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Viale Risorgimento 2, 40136 Bologna, Italy
gmarro@deis.unibo.it

3 Dipartimento di Ingegneria dell’Informazione, Università di Siena
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Abstract

This paper deals with the decoupling problem of previewed
signals. The discrete time case is considered. In this domain
previewing a signal byp steps means that the sample at step
k + p of the signal to be decoupled is available at instant
k. New necessary and sufficient conditions are proposed for
the problem with stability to be solved. These conditions are
constructive, easily checkable and appear to be computable
in a more convenient way if compared to previous results in
literature.

The framework throughout is the geometric approach to
the control theory of linear systems. The main tool is the
lattice of self-bounded controlled invariants that leads to the
minimization of the resolving subspace which corresponds
to the infimum of the lattice.

1 Introduction

The disturbance decoupling problem (DDP) has been one
of first applications considered in the geometric approach
framework. In its first formulation [3, 11], disturbance sig-
nals were assumed to be unknown and unaccessible. How-
ever, in some cases the signals to be decoupled may be mea-
surable, like for instance in noninteracting control. These
cases are referred to asmeasured signal decoupling problems
(MSDP) and have been studied by Bhattacharyya through
both static and dynamic feedback [5]. The structural con-
ditions for solvability of MSDP are less restrictive than those
for DDP, while stabilizability conditions are similar.

In this paper the decoupling problem is approached in a
more general setting. Signals known in advance, or pre-
viewed by a given amount of time, are considered and the

decoupling problem will be referred to aspreviewed signal
decoupling problem(PSDP).

Preaction and preview have been recently studied in track-
ing problems. The use of a supervising unit feeding the
compensator that solves the problem of perfect tracking with
preaction in the non minimum-phase case was developed in
the SISO case with standard transfer functions [6] and in the
MIMO case with geometric techniques [8].

The previewed signal decoupling problem in continuous
time was first studied by Willems in [10] where a necessary
and sufficient condition solving the PSDP with pole place-
ment was proposed. This solution was based on the so called
proportional-integral-derivative control laws consisting of a
feedback of the state system and of a linear combination of
the signal (to be decoupled) and its time derivatives. This ap-
proach, being in continuous time, involves distributions and
hence is not practically implementable. In [7], Imai and Shi-
nozuka proposed a similar necessary and sufficient condition
for the PSDP with stability in both discrete and continuous
time cases.

Conditions for PSDP to be solved, given in [10] and [7],
do not take into account any dimension issue for the sub-
space resolving the problem. Furthermore, to the best of our
knowledge, the problem of reducing the dimension of such
subspace has not been thoroughly investigated in literature.

In this paper a new solution for the PSDP with stability
is proposed. It is based on a controlled invariant whose di-
mensions are reduced if compared with the solution proposed
in [10] and [7]. This is due to the use of a particular class of
controlled invariant subspaces known as self-bounded, which
were introduced by Basile and Marro in [4, 9]. The set of self
bounded subspaces enjoys interesting properties, the most
important of which is to be a lattice instead of a semi-lattice,
hence to admit an infimum other than a supremum.

This paper deals with discrete-time systems. After review-
ing the well known concepts of minimum conditioned invari-
ant, a structural condition for PSDP and a condition for PSDP
with stability are presented. The proofs of the theorems are



constructive and are developed in a geometric framework [2].
The structure of the compensator, whereby the signal de-

coupling of previewed signals is obtained, is discussed. It
consists of a preaction and a postaction units. A synthesis
procedure, based on geometric approach algorithms, will be
provided for both of these units.

The following notation is used.R stands for the field of
real numbers. Sets, vector spaces and subspaces are denoted
by script capitals like, e.g.X , I, V. Matrices and linear maps
are denoted by slanted capitals likeA, B, etc., the image and
the null space of the matrix or linear transformationA by
imA andkerA, respectively. The transpose of matrixA is
represented byAT and its pseudoinverse byA#.

The paper is organized as follows. Section2 presents the
structural conditions for the PSDP. Section3 proposes new
necessary and sufficient conditions for the PSDP with stabil-
ity. In Section4 a synthesis procedure for the decoupling
compensator is reported and finally in Section5 an illustra-
tive example is discussed.

2 Structural conditions for PSDP

Let us consider the discrete-time system

{

x(k + 1) = Ax(k) + Bu(k) + Hh(k)
y(k) = Cx(k) (1)

wherex∈X (= Rn), u∈Rm, h∈Rh andy∈Rq denote the
state, the manipulable input, the signal to be decoupled and
the regulated output, respectively. In the following, the short
notationB :=imB, C :=kerC andH :=imH will be used.

