Introduction

o For © C R convex, compact set, P distribution on X and
F:0 x X — R, stochastic optimization aims to solve:

minimize f(6) := Ep[F(6, X)] = | F(60,2)dP(x)

o Central problem of statistical learning and estimation (e.g. P the
data distribution, © the set of classifiers and F' the convex loss
function).

e Often tackled with stochastic gradient methods because of
simplicity and scalability but poor convergence rates for many
constraints set (e.g. when O is an ¢; ball).

e This work provides concrete recommendations for when to use
adaptive, mirror or stochastic gradient methods.

Notation and Definitions

d is the dimension, n is the number of samples. For v a norm,
B.(xg,r) = {z,v(x — x9) < r}. For h a distance generating
function (dgf) Dy(z,y) := h(z) — h(y) — Vh(y) ' (z — y).F"" =
{F:R'xX = R|forall§ € R, g € &F(0,x),7(g9) <r}. A set
© is quadratically convex (QC) if, ©° = {(67);<4,0 € O} is
CONVeXx.

Summary of Results

® When O is QC and B,(0,1) is QC then diagonally-rescaled

stochastic gradient methods are minimax rate optimal.

e When O is QC and ~(g) := || ® g||, for p > 1, then
diagonally-rescaled stochastic gradient methods are minimax
rate optimal.

e When O is not (QC, the best linearly-preconditioned gradient
methods can be arbitrary suboptimal (up to /d/log d) and
non-linear mirror descent are minimax rate optimal.

o For © = B, and v(g) = || ® g||1, stochastic gradient methods
can be v/d suboptimal compared to AdaGrad — see paper.
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Background: Algorithms and Regret Bounds

Algorithms For a sample X' i P, for o« > 0 a stepsize and h; a
dgt, first-order methods iteratively set

1
g; € 0pF(0;, X;), 0,1 ;= argmin {giTQ + —Dp (0, 92)} .
0cO 8%

For various h;, we obtain familiar algorithms:

o If h;(0) = 1||0]|3 and © = RY, 0,21 = 0; — v, this is the classical
stochastic gradient method.

o If h;(0) is a fixed, strongly-convex dgf w.r.t. || - ||, this is mirror
descent [2].

o If 1;(0) = 107G with G, == diag (Si<; grg/ )7, this is
AdaGrad [4].

Regret Bound For 64, ...,60, played on functions {F'(-, ;) }i<n,
the regret w.r.t. 6 is Regret,(6) == X" |F(0;,x;) — F(0,x;)]. When
playing 67 as above, the following holds

Dh (9,(9 87
< DO 05 g2,
@7

1<n

Regret, (0)

Background: Minimax rates

Complexity of problems is measured via minimax rates |1|. Let ©
be closed, convex set, X a sample space, F a tamily of functions and
P a family of distributions over X'. The minimax stochastic risk is

AN

M> (O, F,P) = inf sup sup E | fp(0,(X7)) — inf fp(6)].
0, FeF PeP L 0co |

Intuitively, it corresponds to the best algorithm given samples

" on the hardest problem. Related notion: (average) minimax

regret where point 6; is chosen conditional on x’ *:

1
MR (O, F, X) = —inf SUp Regret, (6).

N g, FEF zteX" 0O

For a given norm «, consider F = F7! — the geometries of v and
O determine the minimax regret and risk. Given that MR (O, ) <
M> (O, ~) [3], we lower bound the LHS and upper bound the RHS.
When those match, we found the minimax optimal esti-
mator.

Necessary and Sufficient Conditions for using
Adaptive, Mirror, and Stochastic Gradient Methods

Quadratically Convex Constraint Sets

Let © be a QC, orthosymmetric, convex and compact set.
olf v is QC, then
1 X
MR(O,7) < MO, 7) < —=supy*(6).
n geo

olf v(g) = || ® g|, for p € [1,2] and 8 > 0, then

1
MA(O,7) < M>(O,7) < —=sup||6/8],.
N §c6

Moreover, these are attained by diagonal gradient descent. For the
lower bound, we find the hardest rectangular sub-problem. The up-
per bound relies on strong duality which crucially holds because of
quadratic convexity. Gradient methods with a fixed, diago-
nal pre-conditioner are optimal on such problems.

Beyond Quadratic Convexity

For p € |1,2], we consider © = B, and v = ¢, for 1/p+ 1/p* = 1.
We have

olf 1 <p<1+1/log(2d), M>(O,~) < MR(O,~) =< \/log(2d>.
olf 1 +1/log(2d) < p <2, M>(O,7) < MR(O,~) < \/n(l

[n either case, the upper bound corresponds to (non-linear) mirror
descent with dgf h(0) = 2(a1_1)H6’H?L with, for (1)a = 14 bgéd), for (2)
a = p. We exhibit problems where standard gradient methods achieve
their upper bound regret and characterize the suboptimality gap with
mirror descent. When p is very close to 2 (i.e. very close to QC), the
oap is a constant factor, when p = 1, the gap is \/d/ logd. In high
dimensions, Euclidean gradient methods are arbitrarily
suboptimal on this class of problems.
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