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Temporal Action Segmentation

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]
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Fully Supervised Learning
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* Requires many training videos with per frame action labels
* Expensive to annotate!

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 3
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Weakly-Supervised Learning
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* Only use action ordering
* Easy to obtain from closed captions

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 4
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contributions

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 5
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contribution #1

* Train temporal action segmentation model as alignment
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Key Contribution #1

* Solve the alignment problem with modified Dynamic Time

Warping (DTW)

Time

Classical DTW

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]
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Key Contributions

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for )
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contributions

#2 Apply continuous relaxation to make our model end-to-end
differentiable

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 9
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contribution #2

e (Continuous relaxation:
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[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]
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Key Contributions

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

#2 Apply continuous relaxation to make our model end-to-end
differentiable

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 11
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contributions

#3 Propose the first discriminative model for weak ordering
supervision

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 12
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Key Contribution #3

* Design aloss function with only weak supervision
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[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]

Full Supervision:
« Known ground truth alignment Y
e Straightforward loss function

CE(Y*Y)

Weak Supervision:

e Y is unknown

 Previous work resorts to
generating pseudo ¥
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Key Contribution #3

| Correct Allgnment Cost
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[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]
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D3TW : Summary

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 15
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



D3TW : Summary

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 16
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



D3TW : Summary

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

#2 Apply continuous relaxation to make our model end-to-end
differentiable

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 17
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



D3TW : Summary

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

#2 Apply continuous relaxation to make our model end-to-end
differentiable

#3 Propose the first discriminative model for weak ordering
supervision

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 18
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



D3TW : Summary

#1 Pose temporal action segmentation as dynamic alignment
between two sequences

#2 Apply continuous relaxation to make our model end-to-end
differentiable

#3 Propose the first discriminative model for weak ordering
supervision

‘ D3TW: Discriminative Differentiable Dynamic Time Warping
for Weakly Supervised Action Alignment and Segmentation

[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 19
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



D3TW : Summary

° D3TW, a differentiable layer that

e captures regularities in the input sequences
* imposes prior structure on the output as alignment

Backpropagation
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[Chang et al. D3TW:Discriminative Differentiable Dynamic Time Warping for 20
Weakly-Supervised Action Alignment and Segmentation. CVPR 2019]



Model Evaluation - Temporal Action Segmentation

| Breakfast Hollywood

Facc. Uacc. Facc. Uacc.
ECTC[1] 27.7 35.6
GRU reest.[2] 33.3 -
TCFPN[3] 38.4 - 28.7 -
NN-Viterbi[4] 43.0 - 26.2 25.5
*Breakfast Actions *Hollywood Extended
e 3,600,000 frames e 800,000 frames
* 48 action classes * 16 classes
* ~ 6.9 action instances per video * ~ 2.5 action instances per video

[1] Huang et al. ECCV 2016

[2] Richard et al. CVPR 2017

[3] Ding etal. CVPR 2018
]

[4] Richard et al. CVPR 2018 21
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Model Evaluation - Temporal Action Segmentation

| Breakfast Hollywood

ECTC[1]
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Dynamic

[1] Huang et al. ECCV 2016
[2] Richard et al. CVPR 2017
[3] Ding etal. CVPR 2018
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Model Evaluation - Temporal Action Segmentation

| Breakfast Hollywood

Facc. Uacc. Facc. Uacc.
ECTC[1] 27.7 35.6 - -
GRU reest.[2] 33.3 - - -
TCFPN[3] 38.4 - 28.7 -
NN-Viterbi[4] 43.0 - 26.2 25.5
Ours Dynamic 34.9 36.1 25.9 24.3
Ours
Differentiable 38.0 38.4 30.0 28.3
Dynamic
Ours
Discriminative 45.7 47 .4 33.6 30.5
Differentiable
Dynamic

[1] Huang et al. ECCV 2016

[2] Richard et al. CVPR 2017

[3] Ding etal. CVPR 2018

[4] Richard et al. CVPR 2018 24



Qualitative Results of Temporal Action Segmentation
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Semi-Supervised Learning with Our Framework

* Using semi-supervision by
imposing path constraints
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Semi-Supervised Learning with Our Framework

* Model performance
compared with
previous work
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Thank You!



