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Abstract

This paper deals with decoupling problems of unknown,
measurable and previewed signals. First the well known
solutions of unknown and measurable disturbance de-
coupling problems are recalled. Then new necessary
and sufficient constructive conditions for the previewed
signal decoupling problem are proposed. The discrete
time case is considered. In this domain previewing a
signal by p steps means that the k-th sample of the
signal to be decoupled is known p steps in advance.
The main result is to prove that the stability condi-
tion for all of the mentioned decoupling problems does
not change, i.e. the resolving subspace to be stabilized
is the same independently of the type of signal to be
decoupled, being it completely unknown (disturbance),
measured or previewed.
The problem has been studied through self-bounded
controlled invariants, thus minimizing the dimension of
the resolving subspace which corresponds to the infi-
mum of a lattice. Note that reduced dimension on re-
solving controlled invariant subspace yields to reduce
the order of the controller units.

1 Introduction

Disturbance decoupling is a classical problem in con-
trol theory. It has been one of the first application
considered in the geometric approach framework and
has been given attention for more than thirty years.
In the first formulation of the disturbance decoupling
problem (DDP) [2, 11], disturbance signals are assumed
to be unknown and unaccessible. Later Bhattacharyya
[6] considered the so called measured signal decoupling
problem (MSDP) in which signals to be decoupled are
considered measurable. The structural conditions for
the MSDP to be solved are less restrictive than those
for the DDP, while stabilizability conditions are similar.
In this paper the decoupling control problem is ap-
proached in a more general setting. Signals which are
known in advance or previewed by a given amount of
time are considered. Such problem will be referred to
as previewed signal decoupling problem (PSDP).
The PSDP has been investigated by Willems [10] who

first derived, in the continuous time domain, a neces-
sary and sufficient condition to solve the PSDP with
pole placement. This solution was based on the so
called proportional-integral-derivative control laws con-
sisting of a feedback of the state system and of a linear
combination of signal (to be decoupled) and its time
derivatives. The major drawback of these extensions of
the disturbance decoupling problem in continuous time
domain is that control laws include distributions, hence
are not practically implementable.
Independently, Imai and Shinozuka [7] proposed a simi-
lar necessary and sufficient condition for the PSDP with
stability in both discrete and continuous time cases.
They also proposed a synthesis procedure of the preac-
tion unit and of the state feedback matrix to solve the
PSDP.
Conditions for the PSDP to be solved, given in [10] and
[7], do not care about dimensionality of the resolving
controlled invariant subspace. Furthermore, to the best
of our knowledge, the problem of reducing the dimen-
sion of the resolving subspace for the PSDP has not
been thoroughly investigated in the literature. Note
that using controlled invariants of minimal dimensions
yields to reduce the order of the controller units and
possible state observers.
Barbagli, Marro and Prattichizzo [1] proposed a new so-
lution for the PSDP with stability based on a subspace
with reduced dimension. Such dimension optimization
was gained through self-bounded controlled invariants.
This is a special class of controlled invariants introduced
by Basile and Marro in [5, 9] which enjoys interesting
properties, the most important of which is to be a lat-
tice instead of a semi-lattice, hence to admit an infimum
other than a supremum.
This paper deals with discrete-time systems. In such
domain, the solution to the PSDP is more elegant and
is practically implementable. After reviewing the well
known concepts of minimum conditioned invariant con-
taining a given subspace, a structural condition for the
previewed signal decoupling problem and a condition
for the problem with stability are presented.
The main result of this paper consists in proposing a
unique necessary and sufficient condition for signal de-
coupling problems with stability independently of the



