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Abstract

Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The
etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide
association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset
and identified 22 significant associations (pv5:10{8), two of which are replications of earlier associations with refractive
error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had
developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and
point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56,
which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix
(LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known
to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in
neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the
development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal
development, and visual signals from the retina may underlie the development of myopia in humans.
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Introduction

Myopia, or nearsightedness, is the most common eye disorder

worldwide. In the United States, an estimated 30–40% of the adult

population has clinically relevant myopia (more severe than 21

diopter), and the prevalence has increased markedly in the last 30

years [1,2]. Myopia is a refractive error that results primarily from

increased axial length of the eye [3]. The increased physical length

of the eye relative to optical length causes images to be focused in

front of the retina, resulting in blurred distance vision.

The etiology of myopia is multifactorial [3]. Briefly, postnatal

eye growth is directed by visual stimuli that evoke a signaling

cascade within the eye. This cascade is initiated in the retina and

passes through the retinal pigment epithelium (RPE) and choroid

to guide remodeling of the sclera (the white outer wall of the globe)

(cf. [4,5]). Animal models implicate these visually-guided alter-

ations of the scleral extracellular matrix in the eventual

development of myopia [4,6].

The human eye grows from an average of 17 mm at birth to

21–22 mm in adulthood [7]. By ages 5–6 only about 2% of

children are myopic [7]. Although the eye grows only 0.5 mm

through puberty [8], the incidence of myopia increases sevenfold

during this time [7], peaking between the ages 9–14 [9]. Myopia

developed during childhood or early adolescence generally

worsens throughout adolescence and then stabilizes by age 20.

Compared to myopia that develops in childhood or adolescence,

adult onset myopia tends to be less severe [10–12]. The majority of

myopia cases are primary and nonsyndromic [3]; however,

myopia can arise as a complication of other conditions, such as

severe prematurity, cataracts, and keratoconus [13,14], and is

sometimes associated with certain connective tissue disorders, such

as Stickler syndrome [15].

Although epidemiological studies have implicated numerous

environmental factors in the development of myopia, most notably

education, outdoor exposure, reading, and near work [3], it is well

established that genetics plays a substantial role. Twin and sibling

studies have provided heritability estimates that range from 50%

to over 90% [16–20]. Children of myopic parents tend to have

longer eyes and are at higher than average risk of developing

myopia in childhood [21]. Segregation analyses suggest that

multiple genes are involved in the development of myopia [22,23].

To date, there have been seven genome-wide association studies

(GWAS) on myopia or related phenotypes (pathological myopia,

refractive error, and ocular axial length): two in Europeans [24,25]

and five in Asian populations [26–30]. Each of these publications

has identified a different single association with myopia. In

addition there have been several linkage studies (see [3,31] for

reviews) and an exome sequencing study of severe myopia [32].
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In contrast to the previous GWAS that used degree of refractive

error as a quantitative dependent measure, we analyzed data for

45,771 individuals from the 23andMe database who reported

whether they had been diagnosed with nearsightedness, and if so,

at what age. We performed a genome-wide survival analysis on

age of onset of myopia, discovering 22 genome-wide significant

associations with myopia age of onset, 20 of which are novel. Ten

of the novel and one of the previously identified associations

replicate in a separate (smaller and more coarsely phenotyped)

cohort of 8,323 individuals.

Results/Discussion

Participants reported via web-based questionnaires whether

they had been diagnosed with nearsightedness, and if so, at what

age. Only those participants who reported onset between five and

30 years of age were included to limit cases of secondary myopia

(e.g., myopia due to premature birth or cataracts). Further filtering

was performed to limit errors in reporting (see Methods).

All participants were customers of 23andMe and of primarily

European ancestry; no pair was related at the level of first cousins

or closer. We performed a genome-wide survival analysis using a

Cox proportional hazards model on data for 45,771 individuals

(‘‘discovery set’’). The Cox model assumes that there is an

(unknown) baseline probability of developing myopia at every year

of age. The model then tests whether each single nucleotide

polymorphism (SNP) is associated with a significantly higher or

lower probability of developing myopia compared to baseline. The

Cox model can be thought of as a generalization of an analysis of

myopia age of onset. In contrast to an analysis of age of onset, the

Cox model allows for the inclusion of non-myopic controls,

resulting in increased statistical power. Analyses controlled for sex

and five principal components of genetic ancestry. An additional,

non-overlapping set of 8,323 participants who reported on their

use of corrective eyewear for nearsightedness before the age of ten

were used as a replication set. See Table 1 for characteristics of the

two cohorts.

