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Abstract. A floorplan is a rectangle subdivided into smaller rectangu-
lar blocks by horizontal and vertical line segments. T'wo floorplans are
considered equivalent if and only if there is a bijection between the blocks
in the two floorplans such that the corresponding blocks have the same
horizontal and vertical boundaries. Mosaic floorplans use the same ob-
jects as floorplans but use an alternative definition of equivalence. Two
mosaic floorplans are considered equivalent if and only if they can be
converted into equivalent floorplans by sliding the line segments that
divide the blocks. The Quarter-State Sequence method of representing
mosaic floorplans uses 4n bits, where n is the number of blocks. This
paper introduces a method of representing an n-block mosaic floorplan
with a (3n — 3)-bit binary string. It has been proven that the shortest
possible binary string representation of a mosaic floorplan has a length
of (3n — o(n)) bits. Therefore, the representation presented in this paper
is asymptotically optimal. Baxter permutations are a set of permutations
defined by prohibited subsequences. There exists a bijection between mo-
saic floorplans and Baxter permutations. As a result, the methods intro-
duced in this paper also create an optimal binary string representation
of Baxter permutations.

Keywords: Binary Representation, Mosaic Floorplan, Baxter Permu-
tation.

1 Introduction

In this section, the definitions of mosaic floorplans and Baxter permutations are
introduced, previous work in the area and their applications are described, and
the main result is stated.

1.1 Floorplans and Mosaic Floorplans

Definition 1. A floorplan is a rectangle subdivided into smaller rectangular sub-
sections by horizontal and vertical line segments such that no four subsections
meet at the same point.
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Fig. 1. Three example floorplans

The smaller rectangular subsections are called blocks. Figure[Ilshows three floor-
plans, each containing 9 blocks. Note that the horizontal and vertical line seg-
ments do not cross each other. They can only form T-junctions (-, L,
-, and T).

The definition of equivalent floorplans does not consider the size of the blocks
in the floorplan. Instead, two floorplans are considered equivalent if and only
if their corresponding blocks have the same relative position relationships. The
formal definition of equivalent floorplans follows.

Definition 2. Let Fy be a floorplan with Ry as its set of blocks. Let Fy be
another floorplan with Re as its set of blocks. Iy and Fy are considered equivalent
floorplans if and only if there is a bijection g : Ry — Ry such that the following
conditions hold:

1. For any two blocks r,v' € Ry, v and v’ share a horizontal line segment as
their common boundary with v above v’ if and only if g(r) and g(r') share a
horizontal line segment as their common boundary with g(r) above g(r').

2. For any two blocks v, € Ry, r and 1’ share a vertical line segment as their
common boundary with r to the left of v’ if and only if g(r) and g(r") share a
vertical line segment as their common boundary with g(r) to the left of g(r').

In Figure[ll (a) and (b) have the same number of blocks and the position rela-
tionships between their blocks are identical. Therefore, (a) and (b) are equivalent
floorplans. However, (c¢) is not equivalent to either.

The objects of mosaic floorplans are the same as the objects of floorplans.
However, mosaic floorplans use a different definition of equivalence. Informally,
two mosaic floorplans are considered equivalent if and only if they can be con-
verted to each other by sliding the horizontal and vertical line segments one
at a time. The equivalence of the mosaic floorplans is formally defined by us-
ing the horizontal constraint graph and the wertical constraint graph [9]. The
horizontal constraint graph describes the horizontal relationship between the
vertical line segments of a floorplan. The vertical constraint graph describes
the vertical relationship between the horizontal line segments of a floorplan. The
formal definitions of horizontal constraint graphs, vertical constraint graphs, and
equivalence of mosaic floorplans follow.
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Definition 3. Let F be a floorplan.

1. The horizontal constraint graph Gy (F) of F is a directed graph. The vertex
set of Gy (F) has a bijection with the set of the vertical line segments of
F'. For two vertices uy and ug in Gy (F), there is a directed edge uy — us
if and only if there is a block b in F such that the vertical line segment vy
corresponding to uy is on the left boundary of b and the vertical line segment
vo corresponding to us is on the right boundary of b.

2. The vertical constraint graph Gy (F) of F is a directed graph. The vertex
set of Gy (F) has a bijection with the set of the horizontal line segments of
F. For two vertices u1 and uz in Gy (F), there is a directed edge uy — us
if and only if there is a block b in F such that the horizontal line segment
hy corresponding to uy is on bottom boundary of b and the horizontal line
segment ho corresponding to us is on the top boundary of b.

