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Preaction and preview have been recently studied in track-
ing problems. The use of a supervising unit feeding the
Abstract compensator that solves the problem of perfect tracking with
preaction in the non minimum-phase case was developed in
This paper deals with the decoupling problem of previewedthe SISO case with standard transfer functions [6] and in the
signals. The discrete time case is considered. In this domaiMIMO case with geometric techniques [8].
previewing a signal by steps means that the sample at step  The previewed signal decoupling problem in continuous
k + p of the signal to be decoupled is available at instanttime was first studied by Willems in [10] where a necessary
k. New necessary and sufficient conditions are proposed foand sufficient condition solving the PSDP with pole place-
the problem with stability to be solved. These conditions arement was proposed. This solution was based on the so called
constructive, easily checkable and appear to be computablgroportional-integral-derivative control laws consisting of a
in a more convenient way if compared to previous results infeedback of the state system and of a linear combination of
literature. the signal (to be decoupled) and its time derivatives. This ap-
The framework throughout is the geometric approach toproach, being in continuous time, involves distributions and
the control theory of linear systems. The main tool is the hence is not practically implementable. In [7], Imai and Shi-
lattice of self-bounded controlled invariants that leads to thenozuka proposed a similar necessary and sufficient condition
minimization of the resolving subspace which correspondsfor the PSDP with stability in both discrete and continuous
to the infimum of the lattice. time cases.
Conditions for PSDP to be solved, given in [10] and [7],
do not take into account any dimension issue for the sub-
1 Introduction space resolving the problem. Furthermore, to the best of our
knowledge, the problem of reducing the dimension of such
The disturbance decoupling problem (DDP) has been on&ubspace has not been thoroughly investigated in literature.
of first applications considered in the geometric approach In this paper a new solution for the PSDP with stability
framework. In its first formulation [3, 11], disturbance sig- is proposed. It is based on a controlled invariant whose di-
nals were assumed to be unknown and unaccessible. Hownensions are reduced if compared with the solution proposed
ever, in some cases the signals to be decoupled may be megr-[10] and [7]. This is due to the use of a particular class of
surable, like for instance in noninteracting control. Thesecontrolled invariant subspaces known as self-bounded, which
cases are referred to measured signal decoupling problems were introduced by Basile and Marro in [4, 9]. The set of self
(MSDP) and have been studied by Bhattacharyya throughhounded subspaces enjoys interesting properties, the most
both static and dynamic feedback [5]. The structural con-important of which is to be a lattice instead of a semi-lattice,
ditions for solvability of MSDP are less restrictive than those hence to admit an infimum other than a supremum.
for DDP, while stabilizability conditions are similar. This paper deals with discrete-time systems. After review-
In this paper the decoupling problem is approached in aing the well known concepts of minimum conditioned invari-
more general setting. Signals known in advance, or preant, a structural condition for PSDP and a condition for PSDP
viewed by a given amount of time, are considered and thewith stability are presented. The proofs of the theorems are



constructive and are developed in a geometric framework [2] Property 1 Necessary and sufficient condition for Prob-
The structure of the compensator, whereby the signal delem 1 to be solved is that
coupling of previewed signals is obtained, is discussed. It

consists of a preaction and a postaction units. A synthesis HCV +S,. (4)
procedure, based on geometric approach algorithms, will be ) ) )
provided for both of these units. whereV* := maxV(4, B,(C) is the maximal controlled in-

The following notation is usedR stands for the field of variant contained irC.

real numbers. Sets, vector spaces and subspaces are denolt__gé:l

by script capitals like, e.g¥', Z, V. Matrices and linear maps ¢ trf?atrk 1 Strugtgraigofndltt;]on (4)tl'n Prop(:.rty Lis S'tr)mtl?r
are denoted by slanted capitals like B, etc., the image and o that proposed in [10] for the continuous-time case but less

the null space of the matrix or linear transformatidnby restrictivg since condition (4) does not coqsider;tability. Itis

imA andkerA, respectively. The transpose of matrixis worth notlng_that the case of measurable |_nputs is accounted

represented byl” and its pseudoinverse by . for by (_:ondmon (4). In_fact measurable signals corre_spond
The paper is organized as follows. Sectibpresents the to previewed signals with = 0 and therefore (4) turns into

structural conditions for the PSDP. Sectidmproposes new the well known condition
necessary and sufficient conditions for the PSDP with stabil-
ity. In Section4 a synthesis procedure for the decoupling

compensator is reported and finally in Sectfoan illustra-  gimilarly, the lack of any preview leads to the structural con-
tive example is discussed. dition for unknown (disturbance) signals

HCV +B.

