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Abstract. A switching controller for a class of robotic manipulators with grasping ca-

pabilities is presented. The aim is to control the motion of the grasped object along a

desired trajectory while complying with contact force constraints. The algorithm success-

fully performs its control task by switching between several controllers induced by different

operating conditions of the manipulator–object system. Simulation results are presented

to show the efficacy of the proposed method.
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1 Introduction

This paper deals with the position/force control in co–operative robotic
manipulation of an object. Often these robotic systems are required to track
a desired object trajectory while fulfilling a set of constraints on the contact
forces applied to the object, cf. [13].

In the robotics literature the general problem of force/motion control
is known as ”hybrid control”. For a broad overview on this topics the
reader is referred to [19] and the references therein. The analysis of the
dynamics and the control of manipulation systems becomes more complex
when it is not possible to control contact forces in all directions. This
usually occurs when the number of DoF’s of the robotic device is smaller
than the dimension of the contact force space. In [16] such a case has been
defined as ”defective grasp”. This is the norm in industrial applications
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where kinematic defectivity is a common factor for almost all grippers. The
problem of position/force control for such a wide class of robotic system
is the subject of this paper. The dynamics of such a class of systems has
been thoroughly described in [16]. The main result of such work consisted
in suggesting an organization of the output object–position/contact–force
vector, which results functional controllable, exhausts the control capabilities
and incorporates the constraints as well as the task requirements for the
manipulation system. Such result can be considered as a structural property.
Unfortunately, in spite of its generality, the nature of this result is local as it
is based on the linearization of the mechanical system dynamics.

The aim of this paper consists in generalizing the results of [16] to the full
nonlinear model by means of the logic-based switching technique. A possible
approach is to use several different controllers and to switch among them with
a logical device according to some performance criterion. If this logic unit,
called supervisor, orchestrates the switching between different controllers
depending on some input–output observation of the system, then the control
algorithm is intrinsically adaptive. This approach, usually referred to as logic-
based switching control, has been extensively studied in [3, 7, 8, 9, 11, 12].

The difference of this approach over alternative approaches, as for ex-
ample the gain-scheduling approach, consists of its ability to select the best
controller according to a prediction error minimization rule, instead of by
simple inspection of a scheduling variable.

Such techniques have been successfully applied to robotic problems in the
past. In [2] authors emphasized the effectiveness of switched control systems
with respect to stabilization and performance for redundant manipulators.
The idea of using switching control techniques in the adaptive control context
to improve tracking performance has been discussed in [15], where switching
control is used to select among a set of free parallel running adaptive algo-
rithms. In [6], authors describe a vision-based robot controller which is based
on the concepts of dwell–time switching.

In this paper the goal of tracking any given position/force reference tra-
jectory is obtained by selecting in real time the most “appropriate” of a set of
prespecified off-the-shelf controllers, built on a set of ad hoc linearized models
of the mechanical system. Such controllers are selected according to a model
selection rule based on minimization of a performance index, [11]. According
to this rule, an “appropriate controller” is placed into the control loop from
time to time, in such a way that the output prediction error between the real
system output and the output of the model, upon the controller is designed,
is minimized. This choice strategy interprets the concept of certainty equiv-
alence [8, 10], and ensures that the controlled system always incorporates a
control law based on the model which best reproduces the system behaviour
along its trajectory.

The remainder of the paper is organized as follows: Section 2 introduces
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Figure 1: Introducing some notation for a general manipulation system:
q ∈ IR4, τ ∈ IR4,u ∈ IR6,w ∈ IR6.

the class of manipulation systems for which the force/position control algo-
rithms will be designed. Section 3 introduces the basic concepts of logic–
based switching controllers. Section 4 presents in more detail the linear
multi input multi output estimator based supervisor which is the core of the
logic–based switching controller. Finally Section 5 presents simulation results
which prove the concepts previously introduced.

