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Abstract tations have been proposed [2, 3, 5] that model the state
space as being factored into state variables, and use dynamic
In multi-agent MDPs, it is generally necessary to con- Bayesian network representations of the transition function
sider the joint state space of all agents, making the size ofto exploit the locality of the relationships between variables.
the problem and the solution exponential in the number of  \We focus on multi-agent MDPs and on a particular form
agents. However, often interactions between the agents arexf problem structure that is due to the locality of interac-
only local, which suggests a more compact problem rep- tions between agents. Let us note, however, that we analyze
resentation. We consider a subclass of multi-agent MDPsthe structure and complexity optimalsolutions only, and
with local interactions where dependencies between agentshe claims do not apply to approximate methods that ex-
are asymmetric, meaning that agents can affect others inploit problem structure (e.g., [5]). Central to our problem
a unidirectional manner. This asymmetry, which often oc- representation aréependency graphat describe the re-
curs in domains with authority-driven relationships be- |ationships between agents. The idea is very similar to other
tween agents, allows us to make better use of the localitygraphical models, e.ggraphical gameg6], coordination
of agents’ interactions. We present and analyze a graphi- graphs[5], and multi-agent influence diagranig], where
cal model of such problems and show that, for some C|asse%raphs are used to more compactly represent the interac-
of problems, it can be exploited to yield significant (some- tions between agents to avoid the exponential explosion in
times exponential) savings in problem and solution size, asproblem size. Similarly, our representation of a multi-agent
well as in computational efficiency of solution algorithms.  MDP is exponential only in the degree of the dependency
graph, and can be exponentially smaller than the size of the
flat MDP defined on the joint state and action spaces of all
agents. We focus on asymmetric dependency graphs, where
the influences that agents exert on each other do not have to
be mutual. Such interactions are characteristic of domains

vising optimal control policies for agents in stochastic envi- With authority-based relationships between agents, i.e. low-
ronments. Moreover, MDPs are also being applied to multi- authprlty agents have no control oyer h|gher-_author|ty ones.
agent domains [1, 10, 11]. However, a weak spot of tradi- ~ Given the compact representation of multi-agent MDPs,
tional MDPs that subjects them to “the curse of dimension- &N important question is whether the compactness of prob-
ality” and presents significant computational challenges is /€M representation can be maintained in the solutions, and if
the flat state space model, which enumerates all states the>0; Whether it can be exploited to devise more efficient solu-
agent can be in. This is especially significant for multi-agent tion methods. We analyze the effects of optimization crite-
MDPs, where, in general, itis necessary to consider the joint’i@ @nd shape of dependency graphs on the structure of op-
state and action spaces of all agents. timal ppllCl_es, and for problgms where the compa_ctness can
Fortunately, there is often a significant amount of struc- P& maintained in the solution, we present algorithms that
ture to MDPs, which can be exploited to devise more com- Make use of the graphical representation.
pact problem and solution representations, as well as ef-
ficient solution methods that take advantage of such rep-2  Preliminaries
resentations. For example, a numbeffaxftoredrepresen-

1. Introduction

Markov decision processes [9] are widely used for de-

_ . In this section, we briefly review some background and
This work was supported, in part, by a grant from Honeywell Labs.  jhtroduce our compact representation of multi-agent MDPs.



2.1. Markov Decision Processes

A single-agent MDP can be defined as a n-tuple
(S, A,P,R), whereS = {i} and A = {a} are fi-
nite sets of states and actio3,; S x A x S — [0, 1] de- (b)
fines the transition function (the probability that the agent ]
goes to statg if it executes action in statei is P(i, a, )), Figure 1. Agent Dependency Graphs
andR : S — R defines the rewards (the agent gets a re-
ward of R(7) for visiting statei).> A solution to a MDP
is a policy defined as a procedure for selecting an ac-
tion. It is known [9] that, for such MDPs, there always exist

sitions of an agent are not directly influenced by all other

agents, but rather only by a small subset of them. To exploit

policies that areuniformly-optimal (optimal for all ini- the sparseness n agent§ Interactions, we propose a com-
pact representation that is analogous to the Bayesian net-

tal conditions), stationary (time independent), determin- work representation of joint probability distributions of sev-
istic (always select the same action for a given state), and P : Joint probabiiity .
eral random variables. Given its similarity to other graphical

Markov (history-independent); such policies) €an be de- : : .
. . N models, we label our representatiographical multi-agent
scribed as mappings of states to actianssS — A. MDP (graphical MMDP).