2 Structural conditions for PSDP HEV

. . , Observe that, being
Let us consider the discrete-time system

VECV +BCV + S,
{ z(k+1) = Ax(k) + Bu(k) + Hh(k)

1
y(k) Cx(k) @, ess conservative decoupling condition corresponds to a

larger preview time.
wherez € X (= R"), ue R™, heR" andy € R? denote the
state, the manipulable input, the signal to be decoupled and The following property characterizes the minimum num-
the regulated output, respectively. In the following, the shortber of preview steps necessary to decouple previewed signals

notation3:=imB, C:=kerC and’H :=imH will be used. for a given disturbance matri .
In this paper we deal with the signal decoupling problem _ o
when a certain degree of knowledge of sighét) is avail- ~ Property 2 Consider system (1) and letbe the minimum

able. In particular we assume that sighgk) is previewed, —number of steps necessary to obtain convergence of algo-

i.e. it is knownp steps in advance, or analytically the sample rithm for minS(A,C,5). The minimum positive integer

h(k) is known at stefr—p. Note that measurable disturbance p < 7, such that condition (4) holds, corresponds to the

can be thought a&-steps previewed signals. minimum number of previewed steps fdk) necessary to
Our aim here is to use the preview xik) to "prepare”  decouple signak(k). Moreover, if forp = r condition (4) is

the system dynamics to localize sigridk) on the nullspace  not satisfied, the PSDP has no solution for the given distur-

of the output matrixC. This is formalized in the following ~ bance matrixt.

statement.

3 Previewed signal decoupling problem with

Problem 1 (Previewed signal decouplindgjefer to system stability

(1) with zero initial condition and assume that inplk)
is previewed by stepsp > 0. Determine a control law that,

Thep—previewed signal decoupling problem with stability is
using this preview, maintains the outpk) identically zero. PP g pingp y

investigated.

The key tool to analyze the structural conditions for the proplem 2 (Previewed signal decoupling with stabilitRe-
signal decoupling problem, is the well-known [2] algo- fer to system (1) with zero initial condition and assume that
rithm computingS™ := minS(4,C, B), the minimal(A, C)- it is stabilizable and that inpuk(k) is previewed by steps,
conditioned invariant containing, here reported for the p > 0. Determine a compensator that, using the pre-

reader convenience: view, maintains the output(k) identically zero and the state
bounded.
SO = B (2)
S; = B+ A(S-1nC). 3) The Previewed signal decoupling with stability is ap-

proached by means of self-bounded controlled invariants
Structural conditions to solve Problem 1 fepreviewed [4, 9]. A special attention is devoted to the dimension of
signals are given in the following. the resolving subspace.



Let us introduce the lattice of tHel, 5)-controlled invari-
ant subspaces self bounded with respect to

d=0(B,C)={V| AVCV+B,VCC V'NBCV}

whose infimum is given by ©
Vi = V* N minS(4,C, B) (6)
and supremum by*.
Lemma 1 The set
O ={V|VeEDRHCV+S,} 7)

enjoys the following properties:
1. is a sub-lattice ofb;

2.Wed HCV+S, & V'N(H+S,) CV,ie.
P ={V|VedV'N(H+S, CV};

3. the infimum ofb, is given by

V2 = VN minS(A, V', H + S,) 8)

Proof:

(Property 1.) We want to show that given two
generic element®; and), of set®, their sum and intersec-

and therefore intersecting both members withwe obtain
VN(H+S) SV Nn(V+S,)=V+(V'nS,) =V

being(V*NS,) C (V* NS*) which is the infimum of? and
therefore is contained in alf ¢ ®.

