
Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes

Dmitri Dolgov and Edmund Durfee
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

{ddolgov,durfee}@umich.edu

Abstract

In multi-agent MDPs, it is generally necessary to con-
sider the joint state space of all agents, making the size of
the problem and the solution exponential in the number of
agents. However, often interactions between the agents are
only local, which suggests a more compact problem rep-
resentation. We consider a subclass of multi-agent MDPs
with local interactions where dependencies between agents
are asymmetric, meaning that agents can affect others in
a unidirectional manner. This asymmetry, which often oc-
curs in domains with authority-driven relationships be-
tween agents, allows us to make better use of the locality
of agents’ interactions. We present and analyze a graphi-
cal model of such problems and show that, for some classes
of problems, it can be exploited to yield significant (some-
times exponential) savings in problem and solution size, as
well as in computational efficiency of solution algorithms.

1. Introduction

Markov decision processes [9] are widely used for de-
vising optimal control policies for agents in stochastic envi-
ronments. Moreover, MDPs are also being applied to multi-
agent domains [1, 10, 11]. However, a weak spot of tradi-
tional MDPs that subjects them to “the curse of dimension-
ality” and presents significant computational challenges is
the flat state space model, which enumerates all states the
agent can be in. This is especially significant for multi-agent
MDPs, where, in general, it is necessary to consider the joint
state and action spaces of all agents.

Fortunately, there is often a significant amount of struc-
ture to MDPs, which can be exploited to devise more com-
pact problem and solution representations, as well as ef-
ficient solution methods that take advantage of such rep-
resentations. For example, a number offactoredrepresen-

This work was supported, in part, by a grant from Honeywell Labs.

tations have been proposed [2, 3, 5] that model the state
space as being factored into state variables, and use dynamic
Bayesian network representations of the transition function
to exploit the locality of the relationships between variables.

We focus on multi-agent MDPs and on a particular form
of problem structure that is due to the locality of interac-
tions between agents. Let us note, however, that we analyze
the structure and complexity ofoptimalsolutions only, and
the claims do not apply to approximate methods that ex-
ploit problem structure (e.g., [5]). Central to our problem
representation aredependency graphsthat describe the re-
lationships between agents. The idea is very similar to other
graphical models, e.g.,graphical games[6], coordination
graphs[5], andmulti-agent influence diagrams[7], where
graphs are used to more compactly represent the interac-
tions between agents to avoid the exponential explosion in
problem size. Similarly, our representation of a multi-agent
MDP is exponential only in the degree of the dependency
graph, and can be exponentially smaller than the size of the
flat MDP defined on the joint state and action spaces of all
agents. We focus on asymmetric dependency graphs, where
the influences that agents exert on each other do not have to
be mutual. Such interactions are characteristic of domains
with authority-based relationships between agents, i.e. low-
authority agents have no control over higher-authority ones.

Given the compact representation of multi-agent MDPs,
an important question is whether the compactness of prob-
lem representation can be maintained in the solutions, and if
so, whether it can be exploited to devise more efficient solu-
tion methods. We analyze the effects of optimization crite-
ria and shape of dependency graphs on the structure of op-
timal policies, and for problems where the compactness can
be maintained in the solution, we present algorithms that
make use of the graphical representation.

2. Preliminaries

In this section, we briefly review some background and
introduce our compact representation of multi-agent MDPs.

2.1. Markov Decision Processes

A single-agent MDP can be defined as a n-tuple
〈S,A, P, R〉, where S = {i} and A = {a} are fi-
nite sets of states and actions,P : S × A × S → [0, 1] de-
fines the transition function (the probability that the agent
goes to statej if it executes actiona in statei is P (i, a, j)),
andR : S → R defines the rewards (the agent gets a re-
ward of R(i) for visiting statei).1 A solution to a MDP
is a policy defined as a procedure for selecting an ac-
tion. It is known [9] that, for such MDPs, there always exist
policies that areuniformly-optimal (optimal for all ini-
tial conditions), stationary (time independent), determin-
istic (always select the same action for a given state), and
Markov (history-independent); such policies (π) can be de-
scribed as mappings of states to actions:π : S → A.

