Necessary and Sufficient Conditions for using Adaptive, Mirror, and Stochastic Gradient Methods

Daniel Levy, John Duchi
Stanford University

Introduction

For Θ ⊂ R^d convex, compact set, P distribution on X and F : Θ × X → R, stochastic optimization aims to solve:

\[\minimize f(θ) = \mathbb{E}_P[F(θ, X)] = \int F(θ, x) dP(x). \]

Central problem of statistical learning and estimation (e.g. P the data distribution, Θ the set of classifiers and F the convex loss function).

Often tackled with stochastic gradient methods because of simplicity and scalability but poor convergence rates for many constraints (e.g. when Θ is an ℓ1-balls).

This work provides concrete recommendations for when to use adaptive, mirror or stochastic gradient methods.

Notation and Definitions

\(d \) is the dimension, \(n \) is the number of samples. For \(γ \) a norm, \(B_d(x_0, r) := \{ x \mid γ(x - x_0) ≤ r \} \). For \(h \) a distance generating function (dgf) \(D_h(x, y) := h(x) - h(y) - \nabla h(y)^\top (x - y) \)

\[F := \{ F : \mathbb{R}^d \times X \rightarrow \mathbb{R} \mid \text{for all } θ \in \mathbb{R}^d, g \in \partial h(F(θ, x), \gamma(x) \leq r) \}. \]

A set \(Θ \) is quadratically convex (QC) if \(Θ^2 := \{ (θ_0, θ) \in Θ \} \) is convex.

Background: Algorithms and Regret Bounds

Algorithms For a sample \(X^n := P \), for \(α > 0 \) a stepsize and \(h_i \) a dfg, first-order methods iteratively set

\[g_{i+1} := \arg\min_{g \in \partial h(F(θ_i, X_i))} \left\{ g^\top θ_i + \frac{1}{α} D_h(θ_i, θ_i) \right\}. \]

For various \(h_i \), we obtain familiar algorithms:

- If \(h_i(θ) = \frac{1}{2}∥θ∥^2 \) and \(Θ = \mathbb{R}^d \), \(θ_{i+1} = θ_i - α g_i \), this is the classical stochastic gradient method.
- If \(h_i(θ) \) is a fixed, strongly-convex dfg w.r.t \(∥·∥\), this is mirror descent [2].
- If \(h_i(θ) = θ^\top G θ \) with \(G_i := \text{diag} \left(∑_{j \leq i} g_j^\top g_j \right) ^{1/2} \), this is AdaGrad [4].

Regret Bound For \(θ_1, ..., θ_n \) played on functions \(\{ F(θ, x_i) \}_{i \leq n} \), the regret w.r.t. \(θ \) is

\[\text{Regret}_n(θ) := ∑_{i \leq n} F(θ_i, x_i) - F(θ, x_i). \]

When playing \(θ_i^∗ \) as above, the following holds

\[\text{Regret}_n(θ) ≤ D_h(θ_i, θ_i^∗) + α \frac{α}{2} ∑_{i \leq n} ∥g_i∥^2. \]

Background: Minimax rates

Complexity of problems is measured via minimax rates [1]. Let Θ be closed, convex set, \(X \) a sample space, \(F \) a family of functions and \(P \) a family of distributions over \(X \). The minimax stochastic risk is

\[M^*_{\mathbb{E}}(Θ, F, P) := \inf_{θ \in Θ} \sup_{F \in F, P \in P} \mathbb{E} \left[f_p(θ_p(X^n_i)) - f_p(θ) \right]. \]

Intuitively, it corresponds to the best algorithm given samples \(X^n \). On the hardest problem, related notion: (average) minimax regret

\[\text{Regret}^*_n(θ) := \inf_{θ \in Θ} \sup_{F \in F, P \in P, θ_p \in Θ} \text{Regret}_n(θ). \]

For a given norm \(γ \), consider \(F = F^{θ^*} \), the geometry of \(γ \) and \(θ^* \) determine the minimax regret and risk. Given that \(M^*_{\mathbb{E}}(Θ, γ) ≤ M^*_{\mathbb{E}}(Θ, γ) \) [3], we lower bound the LHS and upper bound the RHS. When those match, we found the minimax optimal estimator.

Quadratically Convex Constraint Sets

Let Θ be a QC, orthosymmetric, convex and compact set.

- If \(γ \) is QC, then

\[M^*_{\mathbb{E}}(Θ, γ) ≤ M^*_{\mathbb{E}}(Θ, γ) ≤ \frac{1}{\sqrt{n}} \sup_{θ \in Θ} γ^∗(θ). \]

- If \(γ(θ) = ∥θ∥_p \) for \(p \in [1, 2] \) and \(p > 0 \), then

\[M^*_{\mathbb{E}}(Θ, γ) ≤ M^*_{\mathbb{E}}(Θ, γ) ≤ \frac{1}{\sqrt{n}} \sup_{θ \in Θ} ∥θ∥_p. \]

Moreover, these are attained by diagonal gradient descent. For the lower bound, we find the hardest rectangular sub-problem. The upper bound relies on strong duality which crucially holds because of quadratic convexity. Gradient methods with a fixed, diagonal pre-conditioner are optimal on such problems.

Beyond Quadratic Convexity

For \(p \in [1, 2] \), we consider \(Θ = B_p \) and \(γ = ℓ_p \). for \(1/p + 1/p^* = 1 \). We have

- If \(1 ≤ p ≤ 1 + 1/\log(2d) \), \(M^*_{\mathbb{E}}(Θ, γ) ≤ M^*_{\mathbb{E}}(Θ, γ) ≤ \frac{n^{1/p}}{m^{1/p}} \)

- If \(1 + 1/\log(2d) < p ≤ 2 \), \(M^*_{\mathbb{E}}(Θ, γ) ≤ M^*_{\mathbb{E}}(Θ, γ) ≥ \frac{n^{1/p}}{m^{1/p}} \).

In either case, the upper bound corresponds to (non-linear) mirror descent with \(d(θ) := \frac{1}{∥θ∥_p} \) with, for (1) \(a = 1 + \frac{1}{1/p} \), for (2) \(a = p \). We exhibit problems where standard gradient methods achieve their upper bound regret and characterize the suboptimality gap with mirror descent. When \(p \) is very close to 2 (i.e. very close to QC), the gap is a constant factor, when \(p = 1 \), the gap is \(d/\log d \). In high dimensions, Euclidean gradient methods are arbitrarily suboptimal on this class of problems.