Table 2 shows the top SNPs for all 35 genetic regions associated

with myopia with a p-value smaller than 10{6. All p-values from

the GWAS have been corrected for the inflation factor of

GC = 1.167. A total of 22 of the SNPs cross our threshold for

genome-wide significance (5:10{8, see Figure S1). These 22

include two SNPs previously associated with refractive error in

GWAS of European populations: rs524952 near GJD2 and

ACTC1 and rs28412916 near RASGRF1 [24,25,33]. p-values

genome-wide are shown in Figure 1; Figure S2 shows the

quantile-quantile plot for the analysis. Table S3 shows all SNPs

with p-values under 10{4.

Of the 22 SNPs significant in the discovery set, 11 were also

significant in the replication set (Table 2). Of the 11 SNPs that did

not replicate, only two showed different signs between the

discovery and replication sets (p~0:03). Given these results, and

considering that the replication set was much smaller than the

discovery set and measured age of onset less exactly, we suspect

that much of the lack of replication is due to lack of power.

We defined a genetic myopia propensity score as the number of

copies of the risk alleles across all 22 SNPs identified via the

discovery set. The propensity score showed a strong association

with early onset myopia (less than 10 years old) in our replication

cohort (p~9:2:10{12, odds ratio 1.075 per risk allele). The top

decile of genetic propensity had 1.97 greater odds of developing

myopia before the age of 10 than the bottom decile. In a Cox

model fit to the discovery set, the propensity score explains 2.9%

of the total variance. Note that this estimate may be inflated, as it is

calculated on the discovery population. In this model, someone in

the 90th percentile of risk (a score of 21.95) is nearly twice as likely

to develop myopia by the age of 25 as someone in the 10th

percentile of risk (score of 15.01), Figure 2.

Of the 20 novel associations, many lie in or near genes with

direct links to processes related to myopia development. Two of

them lie in regions associated with myopia in linkage studies:

rs1550094 in PRSS56 (MIM: 609995) [34] and chr14:54413001

near BMP4 (MIM: 255500) [35]. Two suggestive associations also

are in such regions: rs4245599 in BICC1 (MIM: 612717) [36] and

rs9902755 in B4GALNT2 (MIM: 608474) [37]. Below, we briefly

sketch out possible connections between these associations and

extracellular matrix (ECM) remodeling, the visual cycle, eye and

body growth, retinal neuron development, and general neuronal

development or signaling.

Extracellular Matrix Remodeling
The strongest association is a SNP in an intron of LAMA2

(laminin, alpha 2 subunit, rs12193446, p~1:4:10{45, hazard ratio

(HR) = 0.79). Laminins are extracellular structural proteins that

are integral parts of the ECM. Changes in the composition of the

ECM of the sclera have been shown to alter the axial length of the

eye [5]. Laminins play a role in the development and maintenance

of different eye structures [38,39]. The laminin alpha 2 chain in

particular is found in the extraocular muscles during development

[38], and may act as an adhesive substrate and possibly a guidance

cue for retinal ganglion cell growth cones [40]. We also found a

suggestive association related to laminin (rs11939401, p~

9:7:10{8, HR = 0.939) approximately 17 kb upstream of ANTXR2

(anthrax toxin receptor 2). ANTXR2 binds laminin and possibly

collagen type IV [41] and thus may also be involved in

extracellular matrix remodeling.

