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1. Gibbs Sampling

−Machine learning systems use probabilistic
inference to cope with uncertainty

−Exact inference is often intractable

−Approximate Markov chain Monte Carlo
techniques are used instead

−Gibbs sampling is one of the most popular
MCMC techniques

Algorithm 1 Gibbs sampler
input Variables xi for i ∈ [n], and distribution π

Initialize x1, . . . , xn arbitrarily
loop

Select variable index s from {1, . . . , n}
Sample xs from conditional distribution

Pπ

(
Xs | X{1,...,n}\{s}

)
end loop

2. Scan Order

−What order do you sample the variables in?

−Two common scan orders:

Random scan:
sample uniformly and independently

Systematic scan:
sample in a fixed permutation

−Systematic scan has better hardware
efficiency due to spatial locality

−Most theoretical results only for random

−Which scan has better statistical efficiency?

(smaller mixing time)

3. Folklore

Scan order does not really matter,
but systematic is slightly better.

−Random can only be constant
factors faster than systematic

−Systematic can only be log
factors faster than random

4. Our Contributions

−Two models showing that

− Systematic can mix much faster than random
− Random can mix much faster than systematic
− Permutation used by systematic scan matters

−Analysis techniques for comparing mixing times

−Bounds on relative mixing times of different scans

5. Models

We introduce two models to show where the folklore breaks down.
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Island x Island y

Variables: x1, . . . , xn

−xi is never true unless xi is true

−Variables are independently likely to be true
(M is large)

Variables: x1, . . . , xn, y1, . . . , yn

−x variables and y variables contradict
(never true at the same time)

P (x) ∝
{

0 if xi and not xi−1

M
∑n

i=1 xi otherwise

−Random mixes in O(n2)

−Systematic x1, x2, . . . , xn mixes in O(n)

−Systematic xn, xn−1, . . . , x1 mixes in O(n2)

P (x, y) ∝
{

0 if ∃xi true and ∃yj true

1 otherwise

−Systematic x1, . . . , xn, y1, . . . , yn takes
O(n) times as long as random to mix

−Systematic x1, y1, x2, y2, . . . , xn, yn mixes a
constant factor faster than random

6. Mixing Time Bounds

−We introduce techniques for comparing
relative mixing times with conductance

(1/2− ε)2 tmix(R, ε) ≤ 2t2mix(S, ε) log

(
1

επmin

)
(1/2− ε)2 tmix(S, ε) ≤ 8n2

(minx,iPi(x, x))2t
2
mix(R, ε) log

(
1

επmin

)
−Often imply that the relative mixing times

differ by only polynomial factors

7. Experiments

Our experiments analyze how different scans
behave on our models.
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