2 General manipulation systems

The class of “general manipulation systems” this paper is concerned with is
comprised of mechanisms with any number of limbs (open kinematic chains),
of joints (prismatic, rotoidal, spherical, etc.) and of contacts between a
reference member called “object” and links in any position of the limb chains,
see Fig. 1. This class includes co–operating robots, industrial grippers,
robotics hands and so forth, cf. [16, 17, 1] and references therein. As a
paradigm for general manipulation systems, we refer to the case of a multi-
fingered hand manipulating an object through contacts on its finger parts.
An example is reported in Fig. 2

In Section 2.1 the dynamic model for such a class of systems is presented
while in section 2.2 previous local results concerning the force/position con-
trol for such systems will be reported.

2.1 Linear and non-linear dynamical model

The following notation is used. Refer to Fig. 1, let q ∈ IRq be the vector of
joint positions, τ ∈ IRq the vector of joint forces and/or torques, u ∈ IRd the
vector locally describing the position and the orientation of a frame attached
to the object and w ∈ IRd the vector of external disturbances acting on the
object. Finally, introduce the vector t ∈ IRt including forces and torques at
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Figure 2: The Barrett Hand mounted on a host arm grasping as electric
drill. The hand is a multi–fingered programmable grasper with the dexterity
to secure target objects of different sizes, shapes, and orientations. The hand
has a low weight (1.18kg) and compact form. (Courtesy of Barrett Technology
Inc.)

all contacts between the robotic device and the manipulated object.

Assume that contact forces arise from a lumped–parameter model of
visco–elastic phenomena at the contacts, summarized by the stiffness matrix
K and the damping matrix B. The Jacobian J and the grasp matrix G
are defined as usual as the linear maps relating the velocities of the contact
points on the links and on the object, to the joint and object velocities,
respectively. Note that the visco–elastic contact model is mandatory in all
those tasks where contact stiffness is not negligible or in hyperstatic grasps
where the rigid–body contact model leaves the dynamics undetermined.

For a complete description of this model, the reader is referred to [16, 17].

The nonlinear dynamics of a general manipulation systems is obtained as

q̈ = M−1
h

(−Qh − JT t+ τ
)
;

ü = M−1
o (−Qo +Gt+w) ;

t = KJ(cm − co) +Bδ(ċm − ċo).
(1)

where Mh (Mo) is the symmetric and positive definite inertia matrix of the
hand (object); Qh (Qo) is the term including velocity–dependent and gravity
forces of the hand (object) and cm (co) is the vector of contact points thought
as attached to the hand (object).

In [17, 16], the manipulation system dynamics is linearized at a reference
equilibrium configuration

{τ, [q,u, q̇, u̇], t} = {τo, [qo,uo,0,0], to} (2)
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and in the neighborhood of such an equilibrium, the linearized dynamics of
the manipulation system is written as

ẋ = Ax+Bττ
′ +Bww′, (3)

where state (x =
[
(q − qo)T (u− uo)T q̇T u̇T

]T ), input (τ ′ = τ − JT to) and
disturbance vectors (w′ = w+Gto) are defined as the departures from the
equilibrium configuration.

In [16], it has been shown that a simple PD control of joints variables,
asymptotically stabilizes the system in a neighborhood of the equilibrium
point. Henceforth the manipulation system will be considered with the PD
control and the resulting dynamic matrix of the linearized mode will be indi-
cated asAf . Note that the input τ ′ to feedback system (Af ,Bτ ) corresponds
to the change of the joint references with respect to their equilibria.

2.2 Position/force control and decoupling

One of the main goals of robotic manipulation control is to follow a given tra-
jectory with the manipulated object while guaranteeing that contact forces
comply with contact constraints thus ensuring the grasp stability [14, 16].
In the following the position/force controlled outputs will be discussed. The
position/force control for robot manipulators with visco–elastic contacts has
been investigated in [18, 5]. In those papers the authors consider the posi-
tion/force control at the end–effector of a single manipulator interacting with
a compliant environment.