The Visual Cycle
Two of the novel associations are in or near genes involved in

the regeneration of 11-cis-retinal, the light sensitive component of

photoreceptors, a process commonly referred to as the visual cycle

of the retina. These associations are with rs3138142,

p~1:8:10{20, HR = 0.89, in RDH5 (retinol dehydrogenase 5

Author Summary

The genetic basis of myopia, or nearsightedness, is
believed to be complex and affected by multiple genes.
Two genetic association studies have each identified a
single genetic region associated with myopia in European
populations. Here we report the results of the largest ever
genetic association study on myopia in over 45,000 people
of European ancestry. We identified 22 genetic regions
significantly associated with myopia age of onset. Two are
replications of the previously identified associations, and
20 are novel. Ten of the novel associations replicate in a
small separate cohort. Sixteen of the novel associations are
in or near genes implicated in eye development, neuronal
development and signaling, the visual cycle of the retina,
and general morphology: BMP3, BMP4, DLG2, DLX1,
KCNMA1, KCNQ5, LAMA2, LRRC4C, PRSS56, RBFOX1, RDH5,
RGR, SFRP1, TJP2, ZBTB38, and ZIC2. These findings point to
numerous biological pathways involved in the develop-
ment of myopia and, in particular, suggest that early eye
and neuronal development may lead to the eventual
development of myopia in humans.

GWAS for Myopia Identifies 20 Novel Associations
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(11-cis/9-cis)) and rs745480 (p~2:5:10{10, HR = 1.06), a SNP

18 kb upstream of RGR, which encodes the retinal G protein-

coupled receptor. The SNP rs3138142 is a synonymous change in

RDH5. It has been linked to RDH5 expression [42,43], and it is

part of an Nr2f2 (nuclear receptor subfamily 2, group F, member

2) transcription factor binding motif in mouse [44,45]. Both RDH5

and RGR play crucial roles in the regeneration of 11-cis retinal in

the RPE [46]. Mutations in RDH5 have been linked with fundus

albipunctatus, a rare form of congenital stationary night blindness

(for a recent review, see [47]) and progressive cone dystrophy [48],

and mutations in RGR have been linked with autosomal recessive

and autosomal dominant retinitis pigmentosa [49,50].

We also identified an association within another gene that

functions in the RPE: rs7744813 (p~6:6:10{22, HR = 0.91), a

SNP in KCNQ5 (potassium voltage-gated channel, KQT-like

subfamily, member 5). KCNQ5 encodes a potassium channel

found in the RPE and neural retina. These channels are believed

to contribute to ion flow across the RPE [51,52] and to affect the

function of cone and rod photoreceptors [52].

Eye and Body Growth
Five of our associations show possible links to eye or overall

morphology. The first is a missense mutation in PRSS56 (A224T,

rs1550094, p~1:3:10{15, HR = 1.09). Other mutations in

PRSS56 have been shown to cause strikingly small eyes with

severe decreases in axial length [53–55]. Two other associated

SNPs are near genes that encode bone morphogenetic proteins:

chr14:54413001 (p~1:7:10{8, HR = 0.95) near BMP4 (bone

morphogenic protein-4), and rs5022942 (p~1:4:10{10,

HR = 1.08) in BMP3 (bone morphogenic protein-3). Inherited

BMP4 mutations have been associated with syndromic microph-

thalmia and various eye, brain and digital malformations [56,57].

Although BMP3 is primarily known for its role in bone

development (e.g., it is linked to skeletal defects in humans and

skull shapes in dogs [58,59]), it was found to be uniquely expressed

in keratocytes, specialized mesenchymal cells that are important

for development of the cornea by producing and maintaining the

extracellular matrix of the corneal stroma [60]. One associated

SNP, rs13091182 (p~9::10{10, HR = 0.94), in ZBTB38 (zinc

finger and BTB domain-containing protein 38), is in linkage

disequilibrium (LD) with a SNP previously associated with height

(rs6763931; r2
w0:6) [61]. The final SNP with a link to

morphology is rs17428076 (p~2:8:10{9, HR = 0.94), near

DLX1 (homo sapiens distal-less homeobox 1). Disruption of

DLX1 has been shown to result in poor optic cup regeneration

in planarians and small eyes in mice [62,63].

Retinal Ganglion Cell Projections
Two of the novel associations are near genes that affect the

outgrowth of retinal ganglion neurons during development. The

first is rs4291789 (p~2:1:10{8, HR = 1.07), which lies 34 kb

downstream of ZIC2 (Zic family member 2). ZIC2 regulates two

independent parts of ipsilateral retinal ganglion cell development:

axon repulsion at the optic chiasm midline [64,65], and

organization of the axonal projections at their final targets in the

brain [66].