In this paper we deal with the signal decoupling problem
when a certain degree of knowledge of signalh(k) is avail-
able. In particular we assume that signalh(k) is previewed,
i.e. it is knownp steps in advance, or analytically the sample
h(k) is known at stepk−p. Note that measurable disturbance
can be thought as0-steps previewed signals.

Our aim here is to use the preview onh(k) to ”prepare”
the system dynamics to localize signalh(k) on the nullspace
of the output matrixC. This is formalized in the following
statement.

Problem 1 (Previewed signal decoupling)Refer to system
(1) with zero initial condition and assume that inputh(k)
is previewed byp steps,p ≥ 0. Determine a control law that,
using this preview, maintains the outputy(k) identically zero.

The key tool to analyze the structural conditions for the
signal decoupling problem, is the well-known [2] algo-
rithm computingS∗ := minS(A, C,B), the minimal(A, C)-
conditioned invariant containingB, here reported for the
reader convenience:

S0 := B (2)

Si := B + A(Si−1 ∩ C). (3)

Structural conditions to solve Problem 1 forp-previewed
signals are given in the following.

Property 1 Necessary and sufficient condition for Prob-
lem 1 to be solved is that

H ⊆ V∗ + Sp. (4)

whereV∗ := maxV(A,B, C) is the maximal controlled in-
variant contained inC.

Remark 1 Structural condition (4) in Property 1, is similar
to that proposed in [10] for the continuous-time case but less
restrictive since condition (4) does not consider stability. It is
worth noting that the case of measurable inputs is accounted
for by condition (4). In fact measurable signals correspond
to previewed signals withp = 0 and therefore (4) turns into
the well known condition

H ⊆ V∗ + B.

Similarly, the lack of any preview leads to the structural con-
dition for unknown (disturbance) signals

H ⊆ V∗.

Observe that, being

V∗ ⊆ V∗ + B ⊆ V∗ + Sp,

a less conservative decoupling condition corresponds to a
larger preview time.

The following property characterizes the minimum num-
ber of preview steps necessary to decouple previewed signals
for a given disturbance matrixH.

Property 2 Consider system (1) and letr be the minimum
number of steps necessary to obtain convergence of algo-
rithm for minS(A, C,B). The minimum positive integer
p ≤ r, such that condition (4) holds, corresponds to the
minimum number of previewed steps forh(k) necessary to
decouple signalh(k). Moreover, if forp = r condition (4) is
not satisfied, the PSDP has no solution for the given distur-
bance matrixH.

3 Previewed signal decoupling problem with
stability

Thep–previewed signal decoupling problem with stability is
investigated.

Problem 2 (Previewed signal decoupling with stability)Re-
fer to system (1) with zero initial condition and assume that
it is stabilizable and that inputh(k) is previewed byp steps,
p ≥ 0. Determine a compensator that, using the pre-
view, maintains the outputy(k) identically zero and the state
bounded.

The Previewed signal decoupling with stability is ap-
proached by means of self-bounded controlled invariants
[4, 9]. A special attention is devoted to the dimension of
the resolving subspace.



Let us introduce the lattice of the(A,B)-controlled invari-
ant subspaces self bounded with respect toC

Φ = Φ(B, C) = {V | AV ⊆ V + B, V ⊆ C, V∗ ∩ B ⊆ V}
(5)

whose infimum is given by

Vm = V∗ ∩minS(A, C,B) (6)

and supremum byV∗.

Lemma 1 The set

Φ2 = {V |V ∈ Φ,H ⊆ V + Sp} (7)

enjoys the following properties:

1. is a sub-lattice ofΦ;

2. ∀V ∈ Φ, H ⊆ V + Sp ⇔ V∗ ∩ (H + Sp) ⊆ V, i.e.
Φ2 ≡ {V |V ∈ Φ,V∗ ∩ (H+ Sp) ⊆ V};

3. the infimum ofΦ2 is given by

Vm2 = V∗ ∩minS(A,V∗,H+ Sp) (8)

Proof: (Property 1.) We want to show that given two
generic elementsV1 andV2 of setΦ2 their sum and intersec-
tion still belongs to the same set. Such proof appears trivial
for the subspace obtained by summing the two given sub-
spaces. Let’s consider now elementV1 ∩V2. By assumption,
since bothV1 andV2 belong toΦ2 it is obvious that

H ⊆ V1 + Sp (9)

H ⊆ V2 + Sp (10)

which lead to

H ⊆ (V1 + Sp) ∩ (V2 + Sp).