With reference to object trajectories, rigid–body kinematics play a key
role in manipulation control: they do not involve visco–elastic deformations
at contacts and can be regarded as low–energy motions. In [17, 1] rigid
kinematics were described by the basis matrix Γ whose columns form a basis
for ker

[
J − GT

]
= im (Γ) = im

[
ΓTqc ΓTuc

]T where Γuc (Γqc) is a basis matrix
of the coordinated rigid–body motions of the object (manipulator) part.
Observe that to simplify notation, it is assumed here that ker (J) = {0} and
that ker (GT ) = {0}.
The controlled output vector of object positions is interpreted by the

rigid–body object motion uc defined as the projection of the object displace-
ment u onto the column space of Γuc:

uc = Eucx; where

Euc = ΓTuc [0 I 0 0] .
(4)

The second output vector to be controlled consists of internal contact forces.
These are self–balanced forces, belong to the null space of the grasp matrix
G and enable the robotic device to grasp the object. In general, not all
the internal forces are reachable by control inputs thus we choose as second
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controlled output the reachable internal contact forces ti defined as the
projection of the force vector t onto the null space of G, [16]:

ti = Etix where

Eti = QT [Q 0 Q 0] and

Q = (I − KGT (GKGT )−1G)KJ

(5)

The following theorem proven in [16], shows that the task–oriented con-
trolled output vector

e =
[

uc

ti

]
= Ex; with E =

[
Euc

Eti

]
(6)

exhausts the control capabilities (square system) and is functionally control-
lable.

Theorem 1 Under the hypothesis that ker (GT ) = 0 and that ker (J) = 0,
the linearized dynamics in Section 2 described by the triple (Af ,Bτ ,E)
is asymptotically stable, square (τ ′ ∈ IRq, e ∈ IRq) and at s = 0,
det(E(sI − Af )−1Bτ ) �= 0. This implies the asymptotic reproducibility and
functional controllability [4].

It should be remarked that the first hypothesis in Theorem 1 is structural
while the second is technical in nature [16]. The asymptotic reproducibility
property of dynamics means that it is possible to asymptotically decouple
and track force and position step references by applying the control input

τ = −(EA−1
f Bτ )−1

[
uc,ref

ti,ref

]
. (7)

Unfortunately, the open–loop decoupling control (7) is based on the ap-
proximate linearized model and thus, as previously mentioned, can only be
applied locally around an equilibrium point.

In the rest of the paper an effort is made to recast the problem of
position/force control in a logic–based switching framework. The aim is to
extend Theorem 1 to the full nonlinear model (1) of general manipulation
systems.

3 Logic–based switching framework

The position-force linearized controller is here generalized to the full nonlin-
ear model by means of the logic-based switching technique [3, 8, 9, 11].

It is important to distinguish between the controlled and measured out-
puts of the system. Let us introduce the measured outputs of the manipula-
tion system consisting of the joint positions and the contact forces in (1)

y = [qT , tT ]T (8)
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while the controlled output e has been defined in (6).

Hence the set of non linear equations modelling the overall system dy-
namics (1) as well as its outputs, can be rewritten as

ẋ = AM (x, τ,w);
y = CM (x);

e =
[

uc

ti

] (9)

where the state x = [qT , q̇T ,uT , u̇T ]T ∈ IRn is finite dimensional and w is
the input disturbance.

The control goal is to asymptotically track a position/force reference signal
r = [uT

c,ref , t
T
i,ref ]

T by means of a logic–based switching multiestimator and
controller. Such unit will have as inputs the joint torques τ ∈ IRq and the
measured outputs y ∈ IRm of the robotic nonlinear MIMO system. The basic
idea is to divide the state space into a set of equilibrium points, linearize non
linear system model for each one of such points and design a control algorithm
based on each linear model. These steps are described in Sections 3.1 and
3.2.