Let us now consider a multi-agent environment with a set
of n agentsM = {m} (|M| = n), each of whom has its
own set of statesSm = {im} and actionsAm = {am}.
The most straightforward and also the most general way
to extend the concept of a single-agent MDP to the fully-
observable multi-agent case is to assume that all agents af-
fect the transitions and rewards of all other agents. Under
these conditions, a multi-agent MDP can be defined simply
as a large MDP〈SM,AM, PM, RM〉, where thejoint state
spaceSM is defined as the cross product of the state spaces
of all agents:SM = S1 × . . . × Sn, and the joint action
space is the cross product of the action spaces of all agents:
AM = A1 × . . .×An. The transition and the reward func-
tions are defined on the joint state and action spaces of all
agents in the standard way:PM : SM×AM×SM → [0, 1]
andRM : SM → R. This representation, which we re-
fer to asflat, is the most general one, in that, by consider-
ing the joint state and action spaces, it allows for arbitrary
interactions between agents. The trouble is that the prob-
lem (and solution) size grows exponentially with the num-
ber of agents. Thus, very quickly it becomes impossible to
even write down the problem, let alone solve it. Let us note
that, if the state space of each agent is defined on a set of
world features, there can be some overlap in features be-
tween the agents, in which case the joint state space would
be smaller than the cross product of the state space of all
agents, and would grow as a slower exponent. For simplic-
ity, we ignore the possibility of overlapping features, but our
results are directly applicable to that case as well.

2.2. Graphical Multi-Agent MDPs

In many multi-agent domains, the interactions between
agents are only local, meaning that the rewards and tran-

1 Often, rewards are said to also depend on actions and future states. For
simplicity, we define rewards as function of current state only, but our
model can be generalized to the more general case.

1 2

m

43

1

2

1

2

(a) (b) (c)

Figure 1. Agent Dependency Graphs

sitions of an agent are not directly influenced by all other
agents, but rather only by a small subset of them. To exploit
the sparseness in agents’ interactions, we propose a com-
pact representation that is analogous to the Bayesian net-
work representation of joint probability distributions of sev-
eral random variables. Given its similarity to other graphical
models, we label our representation agraphical multi-agent
MDP (graphical MMDP).

Central to the definition of a graphical MMDP is a notion
of adependency graph(Figure 1), which shows how agents
affect each other. The graph has a vertex for every agent
in the multi-agent MDP. There is a directed edge from ver-
tex k to vertexm if agentk has an influence on agentm.
The concept is very similar tocoordination graphs[5], but
we distinguish between two ways agents can influence each
other: (1) an agent can affect another agent’s transitions, in
which case we use a solid arrow to depict this relationship
in the dependency graph, and (2) an agent can affect an-
other agent’s rewards, in which case we use a dashed arrow
in the dependency graph.

To simplify the following discussion of graphical multi-
agent MDPs, we also introduce some additional concepts
and notation pertaining to the structure of the dependency
graph. For every agentm ∈ M, let us label all agents
that directly affectm’s transitions asN−

m(P) (parents ofm
with respect to transition functionP), and all agents whose
transitions are directly affected bym asN+

m(P) (children
of m with respect to transition functionP). Similarly, we
useN−

m(R) to refer to agents that directly affectm’s re-
wards, andN+

m(R) to refer to agents whose rewards are di-
rectly affected bym. Thus, in the graph shown in Figure
1a,N−

m(P) = {1, 4}, N−
m(R) = {1, 2}, N+

m(P) = {3},
andN+

m(R) = {4}. We use the terms “transition-related”
and “reward-related” parents and children to distinguish be-
tween the two categories. Sometimes, it will also be help-
ful to talk about the union of transition-related and reward-
related parents or children, in which case we useN−

m =
N−

m(P)
⋃
N−

m(R) andN+
m = N+

m(P)
⋃
N+

m(R). Further-
more, let us label the set of allancestorsof m (all agents
from which m is reachable) with respect to transition-
related and reward-related dependencies asO−m(P) and
O−m(R), respectively. Similarly, let us label thedescendants
of m (all agents reachable fromm) asO+

m(P) andO+
m(R).

A graphical MMDP with a set of agentsM is defined as
follows. Associated with each agentm ∈ M is a n-tuple

〈Sm,Am, Pm, Rm〉, where the state spaceSm and the ac-
tion spaceAm are defined exactly as before, but the transi-
tion and the reward functions are defined as follows:

Pm : SN−m(P) × Sm ×Am × Sm → [0, 1]
Rm : SN−m(R) × Sm → R,

(1)

whereSN−m(P) andSN−m(R) are the joint state spaces of the
transition-related and reward-related parents ofm, respec-
tively. In other words, the transition function of agentm
specifies a probability distribution over its next statesSm

as a function of its own current stateSm and the current
states of its parentsSN−m(P) and its own actionAm. That is
P (iN−m(P), im, am, jm) is the probability that agentm goes
to statejm if it executes actionam when its current state is
im and the states of its transition-related parents areiN−m(P).
The reward function is defined analogously on the current
states of the agent itself and the reward-related parents.

Also notice that we allow cycles in the agent dependency
graph, and moreover the same agent can both influence and
be influenced by some other agent (e.g. agents4 and m
in Figure 1a). We also allow forasymmetricinfluences be-
tween agents, i.e. it could be the case that one agent affects
the other, but notvice versa(e.g. agentm, in Figure 1a, is
influenced by agent 1, but the opposite is not true). This is
often the case in domains where the relationships between
agents are authority-based. It turns out that the existence
of such asymmetry has important implications on the com-
pactness of the solution and the complexity of the solution
algorithms. We return to a discussion of the consequences
of this asymmetry in the following sections.

