X SCAN ORDER IN (GIBBS SAMPLING:
@5 Models in Which it Matters and Bounds on How Much

Bryan He, Christopher De Sa, loannis Mitliagkas, Christopher Ré

{bryanhe,cdesa,imit,chrismre}t@stanford.edu

1. Gibbs Sampling 3. Folklore 4. Our Contributions 6. Mixing Time Bounds

— Machine learning systems use probabilistic

inference to cope with uncertainty Scan or(i__er dogs pot .realﬁ_y matter, = —'T'wo models sbowing tbat — We introduce techniques for comparing
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techniques are used instead _ Systematic can only be log — Analysis techniques for comparing mixing times 1/2 =&t 5 €) < ey f e loe (ewmm>
— Gibbs sampling is one of the most popular factors faster than random — Bounds on relative mixing times of different scans — Often imply that the relative mixing times
MCMC techniques differ by only polynomial factors
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loop We introduce two models to show where the folklore breaks down.
Select variable index s from {1,...,n} - - Our experiments analyze how different scans
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— What order do you sample the variables in” Islands (n = 10)

Variables: z1,...,z, Variables: x,...,2,, y1,...,Yn -
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