Let us now consider a multi-agent environment with a set . . . .
Central to the definition of a graphical MMDP is a notion

of n agent = = n), each of whom has its X )
n agentsM = {m} (M = n) of adependency graptiigure 1), which shows how agents

own set of statess,, = {i,,} and actions4,, = {a,}.
The most straightforward and also the most general way@ffeCt €ach other. The graph has a vertex for every agent
in the multi-agent MDP. There is a directed edge from ver-

to extend the concept of a single-agent MDP to the fully- h i i h il
observable multi-agent case is to assume that all agents affex k to vertexm ! ag'en't as an Influence on agent.
The concept is very similar tooordination graphg5], but

fect the transitions and rewards of all other agents. Under Jo ok :
these conditions, a multi-agent MDP can be defined SirnplyWe distinguish between two ways agents can influence each
other: (1) an agent can affect another agent’s transitions, in

as alarge MDRS 4, A, Pa, Raq), Where thgoint state ) X ) . . :
spaceS . is defined as the cross product of the state spaceé’Vh'Ch case we use a solid arrow to depict this relationship
in the dependency graph, and (2) an agent can affect an-

of all agents: Sy = S x ... x S, and the joint action h : ds. in which dashed
space is the cross product of the action spaces of all agents?t eragents rewards, in which case we use a dashed arrow

Anm = Ar X ... x A,. The transition and the reward func- in the d.epe.ndency graph. ) , ) )
tions are defined on the joint state and action spaces of all 10 Simplify the following discussion of graphical multi-
agents in the standard wai : Saq x A x Saq — [0, 1] agent MDPs, we also introduce some additional concepts

and Ry : Sy — R. This representation, which we re- and notation pertaining to the structure of the dependency
fer to asflat, is the most general one, in that, by consider- 9raph. For every agent € M, let us label all agents
ing the joint state and action spaces, it allows for arbitrary that directly affectm’s transitions asv;, (P) (parents ofn
interactions between agents. The trouble is that the prob-With respect to transition functioff), and all agents whose
lem (and solution) size grows exponentially with the num- transitions are directly affected by as\,;,(P) (children

ber of agents. Thus, very quickly it becomes impossible to of m with respect to transition functl_oﬁ’). Similarly, we
even write down the problem, let alone solve it. Let us note US8/Vy, (R) to refer to agents that directly affeot’s re-
that, if the state space of each agent is defined on a set ofVards, andV, (R) to refer to agents whose rewards are di-
world features, there can be some overlap in features beTectly affected bym. Thus, in the graph shown in Figure
tween the agents, in which case the joint state space wouldla’Nrﬁ(P) = {1,4}, No(R) = {1,2}, ij;({D_) = {3},

be smaller than the cross product of the state space of alfNdV,; (R) = {4}. We use the terms “transition-related”
agents, and would grow as a slower exponent. For simplic-and “reward-related” parents and children to distinguish be-

ity, we ignore the possibility of overlapping features, but our tWeen the two categories. Sometimes, it will also be help-
results are directly applicable to that case as well. ful to talk about the union of transition-related and reward-
related parents or children, in which case we B§g =
2.2. Graphical Multi-Agent MDPs No (P)UN, (R) andN,y = Ny (P) UN,;; (R). Further-
more, let us label the set of aihcestorsof m (all agents
In many multi-agent domains, the interactions between from which m is reachable) with respect to transition-

agents are only local, meaning that the rewards and tran'€lated and reward-related dependenciesOgy(P) and
O, (R), respectively. Similarly, let us label tldescendants

m

+ +
1 Often, rewards are said to also depend on actions and future states. Fopf m (a” agents reaChab_Ie from) asOm (P) gnd@_m (R)
simplicity, we define rewards as function of current state only, butour A graphical MMDP with a set of agent$! is defined as

model can be generalized to the more general case. follows. Associated with each agent ¢ M is a n—tuple




(Sm, Am, Pm, Rm), Where the state spack,, and the ac- It is easy to see that the size of a problem represented in
tion space4,, are defined exactly as before, but the transi- this fashion is exponential in the maximum number of par-
tion and the reward functions are defined as follows: ents of any agent, but unlike the flat model, it does not de-
P Sy iy X S X A X Sy — [0,1] pend on the total number of agents. Therefore, for problems
m (P) (1) where agents have a small number of parents, space sav-
R SN,;,(R) X Sm — R, ings can be significant. In particular, if the number of par-
ents of any agent is bounded by a constant, the savings are

wheres,, p) ands,,_ ) are the joint state spaces of the exponential (in terms of the number of agents).