(<)
VN (H+S,)CV

summings,, to both members we obtain
S+ (V'N(H+S,)CV+S,
from which using the distributive property we obtain
(Sp+V)IN(S+H)CV+S,
and beingt C S, + H C S, + V* we obtain
(Sp+H)CV+S,
from which obviously
HCV+S,

(Property 3.)
The proof will be developed in two steps:

(A.) Any element ofP, containsV,,,, = V* NS5 where

tion still belongs to the same set. Such proof appears trivial
for the subspace obtained by summing the two given sub- (B.) V*NS; is an element o,

spaces. Let's consider now elemé&htn V,. By assumption,
since bothY; and); belong to®, it is obvious that

HCV+S, 9)
HCW+S, (10)

which lead to
HCW+S)N Ve +Sp).
By intersecting both terms with* + S, we obtain
HC((WN+S)N(WVa+S)Nn(V+S,) (11)
since the structural condition (4) holds, and then
HCWV'NW+8S)n(V'NnVa+Sp))+S,

using the distributive property, being, included in(V; +
Sp) N (V2 + Sp). Analogously we get

HC (WVinVH)+(V'NS,))N(VaNVH)+(VNS,)) +S,

and finally
HCWViNVe)+S,

being V; and V, both included inV* and both including
Vv NsS,.

(Property 2.)
(=)

VeEd = HCV+S,>H+S,CV+S,

S =minS(A, V", H+ S,); (12)

(Step A.XConsider the sequence that defigds
Z, = S+H (13)
Zl = Sy+HA+AZ_ NV (i=1,...) (14)

LetV be a generic element @f;, so that
AVCV+B, VDOV'NB.
We proceed by induction: clearly
ZinyrCcy
since by assumptiol* N (S, + H) C V, and from
Z_,Nny*Cy
it follows that
AZI_ NV )CAVCV+B

sinceV is an(A, B)-controlled invariant. Adding,, + H to
both members yields

S+H+AZ_ NVHICV+S,+H

where the first term of the last inclusion is by definition sub-

spacez! and, by intersecting with’*, we finally obtain

ZINV*C (V4 (S +H))NV =V+(S,+H)NV* =V

which completes the induction argument and the proof of

Step A.

(Step B.Note that



1. SfnV*isan(A, B)-controlled invariant contained if, e Visan(4, B) controlled invariant contained @, being

. . the sum of two controlled invariants containedi
2. S;nV* is self bounded with respect tb n

To provel. note that e Vs internally stabilizable, being the sum of two inter-
nally stabilizable subspaces.
AV*CV*+B
A(SEnV*) C S Subspac® is an element ob,, defined in (7), sinc&*NB C

Ry- C V. BeingV internally stabilizable a state feedback
matrix F' exists that stabilizes such subspace. Because of
Property 3, such matrix stabilizes every subspdce &,
included inV, and therefore also its infimuM,,, being all
ASI NV CSE NV +B) =S NV +B of these subspaces self bounded.

For the sufficiency part, simply note that)if,,5 is inter-

beingB C S7. ThenSiNV* is an(A, B)-controlled invariant  nally stabilizable than it satisfies Properties2 and 3 at
contained irC. once. u

To prove2. note that

which simply expresseg* as an( A, B)-controlled invariant
andS; to be an(A, V*)-conditioned invariant. By intersec-
tion it follows that

V*AB C V NS* Remark 2 Condition for PSDP, stated in Theorem 1, is an
- L improvement of the well known condition first stated in [7]
Finally, to prove3. note that beings, C S; andH C St
it follows that HCV, +S,

HCWV'NS)+Si=WV"NnS)H)+S,. whereV; denotes the restriction af* having only “good”
- modes, in the Wonham'’s notation [12].

. . . . From the algorithmic standpoint Theorem 1 provides a re-
Introducing the sub-latticé, is functional to the proof of g P b

i solving subspac®’,,,» which is a minimal-dimension self-
Th(_—:‘orem .1 bec_ause of the self boundedness qf Its elemen}?ounded controlled invariant, thus implying order reduction
which satisfy this fundamental property proved in [2].

of the derived decoupling compensators.