type of signal to be decoupled, being it completely un-
known (disturbance), measured or previewed.
This paper shows that the resolving subspace proposed
in [1] for the PSDP problems and the well known resolv-
ing subspace of the DDP problem proposed by Basile,
Marro and Piazzi in [4] are equivalent. The proof is
carried out in a geometric framework and is based on
several lattices of self bounded (A,B)-controlled invari-
ants.
The following notation is used. R stands for the field
of real numbers. Sets, vector spaces and subspaces are
denoted by script capitals like X , I, V , etc.. Since
most of the geometric theory of dynamic system herein
presented is developed in the vector space Rn, we re-
serve the symbol X for the full space, i.e., we assume
X := Rn. Matrices and linear maps by slanted cap-
itals like A, B, etc., the image and the null space of
the generic matrix or linear transformation A by imA
and kerA respectively, the transpose of the generic real
matrix A by AT and its spectrum by σ(A).
The reminder of this paper is organized as follows. Sec-
tion 2 presents the structural conditions for the general
PSDP. In Section 3 new necessary and sufficient condi-
tions for the PSDP with stability are stated, and finally
in Section 4 an illustrative example is presented.

2 Structural conditions for the PSDP

Let us consider the discrete-time system{
x(k + 1) = Ax(k) + Bu(k) + Hh(k)

y(k) = Cx(k) (1)

where x ∈ X (= Rn), u ∈ Rm, h ∈ Rh and y ∈ Rq

denote the state, the manipulable input, the signal to
be decoupled and the regulated output, respectively. In
the following the short notations B := imB, C := kerC
and H :=imH will be used.
In this paper we deal with the signal decoupling prob-
lem when a certain degree of knowledge of signal h(k)
is available. In particular we assume that signal h(k) is
previewed, i.e. it is known p steps in advance, or ana-
lytically the sample h(k) is known at step k−p. Hence-
forth previewed signal h(k) by p steps will be referred
to as p-previewed h(k), or shortly ph(k). Note that
measurable disturbance can be thought as 0-previewed
signals.
Preview on h(k) is needed in order to ”prepare” the
system dynamics to localize the disturbance signal on
the nullspace of the output matrix C. This is formalized
in the following statement.

Problem 1 (Previewed signal decoupling) Refer to
system (1) with zero initial condition and assume that
input h is previewed by p instants of time, p ≥ 0. De-
termine a control law which, making use of this preview,
is able to maintain the output y(k) identically zero.

In a geometric framework, the key tool to analyze the

structural conditions for the signal decoupling prob-
lem, is the well-known [3] algorithm computing S∗ :=
minS(A, C,B), the minimal (A, C)-conditioned invari-
ant containing B, here reported for the reader conve-
nience:

S0 := B (2)
Si := B + A(Si−1 ∩ C). (3)

Structural conditions to solve Problem 1 for p-
previewed signals are given in the following theorem.

Theorem 1 Necessary and sufficient condition for
Problem 1 to be solved is that

H ⊆ V∗ + Sp. (4)

where V∗ := maxV(A,B, C) is the maximal controlled
invariant contained in the nullspace of C.

Remark 1 Structural condition (4) in Theorem 1, is
similar to the one proved in [10] for the continuous-time
case and in [7] for the discrete time case. However, con-
dition (4) is less restrictive since it does not consider
stability. It is worth noting that the case of measurable
inputs is accounted for by condition (4). In fact mea-
surable signals corresponds to p = 0 and therefore (4)
turns into the well known condition

H ⊆ V∗ + B.

Similarly the lack of preview yields to the well-known
structural condition for unknown signals, i.e.

H ⊆ V∗.

Summarizing, being V∗ ⊆ V∗ + B ⊆ V∗ + Sp, the larger
the preview time of the signal to be decoupled the easier
it is to solve the PSDP.

The following property characterizes the minimum
number of preview steps necessary to decouple pre-
viewed signals for a given disturbance matrix H .

Property 1 Consider system (1) and let r be the min-
imum number of steps necessary to obtain convergence
of algorithm for S∗, (2,3). The minimum positive inte-
ger p ≤ r such that condition (4) holds, corresponds to
the minimum number of previewed steps for h(k) needed
to decouple signal Hh(k). If for p = r condition (4) is
not satisfied, the PSDP has no solution for the given
disturbance matrix H.