The second, rs2137277 (p~4:7:10{16, HR = 0.90), is a variant

in ZMAT4 (zinc finger, matrin-type 4). ZMAT4 has no known link

to vision, but this variant also lies 385 kb downstream of SFRP1

(secreted frizzled-related protein 1). SFRP1 is involved in the

differentiation of the optic cup from the neural retina [67], retinal

neurogenesis [68], the development and function of photoreceptor

cells [69,70], and the growth of retinal ganglion cells [71].

Neuronal Signaling and Development
Finally, we found five associations with SNPs in genes involved

in neuronal development and signaling, but without a known role

in vision development or the vision cycle: in KCNMA1 (potassium

large conductance calcium-activated channel, subfamily M, alpha

member 1; rs6480859, p~1:2:10{8, HR = 1.06); in RBFOX1

(RNA binding protein, fox-1 homolog; rs17648524, p~1:3:10{22,

HR = 1.10); in LRRC4C, leucine rich repeating region containing

4C, also known as NGL-1 (rs1381566, p~3:0:10{26, HR = 1.15);

in DLG2 (discs, large homolog 2; rs2155413, p~4:7:10{10,

HR = 1.06); and in TJP2 (tight junction protein 2; rs11145746,

p~2:3:10{11, HR = 1.09).

KCNMA1 encodes the pore-forming alpha subunit of a MaxiK

channel, a family of large conductance, voltage and calcium-

sensitive potassium channels involved in the control of smooth

muscle and neuronal excitation. RBFOX1 belongs to a family of

RNA binding proteins that regulates the alternative splicing of

several neuronal transcripts implicated in neuronal development

and maturation [72]. LRRC4C encodes a binding partner for

netrin G1 and promotes the outgrowth of thalamocortical axons

[73]. DLG2 plays a critical role in the formation and regulation of

protein scaffolding at postsynaptic sites [74]. TJP2 has been linked

with hearing loss: its duplication and subsequent overexpression

are found in adult-onset progressive nonsyndromic hearing loss

[75].

Conclusion
This study represents the largest GWAS on myopia in

Europeans to date. This cohort of 45,771 individuals led to the

discovery of 20 novel associations as well as replication of the two

previously reported associations in Europeans. Ten of these novel

associations replicate in our much smaller replication set of 8,323

individuals. In contrast to the earlier studies that used refractive

error as a quantitative outcome, we used a Cox proportional

hazards model with age of onset of myopia as our major endpoint.

This model yielded greater statistical power than a simple case-

Table 1. Cohort statistics.

Number % female Age (SE) Age of onset (SE)

Discovery, myopic 25,999 45.9 47.7 (15.5) 13.6 (5.8)

Discovery, not myopic 19,772 40.3 49.6 (17.1) —

Replication, myopic at 10 1,488 45.3 46.7 (14.9) ƒ10

Replication, not myopic at 10 6,835 45.2 53.7 (15.1) —

Sex, current age, and age of onset for discovery and replication cohorts.
doi:10.1371/journal.pgen.1003299.t001

GWAS for Myopia Identifies 20 Novel Associations
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control study of myopia. Of the 22 significant SNPs found using

this model, all but two had smaller p-values when a hazards model

was employed, and only 20 would be genome-wide significant

using a case-control analysis on the same dataset (Table S1).

The proportional hazards model assumes that the effect of each

SNP on myopia risk does not vary by age. When we tested the

validity of this assumption for the 22 significant SNPs, only the one

in LAMA2 (rs12193446) showed evidence of different effects at

different ages (Table S2). While this violation should not lead to

overly small p-values for this SNP in the GWAS, it does make risk

prediction based on these results less straightforward. For example,

rs12193446 shows a large effect on myopia hazard at an early age,

peaking around 11 years, and then a null or even negative effect

on hazard at older ages (Figure S3). This age dependent hazard

suggests that different biological processes may affect the

development of myopia at different ages.