It is important to note that, in this representation, each
transition and reward function only specifies the rewards
and transition probabilities of agentm, and contains no in-
formation about the rewards and transitions of other agents.
This implies that the reward and next state of agentm are
conditionally independent of the rewards and the next states
of other agents, given the current action ofm and the state
of m and its parentsN−

m . Therefore, this model does not al-
low for correlations between the rewards or the next states
of different agents. For example, we cannot model the sit-
uation where two agents are trying to go through the same
door and whether one agent makes it depends on whether
the other one does; we can only represent, for each agent,
the probability that it makes it, independently of the other.
This limitation of the model can be overcome by “lumping
together” groups of agents that are correlated in such ways
into a single agent as in the flat multi-agent MDP formula-
tion. In fact, we could have allowed for such dependencies
in our model, but it would have complicated the presenta-
tion. Instead, we assume that all such correlations have al-
ready been dealt with, and the resulting problem only con-
sists of agents (perhaps composite ones) whose states and
rewards have this conditional independence property.

It is easy to see that the size of a problem represented in
this fashion is exponential in the maximum number of par-
ents of any agent, but unlike the flat model, it does not de-
pend on the total number of agents. Therefore, for problems
where agents have a small number of parents, space sav-
ings can be significant. In particular, if the number of par-
ents of any agent is bounded by a constant, the savings are
exponential (in terms of the number of agents).

3. Properties of Graphical Multi-Agent MDPs

Now that we have a compact representation of multi-
agent MDPs, two important questions arise. First, can we
compactly represent the solutions to these problems? And
second, if so, can we exploit the compact representations of
the problems and the solutions to improve the efficiency of
the solution algorithms? Positive answers to these questions
would be important indications of the value of our graphi-
cal problem representation. However, before we attempt to
answer these questions and get into a more detailed analy-
sis of the related issues, let us lay down some groundwork
that will simplify the following discussion.

First of all, let us note that a graphical multi-agent MDP
is just a compact representation, and any graphical MMDP
can be easily converted to a flat multi-agent MDP, analo-
gously to how a compact Bayesian network can be con-
verted to a joint probability distribution. Therefore, all prop-
erties of solutions to flat multi-agent MDPs (e.g. station-
arity, history-independence, etc.) also hold for equivalent
problems that are formulated as graphical MMDPs. Thus,
the following simple observation about the form of policies
in graphical MMDPs holds.

Observation 1 For a graphical MMDP〈Sm,Am, Pm, Rm〉,
m ∈ M, with an optimization criterion for which opti-
mal policies are Markov, stationary, and determinis-
tic,2 such policies can be represented asπm : SXm

→ Am,
whereSXm

is a cross product of the state spaces of some
subset of all agents (Xm ⊆M).

Clearly, this observation does not say much about the
compactness of policies, since it allowsXm = M, which
corresponds to a solution where an agent has to consider the
states of all other agents when deciding on an action. If that
were always the case, using this compact graphical repre-
sentation for the problem would not (by itself) be benefi-
cial, because the solution would not retain the compactness
and would be exponential in the number of agents. How-
ever, as it turns out, for some problems,Xm can be signif-
icantly smaller thanM. Thus we are interested in deter-
mining, for every agentm, theminimalset of agents whose
statesm’s policy has to depend on:

2 We will implicitly assume that optimal policies are Markov, station-
ary, and deterministic from now on.

Definition 1 In a graphical MMDP, a set of agentsXm is
a minimal domainof an optimal policyπm : SXm → Am

of agentm iff, for any set of agentsY and any policyπ′m :
SY → Am, the following implications hold:

Y ⊂ Xm =⇒ U(π′m) < U(πm)
Y ⊇ Xm =⇒ U(π′m) ≤ U(πm),

whereU(π) is the payoff that is being maximized.

Essentially, this definition allows us to talk about the sets
of agents whose joint state space is necessary and sufficient
for determining optimal actions of agentm. From now on,
whenever we use the notationπm : SXm

→ Am, we im-
plicitly assume thatXm is the minimal domain ofπm.

3.1. Assumptions

As mentioned earlier, one of the main goals of the fol-
lowing sections will be to characterize the minimal domains
of agents’ policies under various conditions. Let us make a
few observations and assumptions about properties of min-
imal domains that allow us to avoid some non-interesting
degenerate special cases and to focus on the “hardest” cases
in our analysis. These assumptions do not limit the general
complexity results that follow, as the latter only require that
there existsomeproblems for which the assumptions hold.
In the rest of the paper, we implicitly assume that they hold.