For a better understanding of Theorem 1, some guess
on how to employ the preview to localize previewed
signals in the nullspace of the output matrix, is given.
A detailed discussion on the controller design can be
found in [1].



If structural condition (4) holds, it is possible to de-
compose the disturbance effect into two separate parts
as follows

H = HV + HS (5)
HV := im(HV ) ⊆ V∗ (6)
HS := im(HS) ⊆ Sp. (7)

Components of Hh(k) lying on Sp can be canceled
through a preaction unit. For this purpose note that
Sp can be interpreted as the reachable subspace in p
(p ≥ 0) steps from x0 = 0, with the state trajectory
constrained to lie on the nullspace of the output matrix
C in the (p − 1)-steps interval [0, p − 1]:

Cx(k) = 0 for (k = 0, 1, . . . p − 1). (8)

In other terms, the preaction unit, which is a part of
the decoupling controller, exploits the signal preview
to cancel HSh(k), i.e. the part of Hh(k) belonging to
Sp Because of the special reachability subspace Sp, this
happens while maintaining the output identically zero.
On the other hand signal HV h(k) is localized in the
nullspace of the output matrix according to standard
decoupling techniques [3].

3 Previewed signal decoupling problem with
stability

The p–previewed signal decoupling problem with sta-
bility is investigated.

Problem 2 (Previewed signal decoupling with stabil-
ity) Refer to system (1) with zero initial condition and
assume that it is stabilizable and that input h is pre-
viewed by p instants of time, p ≥ 0. Determine a con-
trol law which, making use of the preview, is able to
maintain the output y(k) identically zero while keeping
the state on a bounded trajectory.

The Previewed signal decoupling with stability is ap-
proached by means of lattices of self-bounded controlled
invariants [5, 9]. A special attention is devoted to the
dimension of the resolving subspace.
Let us introduce the lattice of all the (A,B)-controlled
invariants self bounded with respect to C,

Φ = Φ(B, C) = {V | AV ⊆ V +B, V ⊆ C, V∗ ∩B ⊆ V}
(9)

whose infimum is

V∗ ∩minS(A, C,B),

and the lattice of all the (A,B+HV )-controlled invari-
ants self bounded with respect to C,
Φ1 = Φ(B +HV , C) =
= {V | AV ⊆ V + B +HV , V ⊆ C, V∗ ∩ (B +HV ) ⊆ V}

(10)

whose infimum is

Vm1 = V∗ ∩minS(A, C,B +HV ). (11)

Subspace Vm1 can be written as in (11) since condition
(6) holds and therefore

V∗ ≡ maxV(A,B +HV , C).
The following lemmas hold.

Lemma 1 The set

Φ2 = {V |V ∈ Φ,H ⊆ V + Sp} (12)

enjoys the following properties:

1. is a sub-lattice of Φ;

2. Φ2 ≡ {V |V ∈ Φ,V∗ ∩ (H + Sp) ⊆ V};
3. the infimum of Φ2 is

Vm2 = V∗ ∩minS(A,V∗,H+ Sp). (13)

Proof: (Property 1.) We want to show that given
two generic elements V1 and V2 of set Φ2 their sum and
intersection still belongs to the same set. Such proof
appears trivial for the subspace obtained by summing
the two given subspaces. Let’s consider now element
V1 ∩ V2. By assumption, since both V1 and V2 belong
to Φ2 it is obvious that

H ⊆ V1 + Sp (14)
H ⊆ V2 + Sp (15)

which lead to

H ⊆ (V1 + Sp) ∩ (V2 + Sp).

By intersecting both terms with V∗ + Sp we obtain

H ⊆ ((V1 + Sp) ∩ (V2 + Sp)) ∩ (V∗ + Sp) (16)

since the structural condition (4) holds, and then

H ⊆ (V∗ ∩ (V1 + Sp)) ∩ (V∗ ∩ (V2 + Sp)) + Sp

using the distributive property, being Sp included in
(V1 + Sp) ∩ (V2 + Sp). Analogously we get

H ⊆ ((V1∩V∗)+(V∗∩Sp))∩((V2∩V∗)+(V∗∩Sp))+Sp

and finally
H ⊆ (V1 ∩ V2) + Sp

being V1 and V2 both included in V∗ and both includ-
ing V∗ ∩ Sp.