By intersecting both terms withV∗ + Sp we obtain

H ⊆ ((V1 + Sp) ∩ (V2 + Sp)) ∩ (V∗ + Sp) (11)

since the structural condition (4) holds, and then

H ⊆ (V∗ ∩ (V1 + Sp)) ∩ (V∗ ∩ (V2 + Sp)) + Sp

using the distributive property, beingSp included in(V1 +
Sp) ∩ (V2 + Sp). Analogously we get

H ⊆ ((V1∩V∗)+(V∗∩Sp))∩((V2∩V∗)+(V∗∩Sp))+Sp

and finally
H ⊆ (V1 ∩ V2) + Sp

being V1 and V2 both included inV∗ and both including
V∗ ∩ Sp.

(Property 2.)
(⇒)

V ∈ Φ1 ⇒ H ⊆ V + Sp ⇒ H + Sp ⊆ V + Sp

and therefore intersecting both members withV∗ we obtain

V∗ ∩ (H+ Sp) ⊆ V∗ ∩ (V + Sp) = V + (V∗ ∩ Sp) = V

being(V∗ ∩Sp) ⊆ (V∗ ∩S∗) which is the infimum ofΦ and
therefore is contained in allV ∈ Φ.
(⇐)

V∗ ∩ (H+ Sp) ⊆ V
summingSp to both members we obtain

Sp + (V∗ ∩ (H+ Sp)) ⊆ V + Sp

from which using the distributive property we obtain

(Sp + V∗) ∩ (Sp +H) ⊆ V + Sp

and beingH ⊆ Sp +H ⊆ Sp + V∗ we obtain

(Sp +H) ⊆ V + Sp

from which obviously

H ⊆ V + Sp

(Property 3.)
The proof will be developed in two steps:

(A.) Any element ofΦ2 containsVm2 = V∗ ∩ S∗2 where

S∗2 = minS(A,V∗,H+ Sp); (12)

(B.) V∗∩S∗2 is an element ofΦ2

(Step A.)Consider the sequence that definesS∗2 :

Z ′0 := Sp +H (13)

Z ′i := Sp +H+ A (Z ′i−1 ∩ V∗) (i=1, . . .) (14)

Let V be a generic element ofΦ2, so that

AV ⊆ V + B , V ⊇ V∗ ∩ B.

We proceed by induction: clearly

Z ′0 ∩ V∗ ⊆ V

since by assumptionV∗ ∩ (Sp +H) ⊆ V , and from

Z ′i−1 ∩ V∗ ⊆ V

it follows that

A(Z ′i−1 ∩ V∗) ⊆ AV ⊆ V + B

sinceV is an(A,B)-controlled invariant. AddingSp +H to
both members yields

Sp +H+ A (Z ′i−1 ∩ V∗) ⊆ V + Sp +H

where the first term of the last inclusion is by definition sub-
spaceZ ′i and, by intersecting withV∗, we finally obtain

Z ′i ∩V∗ ⊆ (V +(Sp +H))∩V∗ = V +(Sp +H)∩V∗ = V

which completes the induction argument and the proof of
Step A.

(Step B.)Note that



1. S∗1∩ V∗ is an(A,B)-controlled invariant contained inC;

2. S∗1∩ V∗ is self bounded with respect toC

3. H ⊆ (S∗1∩ V∗) + Sp

To prove1. note that

AV∗ ⊆ V∗ + B
A (S∗1 ∩ V∗) ⊆ S∗1

which simply expressesV∗ as an(A,B)-controlled invariant
andS∗1 to be an(A,V∗)-conditioned invariant. By intersec-
tion it follows that

A (S∗1 ∩ V∗) ⊆ S∗1 ∩ (V∗ + B) = S∗1 ∩ V∗ + B

beingB ⊆ S∗1 . ThenS∗1∩V∗ is an(A,B)-controlled invariant
contained inC.

To prove2. note that

V∗∩B ⊆ V∗∩S∗1 .

Finally, to prove3. note that beingSp ⊆ S∗1 andH ⊆ S∗1
it follows that

H ⊆ (V∗ ∩ Sp) + S∗1 = (V∗ ∩ S∗1 ) + Sp.

Introducing the sub-latticeΦ2 is functional to the proof of
Theorem 1 because of the self boundedness of its elements
which satisfy this fundamental property proved in [2].

Property 3 Let V̄ and V be a couple of any(A,B)-
controlled invariant subspaces self bounded with respect toC
such thatV ⊆ V̄. LetF be a matrix such that(A+BF )V̄ ⊆
V̄. Then(A + BF )V ⊆ V holds.

Theorem 1 Thep-steps previewed signal decoupling, stated
in Problem 2, is solvable if and only if the structural condi-
tion (4) is satisfied and

Vm2 = V∗ ∩minS(A,V∗,H+ Sp), (15)

the infimum ofΦ2, is internally stabilizable.