Central to our future discussion will be an analysis of
which random variables (rewards, states, etc.) depend on
which others. It will be very useful to talk about the con-
ditional independence of future values of some variables,
given the current values of others.

Definition 2 We say that a random variableX is Markov
on the joint state spaceSY of some set of agentsY if, given
the current values of all states inSY , the future values of
X are independent of any past information. If that property
does not hold, we say thatX is non-Markov onSY .

Assumption 1 For a minimal domainXm of agentm’s op-
timal policy, and a set of agentsY, the following hold:

1. Xm is unique
2. m ∈ Xm

3. l ∈ Xm =⇒ Sl is Markov onSXm

4. Sm is Markov onSY ⇐⇒ Y ⊇ Xm

The first assumption allows us to avoid some special cases
with sets of agents with highly-correlated states, where
equivalent policies can be constructed as functions of ei-
ther of the sets. The second assumption implies that an op-
timal policy of every agent depends on its own state. The
third assumption says that the state space of any agentl that
is in the minimal domain ofm must be Markov on the state
space of the minimal domain. Since the state space of agent

l is in the minimal domain ofm, it must influencem’s re-
wards in a non-trivial manner. Thus, ifSl is non-Markov
on SXm

, agentm should be able to expand the domain of
its policy to makeSl Markov, since that, in general, would
increasem’s payoff. The fourth assumption says that the
agent’s state is Markov only on supersets of its minimal do-
main, because the agent would want to increase the domain
of its policy just enough to make its state Markov. These as-
sumptions are slightly redundant (e.g., 4 could be deduced
from weaker conditions), but we use this form for brevity.

3.2. Transitivity

Using the results of the previous sections, we can now
formulate an important claim that will significantly simplify
the analysis that follows.

Proposition 1 Consider two agentsm, l ∈ M, where the
optimal policies ofm and l have minimal domains ofXm

andXl, respectively (πm : SXm
→ Am, πl : SXl

→ Al).
Then, under Assumption 1, the following holds:

l ∈ Xm =⇒ Xl ⊆ Xm,

Proof: We will show this by contradiction. Let us consider
an agent froml’s minimal domain:k ∈ Xl. Let us as-
sume (contradicting the statement of the proposition) that
l ∈ Xm, but k /∈ Xm. Consider the set of agents that con-
sists of the union of the two minimal domainsXm andXl,
but with agentk removed:Ym = Xm

⋃
(Xl\k). Then, since

Ym + Xl, Assumption 1.4 implies thatSl is non-Markov on
SYm

. Thus, Assumption 1.3 impliesl /∈ Xm, which contra-
dicts our earlier assumption.�

Essentially, this proposition says that the minimal do-
mains have a certain “transitive” property: if agentm needs
to base its action choices on the state of agentl, then, in
general,m also needs to base its actions on the states of all
agents in the minimal domain ofl. As such, this proposi-
tion will help us to establish lower bounds on policy sizes.

In the rest of the paper, we analyze some classes of prob-
lems to see how large the minimal domains are, under var-
ious conditions and assumptions, and for domains where
minimal domains are not prohibitively large, we outline so-
lution algorithms that exploit graphical structure. In what
follows, we focus on two common scenarios: one, where the
agents work as a team and aim to maximize the social wel-
fare of the group (sum of individual payoffs), and the other,
where each agent maximizes its own payoff.

4. Maximizing Social Welfare

The following proposition characterizes the structure of
the optimal solutions to graphical multi-agent MDPs under
the social welfare optimization criterion, and as such serves

as an indication of whether the compactness of this particu-
lar representation can be exploited to devise an efficient so-
lution algorithm for such problems. We demonstrate that,
in general, when the social welfare of the group is consid-
ered, the optimal actions of each agent depend on the states
of all other agents (unless the dependency graph is discon-
nected). Let us note that this case where all agents are maxi-
mizing the same objective function is equivalent to a single-
agent factored MDP, and our results for this case are anal-
ogous to the well-known fact that the value function in a
single-agent factored MDP does not, in general, retain the
structure of the problem [8].

Proposition 2 For a graphical MMDP with a connected
(ignoring edge directionality) dependency graph, under the
optimization criterion that maximizes the social welfare of
all agents, an optimal policyπm of agentm, in general, de-
pends on the states of all other agents, i.e.πm : SM → Am.

