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Introduction

•For Θ ⊂ Rd convex, compact set, P distribution on X and
F : Θ×X → R, stochastic optimization aims to solve:

minimize
θ∈Θ

f (θ) := EP [F (θ,X)] =
∫
F (θ, x)dP (x).

•Central problem of statistical learning and estimation (e.g. P the
data distribution, Θ the set of classifiers and F the convex loss
function).
•Often tackled with stochastic gradient methods because of
simplicity and scalability but poor convergence rates for many
constraints set (e.g. when Θ is an `1 ball).
•This work provides concrete recommendations for when to use
adaptive, mirror or stochastic gradient methods.

Notation and Definitions

d is the dimension, n is the number of samples. For γ a norm,
Bγ(x0, r) := {x, γ(x − x0) ≤ r}. For h a distance generating
function (dgf) Dh(x, y) := h(x) − h(y) − ∇h(y)>(x − y).Fγ,r :={
F : Rd ×X → R | for all θ ∈ Rd, g ∈ ∂θF (θ, x), γ(g) ≤ r

}
. A set

Θ is quadratically convex (QC) if, Θ2 := {(θ2
j)j≤d, θ ∈ Θ} is

convex.

Summary of Results

•When Θ is QC and Bγ(0, 1) is QC then diagonally-rescaled
stochastic gradient methods are minimax rate optimal.
•When Θ is QC and γ(g) := ‖β � g‖p for p ≥ 1, then
diagonally-rescaled stochastic gradient methods are minimax
rate optimal.
•When Θ is not QC, the best linearly-preconditioned gradient
methods can be arbitrary suboptimal (up to

√
d/ log d) and

non-linear mirror descent are minimax rate optimal.
•For Θ = B∞ and γ(g) = ‖β � g‖1, stochastic gradient methods
can be

√
d suboptimal compared to AdaGrad – see paper.

Background: Algorithms and Regret Bounds

Algorithms For a sample Xn
1

iid∼ P , for α > 0 a stepsize and hi a
dgf, first-order methods iteratively set

gi ∈ ∂θF (θi, Xi), θi+1 := argmin
θ∈Θ

{
g>i θ + 1

α
Dh(θ, θi)

}
.

For various hi, we obtain familiar algorithms:
• If hi(θ) = 1

2‖θ‖
2
2 and Θ = Rd, θi+1 = θi − αgi, this is the classical

stochastic gradient method.
• If hi(θ) is a fixed, strongly-convex dgf w.r.t. ‖ · ‖, this is mirror
descent [2].
• If hi(θ) = 1

2θ
>Gtθ with Gt := diag

(∑
l≤i glg

>
l

)1/2, this is
AdaGrad [4].

Regret Bound For θ1, . . . , θn played on functions {F (·, xi)}i≤n,
the regret w.r.t. θ is Regretn(θ) := ∑n

i=1[F (θi, xi)− F (θ, xi)]. When
playing θn1 as above, the following holds

Regretn(θ) ≤ Dh(θ, θ0)
α

+ α

2
∑
i≤n
‖gi‖2

∗ .

Background: Minimax rates

Complexity of problems is measured via minimax rates [1]. Let Θ
be closed, convex set, X a sample space, F a family of functions and
P a family of distributions over X . The minimax stochastic risk is

MS
n(Θ,F ,P) := inf

θ̂n

sup
F∈F

sup
P∈P

E
[
fP (θ̂n(Xn

1 ))− inf
θ∈Θ

fP (θ)
]
.

Intuitively, it corresponds to the best algorithm given samples
Xn

1 on the hardest problem. Related notion: (average)minimax
regret where point θ̂i is chosen conditional on xi−1

1 :

MR
n(Θ,F ,X ) := 1

n
inf
θ̂1:n

sup
F∈F ,xn1∈X n,θ∈Θ

Regretn(θ).

For a given norm γ, consider F = Fγ,1 – the geometries of γ and
Θ determine the minimax regret and risk. Given that MR

n(Θ, γ) ≤
MS

n(Θ, γ) [3], we lower bound the LHS and upper bound the RHS.
When those match, we found the minimax optimal esti-
mator.

Quadratically Convex Constraint Sets

Let Θ be a QC, orthosymmetric, convex and compact set.
1 If γ is QC, then

MR
n(Θ, γ) �MS

n(Θ, γ) � 1√
n

sup
θ∈Θ

γ∗(θ).

2 If γ(g) = ‖β � g‖p for p ∈ [1, 2] and β � 0, then

MR
n(Θ, γ) �MS

n(Θ, γ) � 1√
n

sup
θ∈Θ
‖θ/β‖2 .

Moreover, these are attained by diagonal gradient descent. For the
lower bound, we find the hardest rectangular sub-problem. The up-
per bound relies on strong duality which crucially holds because of
quadratic convexity. Gradient methods with a fixed, diago-
nal pre-conditioner are optimal on such problems.

Beyond Quadratic Convexity

For p ∈ [1, 2], we consider Θ = Bp and γ = `p∗ for 1/p + 1/p∗ = 1.
We have
1 If 1 ≤ p ≤ 1 + 1/ log(2d), MS

n(Θ, γ) �MR
n(Θ, γ) �

√
log(2d)
n .

2 If 1 + 1/ log(2d) < p ≤ 2, MS
n(Θ, γ) �MR

n(Θ, γ) �
√

1
n(p−1).

In either case, the upper bound corresponds to (non-linear) mirror
descent with dgf h(θ) := 1

2(a−1)‖θ‖
2
a with, for (1) a = 1+ 1

log(2d), for (2)
a = p. We exhibit problems where standard gradient methods achieve
their upper bound regret and characterize the suboptimality gap with
mirror descent. When p is very close to 2 (i.e. very close to QC), the
gap is a constant factor, when p = 1, the gap is

√
d/ log d. In high

dimensions, Euclidean gradient methods are arbitrarily
suboptimal on this class of problems.
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