Proof: According to Property 1, the purpose of the preaction
is to cancel, at the generic time instantk, the component of
Hh(k) on Sp in order to force the state dynamics (excited
by the remaining component) on a subspaceV satisfying the
following properties:

1. V is an(A,B) controlled invariant included inC;

2. V is such thatH ⊆ V + Sp;

3. V is internally stabilizable.

We will now prove the necessity of the statement, i.e. that
if a subspaceV exists that solves Problem 2 (with stability)
thenVm2 is internally stabilizable. Consider subspace

V̄ := V +RV∗

whereV is a subspace satisfying Properties 1, 2 and 3 and
RV∗ = V∗ ∩ S∗ represents the constrained reachability sub-
space onC. It is clear thatV̄ satisfies Properties 1, 2 and 3
because

• V̄ is an(A,B) controlled invariant contained inC, being
the sum of two controlled invariants contained inC;

• H ⊆ V̄ + Sp, beingH ⊆ V;

• V̄ is internally stabilizable, being the sum of two inter-
nally stabilizable subspaces.

SubspacēV is an element ofΦ2 defined in (7), sinceV∗∩B ⊆
RV∗ ⊆ V̄. Being V̄ internally stabilizable a state feedback
matrix F exists that stabilizes such subspace. Because of
Property 3, such matrix stabilizes every subspaceV ∈ Φ2
included inV̄, and therefore also its infimumVm2 being all
of these subspaces self bounded.

For the sufficiency part, simply note that ifVm2 is inter-
nally stabilizable than it satisfies Properties1, 2 and 3 at
once.

Remark 2 Condition for PSDP, stated in Theorem 1, is an
improvement of the well known condition first stated in [7]

H⊆V∗g +Sρ

whereV∗g denotes the restriction ofV∗ having only “good”
modes, in the Wonham’s notation [12].

From the algorithmic standpoint Theorem 1 provides a re-
solving subspaceVm2 which is a minimal-dimension self-
bounded controlled invariant, thus implying order reduction
of the derived decoupling compensators.

Let us now present an alternative solution for the PSDP
with stability. It is based on the following decomposition of
matrixH

H = HV + HS (16)

HV := im(HV ) ⊆ V∗ (17)

HS := im(HS) ⊆ Sp. (18)

which is always feasible if the structural condition (4) holds
Components ofHh(k) lying on Sp will be canceled

through apreaction unit, while signalHV h(k) will be lo-
calized in the nullspace of the output matrix according to
standard decoupling techniques as described in Section 4.

The following Theorem, proved in [1], is based on decom-
position (16).

Theorem 2 Thep-steps previewed signal decoupling prob-
lem, stated in Problem 2, is solvable if and only if the struc-
tural condition (4) is satisfied and subspace

Vm1 := V∗ ∩minS(A, C,HV + B) (19)

is internally stabilizable.

The following result is alternative to that given in Theo-
rem 1 and is more readable. Equivalence of Theorem 1 and 2
is proven in [1]. Theorem 2 follows directly from decompo-
sition (16) and from standard solution [2] of the DDP.

An algorithm for the synthesis of the decoupling controller
is presented in the following Section.



4 Synthesis procedure for the controller solv-
ing the PSDP

Assume that necessary and sufficient conditions of Theo-
rem 2 hold. Due to equation (16) it is always possible to
divide the effect ofHh(k) on system dynamics into two sep-
arate parts. The effect ofHV h(k) can be nulled using a
postaction unit, beingHV ⊆ V∗. The effect ofHSh(k) can
be nulled using a preaction unit, beingHS ∈ Sp.

4.1 Postaction unit

Due to (16) system (1) can be rewritten as
{

x(k + 1) = Ax(k) + Bu(k) + HV h(k) + HSh(k)
y(k) = Cx(k)

(20)
whereu(k) = upos(k)+upre(k). The purpose of the postac-
tion unit is to decoupleHv. It is an easy matter to show that
HV ⊆ Vm1. Applying Theorem 2, a stabilizing state feed-
back matrixF exists such that the state trajectory excited by
HV h(k) evolve ontoVm1 ∈ C. Therefore the postaction unit
is simply given by

upos(k) = Fx(k) (21)

as shown in Fig. 1.
It is worth noting that, since the system dynamics evolve

on a known subspace, the postaction unit can also be imple-
mented as a feedforward unit.

Figure 1: Postactionupos(k) is synthesized through a state
feedback matrixF .

4.2 Preacion unit

In order to design the preaction unit, subspaceSp must be
interpreted as a special reachability subspace.