Note that, with no loss of generality, from now on assume that w = 0 in
(1) and (9).

3.1 Equilibrium points and linearized models

Consider a numberNeq of linearized model (Af,p,Bτ,p), as the ones presented
in (3), built around Neq equilibrium points

{
τ̃p, x̃p, ỹp

}
(p = 1, . . .Neq) such

that
AM (x̃p, τ̃p) = 0; ỹp = CM (x̃p); ẽ = [ũT

c , t̃
T
i ]

T . (10)

For small perturbations around each equilibrium point x̃p the dynamic be-
haviour of the nonlinear system is modeled as discussed in Section 2:

˙δxp = Af,pδxp +Bτ,pδτp, δyp = Cpδxp; δep = Epδxp;

where Cp is the Jacobian of CM in (9) evaluated at the equilibrium point
xp. Henceforth symbol δ will be omitted.

3.2 Closed loop decoupling multicontrollers

The following assumption is one of the keys to the controller design.

Assumption 1 For control purposes, the behaviour of the control input τ
versus the measured output y of the system in (9) is described with a model
M, whereby M is an unknown member of a suitably defined family FM of
the type

FM =
⋃
p∈P

Mp (1 + δMp) (11)
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where Mp are m × q transfer function matrices indexed by a parameter
p belonging to a finite set P = {1, . . . , Neq}. Each family of models of
the system is centered about a nominal transfer function matrix Mp, and
includes unmodeled perturbation δMp, which take into account the intrinsic
nonlinearities of system (9). Moreover let us assume that δMp is such that
for each possible system M in FM , there always exists a nominal system
model Mp within the set of models transfer matrices which is ‘close’ to M
in some suitably defined sense.

Assumption 1 expresses the fact that all the possible dynamic configu-
rations of the robotic manipulation system during its task execution can be
‘covered’ with an ad hoc chosen set of models Mp = Cp(sI − Af,p)−1Bτ,p,
linearized around Neq equilibrium points, plus some relative perturbation
δMp which takes into account the intrinsic unmodeled system nonlinearity.

For each nominal model memberMp = Cp(sI−Af,p)−1Bτ,p of FM , it is
possible to design a controller Cp (p ∈ P) following the guidelines in Section
2.2 so that the feedback interconnection of Mp with Cp is asymptotically
stable and asymptotically reproducible, i.e. asymptotically decoupled.

Figure 3: Asymptotic reproducible controller Cp for linearized model Mp.

The controller Cp is described in Fig. 3 and consists of

• an open–loop decoupling unit, designed as in (7), which asymptotically
decouples the position uc and the internal force ti outputs for the p–th
linearized model Mp;

• a linear controller K(s), with invertible finite gain K(0), stabilizing the
closed loop for any linearized dynamics Mp, p ∈ P ;

• a pre–compensator (I +K(0))K(0)−1 which is able to compensate the
steady state position/force closed–loop error arising when K(s) does
not have poles in zero.

It is important to note that, given an equilibrium point of index p, the
closed loop controller in Fig. 3 will be able to track step inputs for uc and
ti only in the proximity of such specific state. When this is not the case the



Supervisory Switching Control in Robotic Manipulation 9

system can switch to the controller designed for the model which is closest
to the current state of the system, as suggested in [8, 11]. The unit which is
in charge of such commutations will be presented in the following section.

4 Supervisor based on MIMO linear multies-
timator

The overall structure is proposed in Fig. 4. The controller is based on two
main units: a multicontroller structure Cσ and a linear multiestimator–
based supervisory switching logic S, which are connected in feedback with
the robotic system M. Note that the multiestimator (LEMp) behaviour is
affected by the sensed output y = [qT , tT ]T and not by the controlled one.

The multicontroller structure will be commanded in such a way that,
each controllers of the family will be selected depending on the value of
a switching signal σ (σ ∈ P) generated by the logic S. In the following
the linear multiestimator system is thoroughly described. Its design follows
closely the lines proposed in [11].