Table 2. Index SNPs for regions with pv10{6.

rsid chr Position Genes MAF r2 allele HR (CI) p-value prepl

rs12193446 6 129820038 LAMA2 0.094 0.991 A/G 0.788 (0.763–0.813) 1:4:10{45 5:7:10-5

rs1381566 11 40149607 LRRC4C 0.181 0.873 T/G 1.149 (1.122–1.176) 3:0:10{26 0.0038

rs17648524 16 7459683 RBFOX1 0.365 0.974 G/C 1.102 (1.082–1.122) 1:3:10{22 0.36

rs7744813 6 73643289 KCNQ5 0.405 0.958 A/C 0.909 (0.893–0.926) 6:6:10{22 0.15

rs3138142 12 56115585 RDH5 0.218 0.831 C/T 0.890 (0.870–0.911) 1:8:10{20 0.011

chr8:60178580 8 60178580 TOX/CA8 0.358 0.971 C/G 0.914 (0.897–0.931) 3:5:10{19 0.0061

rs524952 15 35005886 GOLGA8B/
GJD2

0.469 0.982 T/A 1.089 (1.070–1.108) 5:6:10{19 0.040

rs2137277 8 40734662 SFRP1 0.189 0.922 A/G 0.901 (0.880–0.923) 4:7:10{16 0.46

rs1550094 2 233385396 PRSS56 0.305 0.965 A/G 1.087 (1.067–1.107) 1:3:10{15 0.031

rs2908972 17 11407259 SHISA6 0.397 0.969 T/A 1.074 (1.055–1.093) 4:5:10{13 0.034

rs17412774 2 146773948 PABPCP2 0.450 0.976 A/C 0.933 (0.917–0.950) 1:1:10{12 0.067

rs11145746 9 71834380 TJP2 0.198 0.887 G/A 1.087 (1.063–1.112) 2:3:10{11 0.87

rs28412916 15 79378167 RASGRF1 0.401 0.989 A/C 1.067 (1.048–1.086) 3:5:10{11 0.08

rs5022942 4 81959966 BMP3 0.229 0.991 G/A 1.076 (1.054–1.098) 1:4:10{10 0.0093

rs745480 10 85986554 RGR 0.473 0.975 C/G 1.063 (1.044–1.081) 2:5:10{10 0.095

rs2155413 11 84634790 DLG2 0.466 0.997 C/A 1.061 (1.043–1.080) 4:7:10{10 0.023

rs13091182 3 141133960 ZBTB38 0.333 0.994 G/A 0.940 (0.923–0.958) 9:0:10{10 0.31

rs17400325 2 178565913 PDE11A 0.050 0.933 T/C 1.144 (1.099–1.190) 1:9:10{9 0.027

rs17428076 2 172851936 DLX1 0.237 0.985 C/G 0.935 (0.916–0.955) 2:8:10{9 0.53

rs6480859 10 79081948 KCNMA1 0.363 0.987 C/T 1.058 (1.039–1.077) 1:2:10{8 0.40

chr14:54413001 14 54413001 BMP4 0.489 0.933 G/C 0.946 (0.929–0.963) 1:7:10{8 0.21

rs4291789 13 100672921 ZIC2 0.326 0.724 C/G 1.069 (1.046–1.092) 2:1:10{8 5:2:10-4

rs10963578 9 18338649 SH3GL2/
ADAMTSL1

0.200 0.958 G/A 0.936 (0.915–0.957) 6:8:10{8 0.15

rs11939401 4 80818417 ANTXR2 0.203 0.999 C/T 0.939 (0.919–0.959) 9:7:10{8 0.13

rs1843303 3 4185124 SETMAR 0.303 0.981 T/C 1.055 (1.036–1.075) 2:0:10{7 0.042

chr11:65348347 11 65348347 EHBP1L1 0.017 0.558 G/A 0.770 (0.700–0.846) 2:1:10{7 0.54

