) ∝ es(yt,y<t,X). (9)

The score function s(·) is computed using a multi-layer neural network with
attention.

These models are locally normalized,

c∑
i=1

p(yi | y<t, X) = 1, (10)

hence they can suffer from label bias. Whether or not this is an issue in
practice remains to be seen. Some attempts have been made to design
globally normalized versions of these models, though none are yet commonly
used [Wiseman and Rush, 2016].

4.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is a discriminative sequence
model designed to solve problems where the correspondence between the
input and output sequence is unknown [Graves et al., 2006] This includes
problems like speech and handwriting recognition among others. See Han-
nun [2017] for an in-depth tutorial.

For a given input-output pair (X,Y ), CTC allows a set of alignments AX,Y .
We let A=[a1, . . . , aT ] ∈ AX,Y be one such alignment. Note, A has the same
length as X, namely T . The probability of a sequence Y given an input X
can then be computed as
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p(Y | X) =
∑

A∈AX,Y

T∏
t=1

p(at | X) where p(at | X) ∝ es(at,X). (11)

Like sequence-to-sequence models with attention, the score function s(·)
is usually computed with a multi-layer neural network. Notice that CTC
assumes the outputs at are conditionally independent of one another given
the input X.

The CTC model is a special case in that it is both locally normalized
and globally normalized. Because of the conditional independence assump-
tion, the two are equivalent. At the level of an individual alignment, we
have

p(A | X) =
T∏
t=1

est(at,X)∑c
i=1 e

st(ai,X)
=

∏T
t=1 e

st(at,X)∏T
t=1

∑c
i=1 e

st(ai,X)
. (12)

We can rewrite the denominator using the fact that

m∏
j=1

n∑
ij=1

aij =

 n∑
i1=1

ai1

 . . .

 n∑
im=1

aim

 =
m∑

i1=1

. . .
n∑

im=1

m∏
j=1

aij (13)

to get

p(A | X) =
e
∑T

t=1
st(at,X)∑

A′ e
∑T

t=1
st(a′t,X)

. (14)

Used on its own, CTC does not suffer from label bias. There are a couple of
ways to see this. First, as we described, CTC is globally normalized at the
level of an alignment and label bias results from local normalization.

Second, the conditional independence assumption made by CTC removes
label bias. If the next state prediction does not depend on any previous state,
then there is no label bias. The model acts as if the transition probabilities
p(yt | yt−1) are uniform and the same for all yt−1. This means the entropies
of these distributions are all the same and maximal.

The model does have conservation of score mass in the sense that
∑c

i=1 p(yi |
X) = 1. However, new evidence can arbitrarily influence the plausibility of
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a given path. The model can favor paths which have a certain label at a
given time step by giving the corresponding p(yt | X) a value close to one.
This will in turn make all paths which do not predict yt have scores very
close to zero. However, the expressiveness of the model is also limited since
it cannot select for paths based on previously predicted labels.
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