(Property 2.)
(⇒)

V ∈ Φ1 ⇒ H ⊆ V + Sp ⇒ H+ Sp ⊆ V + Sp



and therefore intersecting both members with V∗ we
obtain

V∗ ∩ (H + Sp) ⊆ V∗ ∩ (V + Sp) = V + (V∗ ∩ Sp) = V
being (V∗ ∩ Sp) ⊆ (V∗ ∩ S∗) which is the infimum of Φ
and therefore is contained in all V ∈ Φ.

(⇐)
V∗ ∩ (H + Sp) ⊆ V

summing Sp to both members we obtain

Sp + (V∗ ∩ (H + Sp)) ⊆ V + Sp

from which using the distributive property we obtain

(Sp + V∗) ∩ (Sp +H) ⊆ V + Sp

and being H ⊆ Sp +H ⊆ Sp + V∗ we obtain

(Sp +H) ⊆ V + Sp

from which obviously

H ⊆ V + Sp

(Property 3.)
The proof will be developed in two steps:

A. Any element of Φ2 contains Vm2 = V∗ ∩ S∗
2 where

S∗
2 = minS(A,V∗,H+ Sp); (17)

B. V∗∩S∗
2 is an element of Φ2

(Step A.) Consider the sequence that defines S∗
2 :

Z ′
0 := Sp +H (18)

Z ′
i := Sp +H + A (Z ′

i−1 ∩ V∗) (i=1, . . .) (19)

Let V be a generic element of Φ2, so that

AV ⊆ V + B , V ⊇ V∗ ∩ B.

We proceed by induction: clearly

Z ′
0 ∩ V∗ ⊆ V

since by assumption V∗ ∩ (Sp +H) ⊆ V , and from

Z ′
i−1 ∩ V∗ ⊆ V

it follows that

A(Z ′
i−1 ∩ V∗) ⊆ AV ⊆ V + B

since V is an (A,B)-controlled invariant. Adding Sp+H
to both members yields

Sp +H+ A (Z ′
i−1 ∩ V∗) ⊆ V + Sp +H

where the first term of the last inclusion is by definition
subspace Z ′

i and, by intersecting with V∗, we finally
obtain

Z ′
i ∩V∗ ⊆ (V+(Sp +H))∩V∗ = V+(Sp +H)∩V∗ = V

which completes the induction argument and the proof
of Step A.

(Step B.) Note that

1. S∗
1 ∩ V∗ is an (A,B)-controlled invariant contained
in C;

2. S∗
1∩ V∗ is self bounded with respect to C

3. H ⊆ (S∗
1∩ V∗) + Sp

To prove 1. note that

AV∗ ⊆ V∗ + B
A (S∗

1 ∩ V∗) ⊆ S∗
1

which simply expresses V∗ as an (A,B)-controlled in-
variant and S∗

1 as an (A,V∗)-conditioned invariant. By
intersection it follows that

A (S∗
1 ∩ V∗) ⊆ S∗

1 ∩ (V∗ + B) = S∗
1 ∩ V∗ + B

being B ⊆ S∗
1 . Then S∗

1 ∩ V∗ is an (A,B)-controlled
invariant contained in C.
To prove 2. note that

V∗∩B ⊆ V∗∩S∗
1 .

Finally, to prove 3. note that being Sp ⊆ S∗
1 andH ⊆ S∗

1

it follows that

H ⊆ (V∗ ∩ Sp) + S∗
1 = (V∗ ∩ S∗

1 ) + Sp.