Figure 4: Switching controlled system and robotic manipulation systemM.

Let assume to be given the nominal model m× q transfer matrix Mp, of
the p–th linearized model of M:

Mp(s) =




β11
p (s)

α1
p(s) . . .

β1q
p (s)

α1
p(s)

... · · · ...
βm1

p (s)

αm
p (s) . . .

βmq
p (s)

αm
p (s)


 (12)

where the monic polynomials αip(s) and β
ij
p (s), (i = 1, . . . ,m, j = 1, . . . , q,

p ∈ P) are the polynomials corresponding respectively, to the denominators
and numerators of each row of Mp, and s is the complex variable. The
following linear multiestimator LEMp ofMp is defined as (i = 1 . . .m, p ∈
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P)

ẋE,i = ÃExE,i + G̃Eyi + B̃E



τ1
...
τq


 (13)

yp,i =
[
−hiαp

, hi1βp
, · · · , hiqβp

]
xE,i = cp,i xE,i (14)

ep,i = yp,i − yi (15)

where

ÃE =



AE 0 · · · · · · 0
0 AE 0 · · · 0
...

...
...

...
...

0 0 0 0 AE



q̄×q̄

, G̃E =



bE
0
...
0



q̄×1

,

B̃E =




0 · · · · · · 0
bE 0 · · · 0

0
. . . 0

...
...

. . . bE 0
0 · · · 0 bE



q̄×q

.

The above equations (13)-(15) represent a set of estimators for the i-th
component yi of the sensed robot output y = [qT , tT ]T ∈ IRm. For each
fixed i ∈ {1, . . . ,m} all the estimators share the state xE,i. In particular, in
(13)-(15): p is the model index; q̄ = q + 1; i = 1, 2, . . . ,m is the row index
of Mp; xE,i is a shared state of dimensions nq̄, where n is an upper bound
on the McMillan degree of all the transfer functions element of Mp, that is,
n > maxi,p{deg(αip(s))}, i = 1, . . . ,m, p ∈ P ; ep,i is the ith component of
the output prediction error; AE is a square n× n stability matrix such that
for any of its eigenvalues λ, it holds that Reλ ≤ −λE < 0; the couple
(AE , bE) is controllable, and finally vectors hiαp

, hijβp
, i = 1, . . . ,m, j =

1, . . . , q composing cp,i, are obtained from the matrix transfer functions Mp

(12) in such a way that,

{
ÃE + G̃Ecp,i, B̃E , cp,i

}
≈

[
βi1p (s)
αip(s)

, . . . ,
βiqp (s)
αip(s)

]

where by symbol ≈ we mean “is a realization of”.

The supervision task of switching among different controllers is managed by
the cascade interconnection of the three subsystems in Fig. 5: the linear
multiestimator LEMp (13)–(15), a performance signal generator Π, and a
dwell time switching logic S.
The linear multiestimator produces as outputs a set of local output prediction
errors ep = yp − y, with ep ∈ IRm, and p ∈ P , being y the measured outputs
of the real system and yp those of the linearized model Mp. The following
remark holds.
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Figure 5: Multiestimator based supervisor.

Remark 1 The same properties stated for the linear multiestimators pre-
sented for example in [11], holds also locally for the above linear estima-
tor. In particular, under the feedback interconnection y = yp, LEMp would
have to exhibit the same input-output behaviour between τ and yp as Mp

does between its input and output. This is true since it can be easily proved
that, when y = yp, (13),(14) represents an asymptotic realization of the Mp.
Therefore, when M tends to Mp, ep tends to zero as e−λEt.