Proof (Sketch):Agentm must, at the minimum, base its ac-
tion decisions on the states of its immediate (both transition-
and reward-related) parents and children. Indeed, agentm
should worry about the states of its transition-related par-
ents,N−

m(P), because their states affect the one-step tran-
sition probabilities ofm, which certainly have a bearing on
m’s payoff. Agentm should also include in the domain of
its policy the states of its reward-related parents,N−

m(R),
because they affectm’s immediate rewards and agentm
might need to act so as to “synchronize” its state with the
state of its parents. Similarly, since the agent cares about the
social welfare of all agents, it will need to consider the ef-
fect that its actions have on the states and rewards of its im-
mediate children, and must thus base its policy on the states
of its immediate childrenN+

m(P) andN+
m(R) to potentially

“set them up” to get higher rewards.
Having established that the minimal domain of each

agent must include the immediate children and parents of
the agent, we can use the transitivity property from the pre-
vious section to extend this result. Although Proposition 1
only holds under the conditions of Assumption 1, for our
purpose of determining the complexity of policiesin gen-
eral, it is sufficient that there exist problems for which As-
sumption 1 holds. It follows from Proposition 1 that the
minimal domain of agentm must include all parents and
children of m’s parents and children, and so forth. For a
connected dependency graph, this expands the minimal do-
main of each agent to all other agents inM. �

The above result should not be too surprising, as it makes
clear, intuitive sense. Indeed, let us consider a simple exam-
ple that has a flavor of a commonly-occurring production
scenario. Suppose that there is a set of agents that can ei-
ther cooperate to generate a certain product, yielding a very
high reward, or they can concentrate on some local tasks
that do not require cooperation, but which have lower so-

cial payoff. Also, suppose that the interactions between the
agents are only local – for example, the agents are operat-
ing an assembly line, where each agent receives the product
from a previous agent, modifies it, and passes it on to the
next agent. Let us now suppose that each agent has a certain
probability of breaking down, and if that happens to at least
one of the agents, the assembly line fails. In such an exam-
ple, the optimal policy for the agents would be to participate
in the assembly-line production until one of them fails, at
which point all agents should switch to working on their lo-
cal tasks (perhaps processing items already in the pipeline).
Clearly, in that example, the policy of each agent is a func-
tion of the states of all other agents.

The take-home message of the above is that, when the
agents care about the social welfare of the group, even
when the interactions between the agents are only local, the
agents’ policies depend on the joint state space of all agents.
The reason for this is that a state change of one agent might
lead all other agents to want to immediately modify their
behavior. Therefore, our particular type of compact graph-
ical representation (by itself and without additional restric-
tions) cannot be used to compactly represent the solutions.

5. Maximizing Own Welfare

In this section, we analyze problems where each of the
agents maximizes its own payoff. Under this assumption,
unlike the discouraging scenario of the previous section,
the complexity of agents’ policies is slightly less frighten-
ing. The following result characterizes the size of the min-
imal domain of optimal policies for problems where each
agent maximizes its own utility.

Proposition 3 For a graphical MMDP with an optimiza-
tion criterion where each agent maximizes its own reward,
the minimal domain ofm’s policy consists ofm itself and all
of its transition- and reward-related ancestors:Xm = E−m,
where we defineE−m = m

⋃
O−m(P)

⋃
O−m(R).

Proof (Sketch):To show the correctness of the proposition,
we need to prove that, (1) the minimal domain must include
at leastm itself and its ancestors (Xm ⊇ E−m), and (2) that
Xm does not include any other agents (Xm ⊆ E−m).

We can show (1) by once again applying the transitiv-
ity property. Clearly, an agent’s policy should be a function
of the states of the agent’s reward-related and transition-
related parents, because they affect the one-step transition
probabilities and rewards of the agent. Then, by Proposi-
tion 1, the minimal domain of the agent’s policy must also
include all of its ancestors.

We establish (2) as follows. We assume that it holds for
all ancestors ofm, and show that it must then hold form.
We then expand the statement to all agents by induction.

Let us fix the policiesπk of all agents exceptm. Consider
the n-tuple〈SE−m ,Am, P̃E−m , R̃E−m〉, whereP̃E−m andR̃E−m are
defined as follows:

P̃E−m(iE−m , am, jE−m) = Pm(iN−m(P), im, am, jm)∏
k∈O−m

Pk

(
iN−k (P), ik, πk(iE−k), jk

)
R̃E−m(iE−m) = Rm(iN−m(R), im)

(2)

The above constitutes a fully-observable MDP onSE−m and

Am with transition functionP̃m and reward functioñRm.
Let us label this decision processMDP1. By properties of
fully-observable MDPs, there exists an optimal stationary
deterministic solutionπ1

m of the formπ1
m : SE−m → Am.