rs4367880 10 114795256 TCF7L2 0.199 0.959 G/C 1.063 (1.040–1.087) 3:7:10{7 0.57

rs61988414 14 42313443 LRFN5 0.168 0.878 A/G 1.071 (1.045–1.097) 4:0:10{7 0.84

rs9365619 6 164251746 QKI 0.457 0.999 C/A 1.048 (1.031–1.067) 6:0:10{7 0.047

rs4245599 10 60365755 BICC1 0.466 0.952 G/A 1.049 (1.031–1.068) 6:9:10{7 0.44

rs10512441 17 31239645 MYO1D/
TMEM98

0.203 0.919 C/T 1.062 (1.039–1.085) 7:7:10{7 0.39

rs9902755 17 47220726 B4GALNT2 0.470 0.668 C/T 1.059 (1.037–1.081) 8:3:10{7 0.91

rs6702767 1 200844547 GPR25 0.485 0.982 G/A 1.048 (1.030–1.066) 9:7:10{7 0.40

chr17:79585492 17 79585492 NPLOC4 0.393 0.604 G/A 1.063 (1.039–1.087) 9:8:10{7 0.032

rs6487748 12 9435768 PZP 0.491 0.981 A/G 1.048 (1.030–1.066) 9:9:10{7 0.42

Index SNPs for regions with (l-corrected) p-values under 10{6 . Positions and alleles are given relative to the positive strand of build 37 of the human genome; alleles are

listed as major/minor. The listed genes are the postulated candidate gene in each region. r2 is the estimated imputation accuracy; HR is the hazard ratio per copy of the
minor allele; p-value is the p-value in the discovery cohort; prepl is the p-value in the replication cohort. Significant replication p-values are bolded.

doi:10.1371/journal.pgen.1003299.t002
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Our findings further suggest that there may be somewhat

different genetic factors underlying myopia age of onset and

refractive error. Because adult onset myopia tends to be less severe

than myopia developed in childhood or adolescence [10–12], age

of onset is likely correlated with refractive error, but it is not known

how strongly. Many of the associations with myopia age of onset

that we found are stronger than the two previously detected

associations with refractive error (near GJD2 and near RASGRF1).

Notably, the latter association, near RASGRF1, also failed to

replicate in a recent meta-analysis [33]. The fact that many of our

associations with strong effects on age of onset have not shown up

in previous refractive error GWAS implies that some genetic

factors may affect the age of onset independent of eventual

severity, and that the strength of different genetic associations with

myopia may depend on the specific phenotype under study.

We also note that our phenotype was based on participants’

reports rather than clinical assessments. Although in theory errors

in recall could have affected our results, we expect that the vast

majority of people are able to recall when they first wore glasses

with at most a few years of error. In fact, a subset of those eligible

to be part of our discovery cohort provided age of myopia

diagnosis in two independent places (see Methods for details). Out

of 1,463 people who reported age of diagnosis in both surveys and

met our inclusion criteria (European ancestry, age at diagnosis

between five and 30 and less than current age), 96.0% reported

ages that differed by at most three years and 97.8% by at most five

years.

The five associations previously reported in pathological myopia

or refractive error GWAS in Asian populations [26–30] show no

overlap with the significant or suggestive regions found here. Nor

did we find an association with the ZNF644 locus that was

identified as the site of high-penetrance, autosomal dominant

mutations in Han Chinese families with apparent monogenic

inheritance of high-grade myopia [32]. This lack of overlap could

result from different genetic factors being involved in myopia

across populations. It has been suggested that pathological

myopia, which represents less than 2% of cases in the United

States [1], has different underlying genetic factors than non-

pathological myopia [31].

Our identification of 20 novel genetic associations suggests

several novel genetic pathways in the development of human

myopia. These findings augment existing research on the

development of myopia, which to date has been studied primarily

in animal models of artificially induced myopia. Some of the

associations are consistent with the current view, based largely on

animal models, that a visually-triggered signaling cascade from the

retina ultimately guides the scleral remodeling that leads to eye

growth, and that the RPE plays a key role in this process [4]. A

number of the novel associations point to the potential importance

of early neuronal development in the eventual development of

myopia, particularly the growth and topographical organization of

retinal ganglion cells. These associations suggest that early

Figure 2. Estimated survival curves by genetic propensity
score. The genetic propensity score is computed as the number of risk
alleles across the 22 genome-wide significant SNPs. Curves show
estimated survival probability (i.e., the probability of not having
developed myopia) by age under the fitted Cox model for the 10th,
50th, and 90th percentiles of scores (15.01, 18.46, and 21.95,
respectively).
doi:10.1371/journal.pgen.1003299.g002

Figure 1. Negative log10 p-values genome wide for myopia. Regions are named with their postulated candidate gene or genes. p-values under
10{25 have been cut off (only the LAMA2 and LRRC4C regions are affected). See Figure S1 for plots in each region with a significant association.
doi:10.1371/journal.pgen.1003299.g001
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neuronal development may also contribute to future refractive

errors. We expect that these findings will drive new research into

the complex etiology of myopia.