The graphs in Figure[2l are the constraint graphs of all three floorplans shown in
Figure [l Note that the top, bottom, right, and left boundaries of the floorplan
are represented by the north, south, east, and west vertices labeled by N, S,
E, and W, respectively, in the constraint graphs. Also note that each edge in
Gu(F) and Gy (F) corresponds to a block in the floorplan.
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Fig. 2. The constraint graphs representing all three mosaic floorplans in Figure[l (a)
is the horizontal constraint graph. (b) is the vertical constraint graph.

Definition 4. Two mosaic floorplans are equivalent mosaic floorplans if and
only if they have identical horizontal constraint graphs and vertical constraint
graphs.

Thus, in Figure 1, (a), (b), and (c) are all equivalent mosaic floorplans. Note that
(c) is obtained from (b) by sliding the horizontal line segment between blocks d
and g downward, the horizontal line segment between blocks ¢ and f upward,
and the vertical line segment between blocks a and b to the right.

1.2 Applications of Floorplans and Mosaic Floorplans

Floorplans and mosaic floorplans are used in the first major stage in the physical
design cycle of VLSI (Very Large Scale Integration) circuits [10]. The blocks in a
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floorplan correspond to the components of a VLSI chip. The floorplanning stage
is used to plan the relative position of the circuit components. At this stage,
the blocks do not have specific sizes assigned to them yet, so only the position
relationship between the blocks are considered.

For a floorplan, the wires between two blocks run cross their common bound-
ary. In this setting, two equivalent floorplans provide the same connectivity be-
tween blocks. For a mosaic floorplan, the line segments are the wires. Any block
with a line segment on its boundary can be connected to the wires represented
by the line segment. In this setting, two equivalent mosaic floorplans provide the
same connectivity between blocks.

Binary representations of floorplans and mosaic floorplans are used by various
algorithms to generate floorplans in order to solve various VLSI layout optimiza-
tion problems.

Floorplans are also used to represent rectangular cartograms [I517]. Rectan-
gular cartograms provide a visual method of displaying statistical data about a
set of regions.

1.3 Baxter Permutations

Bazxter permutations are a set of permutations defined by prohibited subse-
quences. They were first introduced in [3]. It was shown in [8] that the set
of Baxter permutations has bijections to all objects in the Bazter combinatorial
family. For example, [4] showed that plane bipolar orientations with n edges have
a bijection with Baxter permutations of length n. [5] established a relationship
between Baxter permutations and pairs of alternating sign matrices.

In particular, it was shown in [IJ6l20] that mosaic floorplans are one of the
objects in the Baxter combinatorial family. A simple and efficient bijection be-
tween mosaic floorplans and Baxter permutations was established in [1[6]. As a
result, any binary representation of mosaic floorplans can also be converted to
a binary representation of Baxter permutations.

1.4 Previous Work on Representations of Floorplans and Mosaic
Floorplans

Because of their applications in VLSI physical design, the representations of
floorplans and mosaic floorplans have been studied extensively by mathemati-
cians, computer scientists and electrical engineers. Although their definitions are
similar, the combinatorial properties of floorplans and mosaic floorplans are quite
different. The following is a list of research on floorplans and mosaic floorplans.

Floorplans

There is no known formula for calculating F'(n), the number of n-block floor-
plans. The first few values of F'(n) are {1, 2,6, 24,116,642, 3938, ...}. Researchers
have been trying to bound the range of F'(n). In [2], it was shown that there
exists a constant ¢ = lim,,_,o. (F(n))*/™ and 11.56 < ¢ < 28.3. This means that
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11.56™ < F(n) < 28.3" for large n. The upper bound of F(n) was reduced to
F(n) <13.5™ in [1].

Algorithms for generating floorplans are presented in [12]. In [I8], a (5n—5)-bit
representation of n-block floorplans is shown. A different 5n-bit representation of
n-block floorplans is presented in [19]. The shortest known binary representation
of n-block floorplans uses (4n — 4) bits [16].

Since F'(n) > 11.56™ for large n [2], any binary string representation of n-block
floorplans must use at least log, 11.56™ = 3.531n bits. Closing the gap between
the known (4n—4)-bit binary representation and the 3.531n lower bound remains
an open research problem [16].