Also consider the following MDP on an augmented state
space that includes the joint state space of all the agents (and
not justm’s ancestors):MDP2 = 〈SM,Am, P̂M, R̂M〉,
whereP̂M andR̂M are defined as follows:

P̂M(iM, am, jM) = Pm(iN−m(P), im, am, jm)∏
k∈O−m

Pk

(
iN−k (P), ik, πk(iE−k), jk

)
∏

k∈M\m\O−m

Pk

(
iN−k (P), ik, πk(iM), jk

)
R̂M(iM) = Rm(iN−m(R), im)

(3)

Basically, we have now constructed two fully-observable
MDPs: MDP1 that is defined onSE−m , and MDP2 that
is defined onSM, whereMDP1 is essentially a “projec-
tion” of MDP2 onto SE−m . We need to show that no so-
lution to MDP2 can have a higher value3 than the opti-
mal solution toMDP1. Let us refer to the optimal solu-
tion toMDP1 asπ1

m. Suppose there exists a solutionπ2
m to

MDP2 that has a higher value thanπ1
m. The policyπ2

m de-
fines some stochastic trajectory for the system over the state
spaceSM. Let us label the distribution over the state space
at time t as ρ(iM, t). It can be shown that under our as-
sumptions we can always construct a non-stationary policy
π̃1

m(t) : SE−m → Am for MDP1 that yields the same dis-
tribution ρ(iM, t) over the state spaceSE−m as the one pro-
duced byπ2

m. Thus, there exists a non-stationary solution to
MDP1 that has a higher payoff thanπ1

m, which is a contra-
diction, since we assumed thatπ1

m was optimal forMDP1.
We have therefore shown that, given that the policies of

all ancestors ofm depend only on their own states and the
states of their ancestors, there always exists a policy that
maps the state space ofm and its ancestors (SE−m) to m’s
actions (Am) that is at least as good as any policy that maps

3 The proof does not rely on the actual type of optimization criterion
used by each agent and holds for any criterion that is a function only
of the agents’ trajectories.

the joint space of all agents (SM) to m’s actions. Then, by
using induction, we can expand this statement to all agents
(for acyclic graphs we use the root nodes as the base case,
and for cyclic graphs, we use agents that do not have any an-
cestors that are not simultaneously their descendants).�

The point of the above proposition is that, for situations
where each agent maximizes its own utility, the optimal ac-
tions of each agent do not have to depend on the states of
all other agents, but rather only on its own state and the
states of its ancestors. In contrast to the conclusions of Sec-
tion 4, this result is more encouraging. For example, for de-
pendency graphs that are trees (typical of authority-driven
organizational structures), the number of ancestors of any
agent equals the depth of the tree, which is logarithmic in
the number of agents. Therefore, if each agent maximizes
its own welfare, the size of its policy will be exponential in
the depth of the tree, but only linear in the number of agents.

5.1. Acyclic Dependency Graphs

Thus far we have shown that problems where agents op-
timize their own welfare can allow for more compact policy
representations. We now describe an algorithm that exploits
the compactness of the problem representation to more ef-
ficiently solve such policy optimization problems for do-
mains with acyclic dependency graphs.

It is a distributed algorithm where the agents exchange
information, and each one solves its own policy optimiza-
tion problem. The algorithm is very straightforward and
works as follows. First, the root nodes of the graph (the ones
with no parents) compute their optimal policies that are sim-
ply mappings of their own states to their own actions. Once
a root agent computes a policy that maximizes its welfare,
it sends the policy to all of its children. Each child waits to
receive the policiesπk, k ∈ N−

m from its ancestors, then
forms a MDP on the state space of itself and its ancestors as
in (eq. 2). It then solves this MDP〈SE−m ,Am, P̃E−m , R̃E−m〉
to produce a policyπm : E−m → Am, at which point it
sends the policy and the policies of its ancestors to its chil-
dren. The process repeats until all agents compute their op-
timal policies. Essentially, this algorithm performs, in a dis-
tributed manner, a topological sort of the dependency graph,
and computes a policy for every agent.

5.2. Cyclic Dependency Graphs

We now turn our attention to the case of depen-
dency graphs with cycles. Note that the complexity
result of Proposition 3 still applies, because no assump-
tions about the cyclic or acyclic nature of dependency
graphs were made in the statement or proof of the proposi-
tion. Thus, the minimal domain of an agent’s policy is still
the set of its ancestors.

The problem is, however, that the solution algorithm of
the previous section is inappropriate for cyclic graphs, be-
cause it will deadlock on agents that are part of a cycle,
since these agents will be waiting to receive policies from
each other. Indeed, when self-interested agents mutually af-
fect each other, it is not clear how they should go about
constructing their policies. Moreover, in general, for such
agents there might not even exist a set of stationary de-
terministic policies that are in equilibrium, i.e., since the
agents mutually affect each other, the best responses of
agents to each others’ policies might not be in equilibrium.

A careful analysis of this case falls in the realm of
Markov games, and is beyond the scope of this paper. How-
ever, if we assume that there exists an equilibrium in sta-
tionary deterministic policies, and that the agents in a cy-
cle have some “black-box” way of constructing their poli-
cies, we can formulate an algorithm for computing optimal
policies, by modifying the algorithm from the previous sec-
tion as follows. The agents begin by finding the largest cy-
cle they are a part of, and then, after the agents receive poli-
cies from their parents who are not also their descendants,
the agents proceed to devise an optimal joint policy for their
cycle, which they then pass to their children.