Property 3 Let V and V be a couple of any(A, B)-

controlled invariant subspaces self bounded with respe€tto  Let us now present an alternative solution for the PSDP
such thaty C V. Let I be a matrix such thatA + BF)V C with stability. It is based on the following decomposition of

V. Then(A + BF)V C V holds. matrix H
Theorem 1 Thep-steps previewed signal decoupling, stated H = Hy+ Hg (16)
in Problem 2, is solvable if and only if the structural condi- : *
: = Hy)CVy 17
tion (4) is satisfied and Ry = im(fy) C (17)
Hs = im(Hg) CS,. (18)

Ve = V' NminS(4, V", H+ S,), (15)

which is always feasible if the structural condition (4) holds
Components ofHh(k) lying on S, will be canceled

Proof: According to Property 1, the purpose of the preaction tNrough apreaction unit while signal Hy h(k) will be lo-

is to cancel, at the generic time instantthe component of calized in the nuI_Ispace of the output m_atrix_accord_ing to
Hh(k) on S, in order to force the state dynamics (excited standard decoupling techniques as described in Section 4.

the infimum ofb,, is internally stabilizable.

by the remaining component) on a subspaceatisfying the Th_e following Theorem, proved in [1], is based on decom-
following properties: position (16).

1. Vis an(A4, B) controlled invariant included id; Theorem 2 Thep-steps previewed signal decoupling prob-
2. Vissuchthatl{ C V + S.: lem, stated in Problem 2, is solvable if and only if the struc-

tural condition (4) is satisfied and subspace
3. Visinternally stabilizable.

V1 =V NminS(A,C, H B 19
We will now prove the necessity of the statement, i.e. that ! minS( v+8) (19)

if a subspace/ exists that solves Problem 2 (with stability) js jnternally stabilizable.
thenV,,., is internally stabilizable. Consider subspace

V= V4 Ry The following result is alternative to that given in Theo-
rem 1 and is more readable. Equivalence of Theorem 1 and 2
whereV is a subspace satisfying Properties 1, 2 and 3 ands proven in [1]. Theorem 2 follows directly from decompo-
Ry- = V* N S* represents the constrained reachability sub-sition (16) and from standard solution [2] of the DDP.
space orC. Itis clear thatV satisfies Properties 1, 2 and 3 An algorithm for the synthesis of the decoupling controller
because is presented in the following Section.



4 Synthesis procedure for the controller solv- and

ing the PSDP
CB CAB --- CAP'B 0 0
Assume that necessary and sufficient conditions of Theo- 0 CB .- CA"™B Q| 10
rem 2 hold. Due to equation (16) it is always possible to : : . : : |
divide the effect of (k) on system dynamics into two sep- 0 . 0 CB Q, 0

arate parts. The effect dify h(k) can be nulled using a
postaction unit, bein@{y C V*. The effect ofHsh(k) can

be nulled using a preaction unit, beifg; ¢ S,. Taking into account postaction (21), system (20) can be

rewritten as

4.1 Postaction unit 2(k+1) = Apa(k) + Bupre(k) + Hoh(k) + H,h(k) (22)
Due to (16) system (1) can be rewritten as
where
{ x(k+1) = Axz(k)+ Bu(k) + Hyh(k) + Hsh(k) A= A+ BF.
y(k) = Cux(k)

(20)  To decouple the effects @ sh(k) on system dynamics (22),
whereu(k) = upod k)+upre(k). The purpose of the postac- 5 preaction unit is built as
tion unit is to decouplé+,. It is an easy matter to show that
Hy C V1. Applying Theorem 2, a stabilizing state feed-
back matrixF' exists such that the state trajectory excited by upre(k) =
Hy h(k) evolve ontoV,,,; € C. Therefore the postaction unit l
is simply given by

NE

(D h(k +1) (23)

I
=

where gains of the preaction unit are computed as

upos(k) = Fu(k) (21)
_HS
as shown in Fig. 1. P 0
It is worth noting that, since the system dynamics evolve P, _ 0 ”
on a known subspace, the postaction unit can also be imple- : - (24)
mented as a feedforward unit. <I>.p 0
h(k) y (k)
Z > being
x(k)
Uopre B A;B A3B .- ALB
U pos 0 CB CA/B --- CAV'B
M=|0 0 CB - CA’B|.  (25)
F L
0 0 e 0 CB

Figure 1: Postactiompog k) is synthesized through a state

feedback matrise' Consistency of (24) is guaranteed by Property 4 and by in-

clusion (18).