Mosaic Floorplans

It was shown in [6] that the set of n-block mosaic floorplans has a bijection to
the set of Baxter permutations, and the number of n-block mosaic floorplans
equals to the n*" Bazter number B(n), which is defined as the following:

n-1(n-+1 n-+1 n—+1
s () () (05s)
B(n) =
n+1 n+1
(T ()
In [14], it was shown that B(n) = ©(8"/n*). The first few Baxter numbers are
{1, 2, 6, 22, 92, 422, 2074, ...}.

There is a long list of papers on representation problem of mosaic floorplans.
[11] proposed a Sequence Pair (SP) representation. Two sets of permutations
are used to represent the position relations between blocks. The length of the
representation is 2n log, n bits.

[9] proposed a Corner Block List (CB) representation for mosaic floorplans.
The representation consists of a list .S of blocks, a binary string L of (n— 1) bits,
and a binary string 7" of 2n — 3 bits. The total length of the representation is
(3n + nlogyn) bits.

[21] proposed a Twin Binary Sequences (TBS) representation for mosaic floor-
plans. The representation consists of 4 binary strings (m, «, 3, 8’), where 7 is a
permutation of integers {1,2,...,n}, and the other three strings are n or (n—1)
bits long. The total length of the representation is 3n + nlog, n.

A common feature of above representations is that each block in the mosaic
floorplan is given an explicit name (such as an integer between 1 and n). They
all use at least one list (or permutation) of these names in the representation.
Because at least logy n bits are needed to represent every integer in the range
[1,n], the length of these representations is inevitably at least nlog, n bits.

A different approach using a pair of Twin Binary Trees was introduced in
[20]. The blocks of the mosaic floorplan are not given explicit names. Instead,
the shape of the two trees are used to encode the position relations of blocks. In
this representation, each tree consists of 2n nodes. Each tree can be encoded by
using 4n bits, so the total length of the representation is 8n bits.
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In [I3], a representation called Quarter-State-Sequence (QSS) was presented.
It uses a @ sequence that represents the configuration of one of the corners of
the mosaic floorplan. The length of the @ sequence representation is 4n bits.
This is the best known representation for mosaic floorplans.

The number of n-block mosaic floorplans equals the n** Baxter number, so at
least logy, B(n) = log, ©(8" /n?) = 3n — o(n) bits are needed to represent mosaic
floorplans.

1.5 Main Result

Theorem 1. The set of n-block mosaic floorplans can be represented by (3n—3)
bits, which is optimal up to an additive lower order term.

Most binary representations of mosaic floorplans discussed in section [[4] are
complex. In contrast, the representation introduced in this paper is very simple.

By using the bijection between mosaic floorplans and Baxter permutations
described in [I], the methods in this paper also work on Baxter permutations.
Hence, the optimal representation of mosaic floorplans results in an optimal
representation of all objects in the Baxter combinatorial family.

2 Optimal Representation of Mosaic Floorplans

In this section, an optimal representation of mosaic floorplans is described.

2.1 Standard Form of Mosaic Floorplans

Let M be a mosaic floorplan. Let h be a horizontal line segment in M. The upper
segment set of h and the lower segment set of h are defined as the following:

ABOVE(h) = the set of vertical line segments above h that intersect h.
BELOW (h) = the set of vertical line segments below h that intersect h.

Similarly, for a vertical line segment v in M, the left segment set of v and the
right segment set of h are defined as the following;:

LEFT(v) = the set of horizontal segments on the left of v that intersect v.
RIGHT(v) = the set of horizontal segments on the right of v that intersect v.

Definition 5. A mosaic floorplan M is in standard form if the following hold:

1. For every horizontal segment h in M, all vertical segments in ABOVE(h)
appear to the right of all vertical segments in BELOW(h). (Figure[3(a))

2. For every vertical segment v in M, all horizontal segments in RIGHT(v)
appear above all horizontal segments in LEFT(v). (Figure[3(b))
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Fig. 3. Standard form of mosaic floorplans

The mosaic floorplan shown in Figure [ (¢) is the standard form of mosaic
floorplans shown in Figure[Il (a) and Figure [ (b).