The performance generator is a dynamic system with inputs ep and outputs
πp, which are the the performance signals for each linearized model Mp.
Signal πp is evaluated by integration over time of a measure of the distance
between the input–output behaviour of the linearized modelMp, and input–
output behaviour of the actual robotic system. Formally, πp is computed
as

π̇p(t) = −λπp(t) +
∑q

i=1 e
2
p,i(t), p ∈ P , 0 < λ < λE . (16)

The dwell time switching logic S discussed in [11] has been used. It has the
role of selecting the controller index σ on the basis of the performance signals
πp of each linearized model by choosing from time to time σ equal to that
value of p for which πp is the smallest. The minimum amount of time that is
allowed to elapse between two successive controller switchings is regulated by
–that means coincides with– the dwell time τD. The dwell time is introduced
in order to let the stable dynamics of the closed loop switched system have
enough time to decay before the next switching occurs. By doing this the
norm of the composite transition matrix is prevented from growing without
bounds.
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5 Simulation results

An application of the logic–based switching controller to the simple pla-
nar (2D) manipulation system of Fig. 6, is reported. The system has

Figure 6: Simple 2–joints, 2–contacts 2D general manipulation system. In
this configuration, q1 = q2 = 0, u = [ux,uy, θ]T = [1.5, 3, 0]T .

2 joints and 2 contact points, q = [q1, q2]T ∈ IR2, τ ∈ IR2, u =
[ux, uy, uθ]T ∈ IR3, t ∈ IR4. An object with different visco elastic pa-
rameters at the contact points is considered. The stiffness matrix is K =
diag(K1,K2),K1 = diag(200N/m, 200N/m), K2 = 0.5K1, while the damp-
ing one is B = diag(B1,B2), B1 = diag(66Ns/m, 66Ns/m), B2 = 0.5B1;
the uniformly distributed link (object) mass and the link length (object
radius) are ml = 0.3kg (mo = 0.25kg), l = 0.3m (R = 0.15m), re-
spectively. The joint position and velocity (PD) feedback gains are set to
Rq = diag(10, 10) and Rq̇ = diag(1, 1). The contact point is assumed fixed
at a distance 0.9l from the joints.

The subspace of rigid–body object motion im (Γuc) has dimension 1 thus
uc in (4) is a scalar output. The same happens for the reachable internal
force output ti in (5).

As regards reference inputs, a step of 0.5N is commanded to the input
ti,ref corresponding to the internal force with zero initial value. The input
uc,ref corresponding to the rigid–body motion of the object is a sinusoid
having frequency 0.8rad/sec., amplitude 15cm and phase (−π/2 − 0.8td)rad
with an offset of 15cm. The input reference uc,ref(t) (dash–dotted line in
Fig. 7) is delayed of td = 2sec with respect to the internal force step.

The robotic system is linearized at three equilibrium points (2) chosen
’close’ to the system trajectory corresponding to the commanded object
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position inputs, namely
{
τ̃T1 , [q̃

T , ũT , ˜̇qT , ˜̇uT ]1, ỹ
T
1

}
=

{[0, 0], [(0, 0)(1.5, 3, 0)(0, 0)(0, 0, 0)], [0, 0, 0, 0, 0, 0]}{
τ̃T3 , [q̃

T , ũT , ˜̇qT , ˜̇uT ]3, ỹ
T
3

}
=

{[0, 0], [(−π/6,−π/6)(3, 2.59, 0)(0, 0)(0, 0, 0)], [0, 0, 0, 0, 0, 0]}{
τ̃T2 , [q̃

T , ũT , ˜̇qT , ˜̇uT ]2, ỹ
T
2

}
=

{[0, 0], [(−π/3,−π/3)(4.1, 1.5, 0)(0, 0)(0, 0, 0)], [0, 0, 0, 0, 0, 0]}

.

The linearized models (Af,p,Bτ,p,Ep), (p = 1, 2, 3;), evaluated at the equi-
librium points, are used to build the multiestimator. Regarding the multi-
controller Cp, the fixed part K(s) in Fig. 3 is a simple proportional controller
and is set to diag(1, 10). Observe that K(s) = K0 stabilizes the linearized
models at all the 3 equilibrium points. As regards the multiestimator, the
performance generator and the switching logic, we have that the stability
margin of AE is set to λE = −1500; the dynamic behaviour of (16) is set to
λ = 100 and finally the minimum amount of time allowed to elapse between
two successive controller switchings (dwell–time) is set to τD = 0.05.