Methods

Human Subjects
All participants were drawn from the customer base of

23andMe, Inc., a consumer genetics company. This cohort has

been described in detail previously [76,77]. Participants provided

informed consent and participated in the research online, under a

protocol approved by the external AAHRPP-accredited IRB,

Ethical & Independent Review Services (E&I Review).

Phenotype Data
Participants in the discovery cohort were asked online as part of

a medical history questionnaire or an eyesight questionnaire:

‘‘Have you ever been diagnosed by a doctor with any of the

following vision conditions?: Nearsightedness (near objects are

clear, far objects are blurry) (Yes/No/I don’t know)’’. If they

answered ‘‘yes’’, they were asked, ‘‘At what age were you first

diagnosed with nearsightedness (near objects are clear, far objects

are blurry)? Your best guess is fine.’’ Those reporting an age of

onset either greater than their current age or outside of the range

5–30 were removed from analysis. All participants also reported

current age. A total of 4,758 participants reporting age of onset

outside of 5–30 and 87 reporting age of onset in the future were

removed.

To limit errors in reporting, we excluded from the discovery

cohort those who provided discordant answers in the medical

history and eyesight questionnaires. We defined discordance as a

disagreement in diagnosis or a difference in more than 5 years in

age of onset. A total of 92 people with discordant age of onset and

276 with discordant diagnosis were removed. Many of these

people would have been filtered out by our other restrictions: only

32 of the 92 with discordant ages of onset would not have been

removed for other reasons (mostly because their stated age of onset

was not between 5–30), and only 139 of the 276 with discordant

diagnoses. These 32 and 139 are out of 1,463 and 2,845 eligible

people, respectively, leading us to estimates of 97.8% and 95.1%

concordance in age of onset and myopia diagnosis (after the filters

mentioned above were applied).

The replication cohort consisted of 8,323 23andMe customers

who were not part of the discovery cohort and were not closely

related (at 700 cM or greater IBD) to each other or to anyone in

the discovery cohort. They provided information on myopia age of

onset in one of two ways. 5,265 answered a single question: ‘‘Did

you wear glasses or other corrective eyewear for nearsightedness

before the age of 10? (Yes/No/I’m not sure).’’ The other 3,058

provided age of onset in the same manner as the discovery cohort.

Note that these 3,058 were people that would have been eligible

for the discovery cohort, however, they provided data in the time

in between our analysis of the discovery and replication cohorts.

Their data was converted to the same binary scale as the first

group.

Genotyping and Imputation
Participants were genotyped and additional SNP genotypes

were imputed against the August 2010 release of the 1000

genomes data as described previously [78]. Briefly, they were

genotyped on at least one of three genotyping platforms, two based

on the Illumina HumanHap550+ BeadChip, the third based on

the Illumina Human OmniExpress+ BeadChip. The platforms

included assays for 586,916, 584,942, and 1,008,948 SNPs

respectively. Genotypes for a total of 11,914,767 SNPs were

imputed in batches of roughly 10,000 individuals, grouped by

genotyping platform. Of these, 7,087,609 met our criteria of 0.005

minor allele frequency, average r2 across batches of at least 0.5,

and minimum r2 across batches of at least 0.3. (The minimum r2

requirement was added to filter out SNPs that imputed poorly in

the batches consisting of the less dense platform.)

Statistical Analysis
In order to minimize population substructure while maximizing

statistical power, the study was limited to individuals with

European ancestry. Ancestry was inferred from the genome-wide

genotype data, and principal component analysis was performed

as in [76,79]. The combined discovery and replication populations

were filtered by relatedness to remove participants at a first cousin

or closer relationship. More precisely, no two participants shared

more than 700 cM of DNA identical by descent (IBD, approx-

imately the lower end of sharing between a pair of first cousins).

IBD was calculated using the methods described in [80].