The standard form Mgtandarq 0of a mosaic floorplan M can be obtained by
sliding its vertical and horizontal line segments. Because of the equivalence def-
inition of mosaic floorplans, Mgiandara and M are considered the same mosaic
floorplans. For a given M, Mgiandard can be obtained in linear time by using
the horizontal constraint graphs and vertical constraint graphs described in [9].
From now on, all mosaic floorplans are assumed to be in standard form.

2.2 Staircases

Definition 6. A staircase is an object that satisfies the following conditions:

1. The border is formed by a line segment on the positive x-axis starting from
the origin and a line segment on the positive y-azis starting from the origin
connected by non-increasing vertical and horizontal line segments.

2. The interior is divided into smaller rectangular subsections by horizontal and
vertical line segments.

8. No four subsections meet at the same point.

g h|il]

X

Fig. 4. A staircase with n = 6 blocks and m = 3 steps that is obtained from the mosaic
floorplan in Figure[Il (c) by deleting blocks b, c and f

A step of a staircase S is a horizontal line segment on the border of S, excluding
the z-axis. Figure M shows a staircase with n = 6 blocks and m = 3 steps. Note
that a mosaic floorplan is a staircase with m = 1 step.
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2.3 Deletable Rectangles

Definition 7. A deletable rectangle of a staircase S is a block that satisfies the
following conditions:

1. Its top edge is completely contained in the border of S.
2. Its right edge is completely contained in the border of S.

In the staircase shown in Figure [ the block a is the only deletable rectangle.
The concept of deletable rectangles is a key idea for the methods introduced in
this paper. This concept was originally defined in [I6] for their (4n — 4)-bit rep-
resentation of floorplans. However, a modified definition of deletable rectangles
is used in this paper to create a (3n — 3)-bit representation of mosaic floorplans.

Lemma 1. The removal of a deletable rectangle from a staircase results in an-
other staircase unless the original staircase contains only one block.

Proof. Let S be a staircase with more than one block and let r be a deletable
rectangle in S. Define S’ to be the object that results when r is removed from S.
Because the removal of r still leaves S’ with at least one block, the border of S’
still contains a line segment on the z-axis and a line segment on the y-axis, so
condition (1) of a staircase holds for S’. Removing r will not cause the remainder
of the border to have an increasing line segment because the right edge of » must
be completely contained in the border, so condition (2) of a staircase also holds
for S’. The removal of r does not form new line segments, so the interior of S’ will
still be divided into smaller rectangular subsections by vertical and horizontal
line segments, and no four subsections in S’ will meet at the same point. Thus,
conditions (3) and (4) of a staircase hold for S’. Therefore, S’ is a staircase.

The basic ideas of the representation can now be outlined. Given a mosaic floor-
plan M, the deletable rectangles of M are removed one by one. By Lemma [T
this results in a sequence of staircases, until only one block remains. The neces-
sary location information of these deletable rectangles are recorded so that the
original mosaic floorplan M can be reconstructed. However, if there are mul-
tiple deletable rectangles for these staircases, many more bits will be needed.
Fortunately, the following key lemma shows that this does not happen.

Lemma 2. Let M be a n-block mosaic floorplan in standard form. Let S, = M,
and let S;i—1 (2 < i < n) be the staircase obtained by removing a deletable
rectangle r; from S;.

1. There is a single, unique deletable rectangle in S; for 1 <i <mn.
2. r;_1 is adjacent to r; for 2 <i<mn.

Proof. The proof is by reverse induction.
Sn = M has only one deletable rectangle located in the top right corner.
Assume that S;41 (i < n — 1) has exactly one deletable rectangle r;11. Let
h be the horizontal line segment in 5,11 that contains the bottom edge of 741,
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and let v be the vertical line segment in S;y; that contains the left edge of r;11
(FigureBl). Let a be the uppermost block in S;4+1 whose right edge aligns with v,
and let b be the rightmost block in S;11 whose top edge aligns with h. Note that
either a or b may not exist, but at least one will exist because 2 < i. After r;11
is removed from S;11, a and b are the only candidates for deletable rectangles
of the resulting staircase S;. There are two cases:

v 1
a
a | Tigy 3 Vit A
T i
(a) (b)

Fig. 5. Proof of Lemma

1. The line segments h and v form a F-junction (Figure[l (a)) Then, the bottom
edge of a must be below h because M is a standard mosaic floorplan, and
a is not a deletable rectangle in S;. Thus, the block b is the only deletable
rectangle in S;.