6. Additive Rewards

In our earlier analysis, a reward functionRm of an agent
could depend in an arbitrary way on the current states of the
agent and its parents (eq. 1). In fact, this is why agents, in
general, needed to “synchronize” their states with the states
of their parents (and children in the social welfare case),
which, in turn, was why the effects of reward-related depen-
dencies propagated just as the transition-related ones did.

In this section, we consider a subclass of reward func-
tions whose effects remain local. Namely, we focus on
additively-separablereward functions:

Rm(iN−m(R), im) = rmm(im) +
∑

k∈N−m(R)

rmk(ik), (4)

wherermk is a function (rmk : Sk → R) that specifies the
contribution of agentk to m’s reward. In order for all of our
following results to hold, these functions have to be subject
to the following condition:

rmk(ik) = lmk(rkk(ik)), (5)

where lmk is a positive linear function (lmk(x) = αx +
β, α > 0, β ≥ 0). This condition implies that agents’ pref-
erences over each other states are positively (and linearly)
correlated, i.e., when an agent increases its local reward,
its contribution to the rewards of its reward-related children
also increases linearly.

Furthermore, the results of this section are only valid un-
der certain assumptions about the optimization criteria the

agents use. Let us say that if an agent receives a history of
rewardsH(r) = {r(t)} = {r(0), r(1), . . .}, its payoff is
U(H(r)) = U

(
r(0), r(1), . . .

)
. Then, in order for our re-

sults to hold,U has to belinear additive:

U(H(r1 + r2)) = U(H(r1)) + U(H(r2)) (6)

Notice that this assumption holds for the commonly-used
risk-neutral MDP optimization criteria, such as expected to-
tal reward, expected total discounted reward, and average
per-step reward, and is, therefore, not greatly limiting.

In the rest of this section, for simplicity, we focus on
problems with two agents – more specifically, on two in-
teresting special cases, shown in Figure 1b and 1c. How-
ever, the results can be generalized to problems with multi-
ple agents and arbitrary dependency graphs.

First of all, let us note that both of these problems have
cyclic dependency graphs. Therefore, if the reward func-
tions of the agents were not additively-separable, per our
earlier results of Section 5, there would be no guarantee that
there exists an equilibrium in stationary deterministic poli-
cies. However, as we show below, our assumption about the
additivity of the reward functions changes that and ensures
that an equilibrium always exists.

Let us consider the case in Figure 1b. Clearly, the policy
of neither agent affects the transition function of the other.
Thus, given our assumptions about additivity of rewards and
utility functions, it is easy to see that the problem of maxi-
mizing the payoff is separable for each agent. For example,
for agent 1 we have:

max
π1,π2

U1

(
H(R1)

)
= max

π1,π2
U1

(
H(r11 + r21)

)
=

max
π1

U
(
H(r11)

)
+ max

π2
U

(
H(r21)

) (7)

Thus, regardless of what policy agent 2 chooses, agent
1 should adopt a policy that maximizes the first term in
(eq. 7). In game-theoretic terms, each of the agents has a
(weakly) dominant strategy, and will adopt that strategy, re-
gardless of what the other agent does. This is what guaran-
tees the above-mentioned equilibrium. Also notice that this
result does not rely on reward linearity (eq. 5) and holds for
any additively-separable (eq. 4) reward functions.

Now that we have demonstrated that, for each agent,
it suffices to optimize a function of only that agent’s own
states and actions, it is clear that each agent can construct
its optimal policy independently. Indeed, each agent has to
solve a standard MDP on its own state and action space with
a slightly modified reward function:R′m(im) = rmm(im),
which differs from the original reward function (eq. 4) in
that it ignores the contribution ofm’s parents to its reward.

Let us now analyze the case in Figure 1c, where the state
of agent 1 affects the transition probabilities of agent 2, and
the state of agent 2 affects the rewards of agent 1. Again,

without the assumption that rewards are additive, this cy-
cle would have caused the policies of both agents to depend
on the cross product of their state spacesS1 × S2, and fur-
thermore the existence of equilibria in stationary determin-
istic policies between self-interested agents is not guaran-
teed. However, when rewards are additive, the problem is
simpler. Indeed, due to our additivity assumptions, we can
write the optimization problems of the two agents as:

max
π1,π2

U1(. . .) = max
π1

U1(H(r11)) + max
π1,π2

U1(H(r12))

max
π1,π2

U2(. . .) = max
π1

U2(H(r21)) + max
π1,π2

U2(H(r22))

(8)

Notice that here the problems are no longer separable (as in
the previous case), so neither agent is guaranteed to have a
dominant strategy. However, if we make use of the assump-
tion that the rewards are positively and linearly correlated
(eq. 5), we can show that there always exists an equilib-
rium in stationary deterministic policies. This is due to the
fact that a positive linear transformation of the reward func-
tion does not change the optimal policy (we show this for
discounted MDPs, but the statement holds more generally):

Observation 2 Consider two MDPs:Λ = 〈S,A, R, P 〉
and Λ′ = 〈S,A, R′, P 〉, whereR′(s) = α(R(s)) + β,
α > 0 and β ≥ 0. Then, a policyπ is optimal forΛ un-
der the total expected discounted reward optimization crite-
rion iff it is optimal forΛ′.