The preaction unit in eq. (23) is reported in Fig. 2. Preac-
tion consists of a-step FIR system which, previewing the
signalh(k) p-steps in advance, is able to prepare system dy-
namics to cancel componeffsh(k) when it presents as in-

In order to design the preaction unit, subsp&gemust be  put to the system (at the time insta)t
interpreted as a special reachability subspace.

h(k y(k
Property 4 SubspaceS, corresponds to the set of states h(k+p) ® —(L
reachable inp (p > 0) steps from initial condition:, = 0, g Z x(k)
with the state trajectory constrained to evolve ofito the preaction pre

4.2 Preacion unit

precedingp-steps interval0, p — 1]. U pos
Analytically, matricegy, ; ... Q,, exist such that F
Qo
0 Figure 2: The decoupling compensator consists of a preac-
S,=im[ B AB A?B ... A*B ]| ‘& tion unit and a postaction unit.

Qp



5 Anillustrative example

Let us consider the previewed signal decoupling problem for
system (1) with .

1 2 1 -1 =2 2
0 -1 2 1 1 1
A=01]0 3 1 -1 -1 |,
1 1 2 2 1 2t
0 0 0 1 -5 -
1 0 1 0 0 ha (k)
0 0 0 0 0.5774 —
B=]0 01|, H=]10 0 -0.5774 |,
0 1 0 1 0 il
0 0 0 0 0.5774 |

P
§

— |
—
i
?

C=[000 0 1].

Algorithms forV* andS* converge to

i B |

1 00 10 0 .
010 0 0 0.5774
Vi=im| 0 0 1 |,S8* =im| 0 0 —-0.5774 |. T
00 0 0 1 0 ha (k)
0 0 0 0 0 0.5774 —
Note that 1
S =8

and that | IJJ’LH |’|J-‘L|.I ,J
HCV +8 =V + 8. LLLJJJ U L'w_rr'

Being’H £ V* + B, p = 1 is the minimum number of pre-
viewed steps necessary to solve the decoupling problem.
According to (16), matrix{ is divided in two matrices

)

0 0 0

1 0 0
0 0 O 0 0 0.5774

Hy = 8 8 8 , Hs = 8 (1) *0'8774 Figure 3: The three componentsiepreviewed signah (k).
0 0 O 0 0 0.5774

The resolving subspace is evaluated as

WL i
e | M ’J—H—L‘ ’_I_F‘I-IJJ_LL,
g@ 0

which results internally stabilizable.
It is worth noting that that subspad& proposed in [10]
has, in this case, a dimension which is doubl&’gf .
Postaction unit is given by the state feedback
upos= F'z(k) where

OO OO
o
o

~01 0 0 01 0
F=1_01 00 —02 0 - -
Y - Figure 4. The two components of postaction control

while for preaction unit we obtain from (24) and (25) upog(k).

00 0 000
<I>1—[0 0 —5.7735}’%_{0 1 0]'



Figure 5: The two components of preaction contipte().

Simulation are executed by applying a signal
hik) = [ (k) ha(k) ha(k) 1"

where hy(k) is a step signalhs(k) a band-limited white
noise andis (k) a sine wave, as reported in Fig.3.

2]

[3]

[4]

[5]

[6]

[7]

The two components of postaction and preaction signals

upog k) are reported in Fig. 4 and Fig. 5, respectively.

Preaction-postaction compensator perfectly decouples signal

h(k) which has al-step preview and maintains the state tra-

jectory bounded.

6 Conclusions

[8]

A new solution for previewd signal decoupling problems [9]
with stability has been proposed. It is based on two necessary

and sufficient constructive conditions, one is structural while
the other deals with the stability requirement. The problem
has been approached through self-bounded controlled invar

[10]

ants, thus allowing to reduce the dimension of the resolving
subspace which corresponds to the infimum of a lattice. A
systematic algorithmic procedure has been presented for syrf11]
thesizing the compensator which consists of a preaction and

a postaction units.
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