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

0.1

0.15

0.2
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0.3

time

uc
re

f, 
uc

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time

fi

a) b)

Figure 7: Rigid–body object motions starting from the initial configuration
in Fig. 6. (a) Logic–based switching control: reference input uc,ref (dash–
dotted line) and system output uc. (b) Linearized control: reference input
uc,ref (dash–dotted line) and system output uc.

Simulation results of the switching control technique are compared with
those obtained without the switching logic. That is, last results are obtained
by the same asymptotically decoupling controller but with the switching
variable frozen to σ = 1 (only the linearization at the first equilibrium point
has been considered).

Rigid–body object and internal force trajectories are reported in Fig. 7
and Fig. 8, respectively. Note that the outputs of the switching adaptive
system follow their references, in spite of the persistence of the variation of
the reference input in Fig. 7–a.

In Fig. 9 the plot of switching variable σ has been reported together with
joint variable q1(t).
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By simple inspection, it clearly appears that the switching logic increases
the system performances in position and force tracking.

Observe that the nonlinear system does not pass through the equilibrium
points employed to compute the linearized models. This is mainly due to
the continuous variations of position inputs and to the fact that the internal
force is zero at all the equilibrium points.
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Figure 8: Reachable internal force behaviour when the reference input is
a step of 0.5N. To the initial configuration (Fig. 6), It corresponds a zero
internal force. (a) Logic–based switching. (b) Linearized control with σ = 1.
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Figure 9: In Fig. a) it is reported the plot of the first joint variable q1(t)
while in Fig. b) it is reported the plot of the switching variable σ. Note that
to q1 = 0 (q1 = −π/6) {q1 = −π./3}, it corresponds a linearized model with
σ = 1 (σ = 3) {σ = 2}.

It is worth stressing that in this section, for the sake of brevity, we have
assumed to possess an exact knowledge of the system model on which it is
based the decoupling control in Fig. 3. Normally, this is not the case and pa-
rameter uncertainties should be considered. Observe that taking into account
uncertainties is an easy matter in the framework of the multiestimator–based
switching control, [11].
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6 Conclusions

This paper analyzes the problem of controlling motions of objects manipu-
lated by multiple robotic limbs, taking into account the possibility of kine-
matic defectivity of the mechanism and the fact that friction imposes con-
straints on permissible contact forces, and therefore requires planning of force
trajectories together with position trajectories. The paper define the con-
trolled outputs which incorporate the constraints as well as the task require-
ments for the system in terms of forces and manipulated object trajectories.

The proposed position/force controller is based on linearized dynamics
and works for a wide class of manipulation systems referred to as “general
manipulation systems”. The problem of generalizing the local result to the
full nonlinear model has been approached in a logic–based switching frame-
work. A logic–based switching controller has been developed for the full non-
linear manipulation system dynamics. Its performance is successfully shown
via simulations. The multicontroller switches among several controllers de-
signed for linear approximation of the robotics nonlinear dynamics. The aim
is to obtain an asymptotic tracking of the object motion and internal force
in a co–operative grasp of a single object.

The main contribution and motivation of this work consists in using the
logic–based switching control to steer the nonlinear dynamics of general ma-
nipulation systems through ‘local’ controllers with no known global proper-
ties. An important issue that must be settled to synthesize the proposed
logic–based switching control is the choice of the equilibrium points. At this
stage of the work we simply select a set of equilibrium points ’close’ to the
nominal trajectory. Further investigation is needed to address some criterion
of optimality in choosing the linearized models. Currently the research is
addressed towards the systematic investigation of the full characterization of
the system salient global properties.
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