2. The line segments h and v form a L-junction (see Figure[l (b)) Then, the left
edge of b must be to the left of v because M is a standard mosaic floorplan,
and b is not a deletable rectangle in S;. Thus, the block a is the only deletable
rectangle in S;.

In both cases, only one deletable rectangle r; (which is either a or b) is revealed
when the deletable rectangle r; 41 is removed. There is only one deletable rect-
angle in S,, = M, so all subsequent staircases contain exactly one deletable
rectangle, and (1) is true. In both cases, ;11 is adjacent to r;, so (2) is true.

Let S be a staircase and r be a deletable rectangle of S whose top side is on the
k-th step of S. There are four types of deletable rectangles.

L L L B k

-~k k

Type(0,0) Type(0,1) Type(0,1) Type(1,1)

Fig. 6. The four types of deletable rectangles
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1. Type (0,0):

(a) The upper left corner of r is a F-junction.

(b) The lower right corner of r is a L-junction.

(¢) The deletion of r decreases the number of steps by one.
2. Type (0,1):

(a) The upper left corner of r is a T-junction.

(b) The lower right corner of r is a L-junction.

(¢) The deletion of r does not change the number of steps.
3. Type (1,0):

(a) The upper left corner of r is a F-junction.

(b) The lower right corner of r is a <-junction.

(¢) The deletion of r does not change the number of steps.
4. Type (1,1):

(a) The upper left corner of r is a T-junction.

(b) The lower right corner of r is a 4-junction.

(c¢) The deletion of r increases the number of steps by one.

2.4 Optimal Binary Representation

This binary representation of mosaic floorplans depends on the fact that a mosaic
floorplan M is a special case of a staircase and the fact that the removal of a
deletable rectangle from a staircase results in another staircase. The binary string
used to represent M records the unique sequence of deletable rectangles that are
removed in this process. The information stored by this binary string enables
the original mosaic floorplan M to be reconstructed.

A 3-bit binary string is used to record the information for each deletable
rectangle r;. The string has two parts: the type and the location of r;. To record
the type of r;, the bits corresponding to its type is stored directly. To store the
location, note that, by Lemma Bl two consecutive deletable rectangles r; and
r;—1 are adjacent. Thus, they must share either a horizontal edge or a vertical
edge. A single bit can be used to record the location of r; with respect to r;_1:
a 1 if they share a horizontal edge, and a 0 if they share a vertical edge.

Encoding Procedure

Let M be the n-block mosaic floorplan to be encoded. Starting from S, = M,
remove the unique deletable rectangles r;, where 2 < ¢ < n, one by one. For each
deletable rectangle r;, two bits are used to record the type of r;, and one bit is
used to record the type of the common boundary shared by r; and r;_1.

Decoding Procedure

The process starts with the staircase S, which is a single rectangle. Each stair-
case S;+1 can be reconstructed from S; by using the 3-bit binary string for the
deletable rectangle r; 1. The 3-bit string records the type of r;+1 and the type
of edge shared by r; and r;11, so ;41 can be uniquely added to S;. Thus, the
decoding procedure can reconstruct the original mosaic floorplan S,, = M.
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101

4
000 011
3 3
1 1 1 1
2 2 2
add block 2 of type (0,0) add block 3 of type (0,1)  add block 4 of type (1,0)
to the right of block 1 above block 2 above block 3
000 110 7 111
4 4 4
5 5|16 516
3 3 3
1 1 1
2 2 2
add block 5 of type (0,0) add block 6 of type (1,1) add block 7 of type (1,1)
to the right of block 4 to the right of block 5 above block 6

Fig. 7. The decoding of the binary representation (000 011 101 000 110 111)

The lower left block of the mosaic floorplan M (which is the only block of Sy)
does not need any information to be recorded. Each of the other blocks of M
needs three bits. Thus, the length of the representation of M is (3n — 3) bits.

3 Conclusion

In this paper, a binary representation of n-block mosaic floorplans using
(3n — 3) bits was introduced. Since any representation of n-block mosaic floor-
plans requires at least (3n—o(n)) bits [I4], this representation is optimal up to an
additive lower term. This representation is very simple and easy to implement.

Mosaic floorplans have a bijection with Baxter permutations, so the optimal
representation of mosaic floorplans leads to an optimal (3n—3) bit representation
of Baxter permutations and all objects in the Baxter combinatorial family.
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