Lemma 2 The set

Φ3 = {V |V ∈ Φ,HV ⊆ V + Sp} (20)

enjoys the following properties:

1. is a sub-lattice of Φ;

2. Φ3 ≡ {V |V ∈ Φ,V∗ ∩ (HV + Sp) ⊆ V};
3. the infimum of Φ3 is

Vm3 = V∗ ∩minS(A,V∗,HV + Sp) (21)

4. Φ3 ≡ Φ2, i.e. Vm2 ≡ Vm3

5. Φ3 ⊆ Φ1

6. Vm1 ∈ Φ3

7. Vm1 ≡ Vm2 ≡ Vm3

Proof: (Property 1., 2. and 3.)
Note that HV ⊆ V∗ ⇒ HV ⊆ V∗ + Sp and therefore
proofs are analogous to those of properties 1, 2 and 3
in Lemma 1.
(Property 4.) This property follows from properties 2
of this statement and Lemma 1 and from eqs.(5) and
(7).
(Property 5.)
Let V ∈ Φ3 it follows



• AV ⊆ V + B +HV since V is an (A,B)-controlled
invariant

• V ⊆ C
• V∗ ∩ (B +HV ) ⊆ V∗ ∩ (Sp +HV ) ⊆ V

then V ∈ Φ3 ⇒ V ∈ Φ1.
(Property 6.)
First of all note that AVm1 ⊆ Vm1 + B since

AVm1 = A
(
(V∗ ∩ C) ∩minS(A, C,B +HV )

) ⊆
AV∗ ∩ A

(C ∩minS(A, C,B +HV )
) ⊆

(V∗ + B) ∩minS(A, C,B +HV ) =(V∗ ∩minS(A, C,B +HV )
)
+ B =

Vm1 + B ,

moreover Vm1 ⊆ C and V∗ ∩ B ⊆ Vm1, then Vm1 ∈ Φ.
Finally, note that HV ⊆ Vm1 + Sp. In fact, being Sp ⊆
minS(A, C,B +HV ), it holds

Vm1 + Sp =
(V∗ ∩minS(A, C,B +HV )

)
+ Sp =

(V∗ + Sp) ∩minS(A, C,B +HV )

and HV is included in both subspaces of the latter in-
tersection.
(Property 7.)
From properties 4, 5 and 6.

Lemma 3 The following equivalence holds

Vm1 ≡ V∗ ∩minS(A, C,H+ B) (22)

Proof: Being HS ⊆ Sp ⊆ minS(A, C,B) ⊆
minS(A, C,B +HV ), from (5)

B +H ⊆ minS(A, C,B +HV ), (23)
B +HV ⊆ minS(A, C,B +H). (24)

(25)

Now, let us prove that

minS(A, C,B +H) ⊆ minS(A, C,B +HV ). (26)

by applying induction arguments to the subspace se-
quence defining minS(A, C,B +H), whose i–element is
Z ′

i. From (23)

Z ′
0 = B +H ⊆ minS(A, C,B +HV ),

assume that

Z ′
i−1 ⊆ minS(A, C,B +HV ),

being minS(A, C,B+HV ) an (A, C)-conditioned invari-
ant containing B +H, it follows that

B +H+ A(Z ′
i−1 ∩ C) ⊆ minS(A, C,B +HV ).

Similarly, starting from (24), it is possible to prove that

minS(A, C,B +HV ) ⊆ minS(A, C,B +H). (27)

Finally from (26) and (27)

minS(A, C,B +HV ) = minS(A, C,B +H)

and the proof ends.

Let’s recall a fundamental property (proved in [3]) of
self bounded subspaces:

Property 2 Let V̄ and V be a couple of any (A,B)-
controlled invariant subspaces self bounded with respect
to C such that V ⊆ V̄. Let F be a matrix such that
(A + BF )V̄ ⊆ V̄. Then (A + BF )V ⊆ V holds.
We are now ready to present the main result.

Theorem 2 The signal decoupling problem with stabil-
ity for the p-previewed signal ph(k) stated in Problem 2
is solvable if and only if the structural condition (4) is
satisfied and

Vm := V∗ ∩minS(A, C,H + B) (28)

is internally stabilizable.