Proof (Sketch): It is easy to see that the linear transforma-
tion R′(i) = αR(i) + β of the reward function will lead
to a linear transformation of theQ function: Q′(i, a) =
αQ(i, a) + β(1 − γ)−1, whereγ is the discount factor. In-
deed, the multiplicative factorα just changes the scale of all
rewards, and the additive factorβ simply produces an ex-
tra discounted sequence of rewards that sums toβ(1−γ)−1

over an infinite horizon. Then, since the optimal policy is
π(i) = maxa αQ(i, a) + β(1 − γ)−1 = maxa Q(i, a), a
policy π is optimal forΛ iff it is optimal for Λ′. �

Observation 2 implies that, for any policyπ1, a policyπ2

that maximizes the second term ofU1 in (eq. 8) will be si-
multaneously maximizing (givenπ1) the second term ofU2

in (eq. 8). In other words, given anyπ1, both agents will
agree on the choice ofπ2. Therefore, agent 1 can find the
pair 〈π1, π2〉 that maximizes its payoffU1 and adopt that
π1. Then, agent 2 will adopt the correspondingπ2, since de-
viating from it cannot increase its utility.

To sum up, when rewards are additively-separable (eq. 4)
and satisfy (eq. 5), for the purposes of determining the min-
imal domain of agents’ policies (in two-agent problems),
we can ignore reward-related edges in dependency graphs.
Furthermore, for graphs where there are no cycles with
transition-related edges, the agents can formulate their opti-
mal policies via algorithms similar to the ones described in
Section 5.1, and these policies will be in equilibrium.

7. Conclusions

We have analyzed the use of a particular compact, graph-
ical representation for a class of multi-agent MDPs with lo-
cal, asymmetric influences between agents. We have shown
that, generally, because the effects of these influences prop-
agate with time, the compactness of the representation is
not fully preserved in the solution. We have shown this for
multi-agent problems with the social welfare optimization
criterion, which are equivalent to single-agent problems,
and for which similar results are known. We have also ana-
lyzed problems with self-interested agents, and have shown
the complexity of solutions to be less prohibitive in some
cases (acyclic dependency graphs). We have demonstrated
that under further restrictions on agents’ effects on each
other (positive-linear, additively-separable rewards), local-
ity is preserved to a greater extent – equilibrium sets of sta-
tionary deterministic policies for self-interested agents al-
ways exist even in some classes of problems with reward-
related cyclic relationships between agents.

Our future work will combine the graphical representa-
tion of multi-agent MDPs with other forms of problem fac-
torization, including constrained multi-agent MDPs [4].

References

[1] C. Boutilier. Sequential optimality and coordination in mul-
tiagent systems. InIJCAI-99, pages 478–485, 1999.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational lever-
age.JAIR, 11:1–94, 1999.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dy-
namic programming with factored representations.Artificial
Intelligence, 121(1-2):49–107, 2000.

[4] D. A. Dolgov and E. H. Durfee. Optimal resource allocation
and policy formulation in loosely-coupled Markov decision
processes. InICAPS-04, 2004. To Appear.

[5] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Effi-
cient solution algorithms for factored MDPs.Journal of Ar-
tificial Intelligence Research, 19:399–468, 2003.

[6] M. Kearns, M. L. Littman, and S. Singh. Graphical models
for game theory. InProc. of UAI01, pages 253–260, 2001.

[7] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. InIJCAI-01, pages 1027–
1036, 2001.

[8] D. Koller and R. Parr. Computing factored value functions
for policies in structured MDPs. InIJCAI-99, pages 1332–
1339, 1999.

[9] M. L. Puterman.Markov Decision Processes. John Wiley &
Sons, New York, 1994.

[10] D. Pynadath and M. Tambe. Multiagent teamwork: Analyz-
ing the optimality and complexity of key theories and mod-
els. InAAMAS-02, 2002.

[11] S. Singh and D. Cohn. How to dynamically merge Markov
decision processes. In M. I. Jordan, M. J. Kearns, and S. A.
Solla, editors,NIPS-98, volume 10. The MIT Press, 1998.