For the survival analysis, let the hazard function h tð Þ be the rate

of developing myopia at time t. Then the Cox proportional

hazards model is

log h tð Þ~a tð ÞzbgGzbsSzbaAz
X5

i~1

bpci
PCi

for an arbitrary baseline hazard function a tð Þ and covariates G
(genotype), S (sex), A (age), and PC1, . . . PC5 (projections onto

principal components). G was coded as a dosage from 0–2 as the

estimated number of minor alleles present.

For each SNP, we fit a Cox proportional hazards model using R

[81] and computed a p-value using a likelihood ratio test for the

genotype term. All SNPs with p-values under 5:10{8 after

genomic control correction were considered genome-wide signif-

icant. The hazard ratio (HR) reported throughout can be

interpreted as the multiplicative change in the rate of onset of

myopia per copy of the minor allele (e.g., ebg ). To test the

proportional hazards assumption, we tested for independence of

the scaled Schoenfeld residuals for each significant SNP and time

using cox.zph (Table S2). Replication p-values in Table 2 are one-

sided p-values from a likelihood ratio test for a logistic regression

model controlling for age, sex, and five principal components.

For Figure 2, we computed a myopia propensity score for each

individual as the (estimated) number of risk alleles among the 22

genome-wide significant SNPs. We then fit a Cox model including

that score, sex, and five principal components. To estimate

proportion variance explained for this model, we used a pseudo-r2

using likelihoods (similar to the Nagelkerke pseudo r2 for logistic

regression). That is, we calculated the variance explained as

r2~

1{
L

nL0

1{
1

nL0

,

where L0 is the null likelihood and L the likelihood for the full

model. This is one of several methods used to compute variance

explained for Cox proportional hazards models [82].

Supporting Information

Figure S1 Region plots for genome-wide significant associations

Colors depict the squared correlation (r2) of each SNP with the
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most associated SNP (shown in purple). Gray indicates SNPs for

which r2 information was missing.

(PDF)

Figure S2 Quantile-quantile plot for myopia survival analysis

Actual (l-corrected) p-values versus the null.

(PDF)

Figure S3 Smoothed log-hazard ratios as a function of age for

four SNPs In each plot, the straight line shows the estimated log-

hazard ratio (beta) for each SNP in the proportional hazards

model. The solid curve is a spline fit to beta estimated at different

ages; the dotted curves are approximate 95% confidence intervals.

The p-value in each caption is the result of a test of the

proportional hazards assumption. The sign of all coefficients has

been made positive for ease of comparison (so (a), (c), and (d) are

flipped relative to the main text). Note that among the examples

here, only (a) shows evidence of deviation from the proportional

hazards assumption after correction for 22 tests.

(PDF)

Table S1 p-values for survival and case-control analyses. p-

values for SNPs in the survival analysis used in the paper as well as

in a case-control logistic regression on the same set of individuals.

The survival analysis gives a smaller p-value for 30 of 35 SNPs and

has 22 genome-wide significant (pv5:10{8) as compared to 20 for

the case-control. p-values in both cases are adjusted for the

genomic control inflation factor of 1.16.

(PDF)

Table S2 Tests of deviation from the proportional hazards

assumption. p-values for significant SNPs for deviation from the

proportional hazards assumption in the Cox model. For each

SNP, we fit a Cox proportional hazards model including the SNP,

sex, and five principal components as predictors, and then tested

for independence of the scaled Schoenfeld residuals with time.

Only one SNP deviates significantly from this assumption after

correction for 22 tests. Plots for four example SNPs are shown in

Figure S3.

(PDF)

Table S3 Statistics for all SNPs with pv10{4. All 6,141 SNPs

with (l-corrected) p-values under 10{4 in the discovery cohort.

Positions and alleles are given relative to the positive strand of

build 37 of the human genome; alleles are listed as major/minor.

The gene column shows the position of the SNP in context of the

nearest genes. The SNP position is within the brackets, and the

number of dashes gives approximate log10 distances. The MAF is

the minor allele frequency in Europeans, r2 is the estimated

imputation accuracy, HR is the hazard ratio per copy of the minor

allele, and p-value is the p-value in the discovery cohort.

(XLS)
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