Property 4 SubspaceSp corresponds to the set of states
reachable inp (p ≥ 0) steps from initial conditionx0 = 0,
with the state trajectory constrained to evolve ontoC in the
precedingp-steps interval[0, p− 1].

Analytically, matricesΩ0, Ω1 ... Ωp exist such that

Sp = im
[

B AB A2B · · · ApB
]








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

Ω0

Ω1
Ω2
...

Ωp















and











CB CAB · · · CAp−1B
0 CB · · · CAp−2B
...

...
.. .

...
0 · · · 0 CB














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



Ω1

Ω2
...

Ωp






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=











0
0
...
0











.

Taking into account postaction (21), system (20) can be
rewritten as

x(k +1) = Afx(k)+Bupre(k)+Hsh(k)+Hvh(k) (22)

where

Af := A + BF.

To decouple the effects ofHSh(k) on system dynamics (22),
a preaction unit is built as

upre(k) =
p

∑

l=0

Φ(l)h(k + l) (23)

where gains of the preaction unit are computed as











Φ0

Φ1
...

Φp








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= M#


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−Hs

0
0
...
0


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
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



(24)

being

M =















B AfB A2
fB · · · Ap

fB
0 CB CAfB · · · CAp−1

f B
0 0 CB · · · CAp−2

f B
...

...
...

.. .
...

0 0 · · · 0 CB




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







. (25)

Consistency of (24) is guaranteed by Property 4 and by in-
clusion (18).

The preaction unit in eq. (23) is reported in Fig. 2. Preac-
tion consists of ap-step FIR system which, previewing the
signalh(k) p-steps in advance, is able to prepare system dy-
namics to cancel componentHSh(k) when it presents as in-
put to the system (at the time instantk).

Figure 2: The decoupling compensator consists of a preac-
tion unit and a postaction unit.



5 An illustrative example

Let us consider the previewed signal decoupling problem for
system (1) with

A = 0.1













1 2 1 −1 −2
0 −1 2 1 1
0 3 1 −1 −1
1 1 2 2 1
0 0 0 1 −5
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

,
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




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








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1 0 0
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0 0 −0.5774
0 1 0
0 0 0.5774













,

C =
[

0 0 0 0 1
]

.

Algorithms forV∗ andS∗ converge to

V∗ = im













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













, S∗ = im













1 0 0
0 0 0.5774
0 0 −0.5774
0 1 0
0 0 0.5774













.

Note that
S1 = S∗

and that
H ⊆ V∗ + S1 = V∗ + S∗.

BeingH 6⊆ V∗ + B, p = 1 is the minimum number of pre-
viewed steps necessary to solve the decoupling problem.

According to (16), matrixH is divided in two matrices

HV =













1 0 0
0 0 0
0 0 0
0 0 0
0 0 0


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



, HS =


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
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



0 0 0
0 0 0.5774
0 0 −0.5774
0 1 0
0 0 0.5774













.

The resolving subspace is evaluated as

Vm1 = Vm2 = im


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





1
0
0
0
0













which results internally stabilizable.
It is worth noting that that subspaceV∗g proposed in [10]

has, in this case, a dimension which is double ofVm1.
Postaction unit is given by the state feedback

upos= Fx(k) where

F =
[

−0.1 0 0 0.1 0
−0.1 0 0 −0.2 0

]

while for preaction unit we obtain from (24) and (25)

Φ1 =
[

0 0 0
0 0 −5.7735

]

, Φ0 =
[

0 0 0
0 1 0

]

.
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Figure 3: The three components of1-previewed signalh(k).
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Figure 4: The two components of postaction control
upos(k).
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Figure 5: The two components of preaction controlupre(k).

Simulation are executed by applying a signal

h(k) =
[

h1(k) h2(k) h3(k)
]T

whereh1(k) is a step signal,h2(k) a band-limited white
noise andh3(k) a sine wave, as reported in Fig.3.

The two components of postaction and preaction signals
upos(k) are reported in Fig. 4 and Fig. 5, respectively.
Preaction-postaction compensator perfectly decouples signal
h(k) which has a1-step preview and maintains the state tra-
jectory bounded.

6 Conclusions

A new solution for previewd signal decoupling problems
with stability has been proposed. It is based on two necessary
and sufficient constructive conditions, one is structural while
the other deals with the stability requirement. The problem
has been approached through self-bounded controlled invari-
ants, thus allowing to reduce the dimension of the resolving
subspace which corresponds to the infimum of a lattice. A
systematic algorithmic procedure has been presented for syn-
thesizing the compensator which consists of a preaction and
a postaction units.
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