Proof: As shown in Theorem 1 the purpose of the
preaction is to cancel, at the generic time instant k, the
component of Hh(k) on Sp in order to force the state
dynamics (excited by the other component HV h(t)) on
a subspace V satisfying the following properties:

1. V is an (A,B) controlled invariant included in C;
2. V is such that H ⊆ V + Sp;

3. V is internally stabilizable.

We will now prove the necessity of the statement, i.e.
that if a subspace V exists that solves Problem 2 (with
stability) then Vm is internally stabilizable. Being, from
Lemma 3 and 2, Vm = Vm2, henceforth we will refer to
Vm2. Consider subspace

V̄ := V +RV∗

where V is a subspace satisfying Properties 1, 2 and 3
and RV∗ = V∗ ∩ S∗ represents the constrained reacha-
bility subspace on C. It is clear that V̄ satisfies Proper-
ties 1, 2 and 3 because

• V̄ is an (A,B) controlled invariant contained in C,
being the sum of two controlled invariants con-
tained in C;

• H ⊆ V̄ + Sp, being H ⊆ V ;
• V̄ is internally stabilizable, being the sum of two
internally stabilizable subspaces.

Subspace V̄ is an element of Φ2 defined in (12), since
V∗ ∩ B ⊆ RV∗ ⊆ V̄ . Being V̄ internally stabilizable
a state feedback matrix F exists that stabilizes such
subspace. Because of Property 2, such matrix stabilizes
every subspace V ∈ Φ2 included in V̄, and therefore
also its infimum Vm2 being all of these subspaces self
bounded.
For the sufficiency part, simply note that if Vm is inter-
nally stabilizable than it satisfies Properties 1, 2 and 3
at once.



Regarding the dimension of the resolving subspace, it
can be easily shown that

Vm ⊆ Vg, (29)

where Vg is the resolving subspace defined in [10]. In
fact, sinceRV∗ ⊆ Vg, from proof of Theorem 2 it follows
that

V̄ = Vg +RV∗ = Vg ∈ Φ2

whose infimum is Vm.

4 An example

Consider system (1) with

A = 0.1




1 2 1 −1 −2
0 −1 2 1 1
0 3 1 −1 −1
1 1 2 2 1
0 0 0 1 −5


 , B =




1 0
0 0
0 0
0 1
0 0


 ,

H =




1 0
0 0.5774
0 −0.5774
0 0
0 0.5774


 , C =

[
0 0 0 0 1

]
.

Being

V∗ = im




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


 , S1 = S∗ = im




1 0 0
0 0 0.5774
0 0 −0.5774
0 1 0
0 0 0.5774




structural condition (4) holds with one step of preview.
In other terms, being H not included in V∗ + B, the
measurability of signal h(k) is not sufficient to obtain
decoupling, but a preview of at least one step is needed
to solve Problem 1.
As regards signal decoupling problem with stability
(Problem 2), the resolving subspace Vm1 is given by

Vm1 = im




1
0
0
0
0




which results internally stabilizable.
It is worth noting that subspace Vg proposed in [10, 7]
has dimension 2 which is larger than that of Vm1.

5 Conclusions

A new solution for general signal decoupling problems
with stability has been proposed. It is based on two
necessary and sufficient constructive conditions, one is
structural in nature while the other deals with the sta-
bility requirement.
The problem has been approached through self-
bounded controlled invariants, thus allowing to reduce

the dimension of the resolving subspace which corre-
sponds to the infimum of a lattice.
It has been shown that same conditions for decoupling
problem with stability to be solved apply independently
of the type of signal to be decoupled, being it com-
pletely unknown (disturbance), measured or previewed.
In other terms we showed that conditions for the DDP,
MSDP and PSDP with stability to be solved are sim-
ilar. The resolving subspace whose internal stabiliz-
ability needs to be checked is the infimum of the same
lattice. Each problem specializes only in its structural
condition.
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