transition-related and reward-related parentsnpfrespec-
tively. In other words, the transition function of agent
specifies a probability distribution over its next stafgs
as a function of its own current stafg,, and the current
states of its parent‘SN;( P) and its own actiomd,,,. That is
P(iNmP), im, Am, Jjm ) iS the probability that agent goes
to statej,, if it executes actiom,, when its current state is
i, and the states of its transition-related parents RIEp)-

3. Properties of Graphical Multi-Agent MDPs

Now that we have a compact representation of multi-
agent MDPs, two important questions arise. First, can we
compactly represent the solutions to these problems? And
second, if so, can we exploit the compact representations of
el X , the problems and the solutions to improve the efficiency of
The reward funct|o'n is defined analogously on the current the solution algorithms? Positive answers to these questions
states of thg agent itself and the reyvard-related parents.  yould be important indications of the value of our graphi-

Also notice that we allow cycles in the agent dependency ., problem representation. However, before we attempt to

graph, and moreover the same agent can both influence angnswer these questions and get into a more detailed analy-

.be i_nfluenced by slome Hothefr agent (e..g.. :gen&nd gl sis of the related issues, let us lay down some groundwork
in Figure 1a). We also allow faasymmetridnfluences be- o il simplify the following discussion.

tween agents, i.e. it could be the case that one agent affects ;.o ¢ all, let us note that a graphical multi-agent MDP

fche other, but novice versa(e.g. agentn, in Figure 1a, IS s just a compact representation, and any graphical MMDP
influenced by agent 1, but the opposite is not true). This is can be easily converted to a flat multi-agent MDP, analo-
often the case in domains where the relationships betweerbously to how a compact Bayesian network can be con-

agents are authonty—baged. It turns O.Ut t.hat the e‘X'Ste"‘CQ/erted to ajoint probability distribution. Therefore, all prop-
of such asymmetry has important implications on the com- erties of solutions to flat multi-agent MDPs (e.g. station-

pactness of the solution and the complexity of the solution arity, history-independence, etc.) also hold for equivalent

algorithms. We return to a discussion of the CONSequences, shiems that are formulated as graphical MMDPs. Thus,

of th|§ qsymmetry in the fo:]lowmg igctmns. . h the following simple observation about the form of policies
It is important to note that, in this representation, each ;| graphical MMDPs holds.

transition and reward function only specifies the rewards

and transition probabilities of agent, and contains no in-  Observation 1 Foragraphical MMDP(S,., Ay, Prn, R,
formation about the rewards and transitions of other agents> € M, With an optimization criterion for which opti-
This implies that the reward and next state of agerare ~ Mal policies are Markov, stationary, and determinis-
conditionally independent of the rewards and the next stateslic,” such policies can be representedias : Sx,, — A,

of other agents, given the current actionmefand the state ~ WhereSx,, is a cross product of the state spaces of some
of m and its parents/, . Therefore, this model does notal- Subset of all agentsi;,, € M).

low for correlations between the rewards or the next states  Clearly, this observation does not say much about the
of different agents. For example, we cannot model the sit- compactness of policies, since it allows, = M, which
uation where two agents are trying to go through the samecorresponds to a solution where an agent has to consider the
door and whether one agent makes it depends on whethestates of all other agents when deciding on an action. If that
the other one does; we can only represent, for each agentwere always the case, using this compact graphical repre-
the probability that it makes it, independently of the other. sentation for the problem would not (by itself) be benefi-
This limitation of the model can be overcome by “lumping cial, because the solution would not retain the compactness
together” groups of agents that are correlated in such waysand would be exponential in the number of agents. How-
into a single agent as in the flat multi-agent MDP formula- ever, as it turns out, for some problends,, can be signif-

tion. In fact, we could have allowed for such dependenciesicantly smaller thanM. Thus we are interested in deter-

in our model, but it would have complicated the presenta- mining, for every agenir, theminimalset of agents whose
tion. Instead, we assume that all such correlations have alstatesn’s policy has to depend on:

ready been dealt with, and the resulting problem only con-
sists of agents (perhaps composite ones) whose states arel We will implicitly assume that optimal policies are Markov, station-
rewards have this conditional independence property. ary, and deterministic from now on.




Definition 1 In a graphical MMDP, a set of agent%,,, is [ is in the minimal domain ofn, it must influencen’s re-

a minimal domainof an optimal policyr,, : Sx,, — Am wards in a non-trivial manner. Thus, & is non-Markov
of agentm iff, for any set of agent® and any policyr,, : on Sy, , agentm should be able to expand the domain of
Sy — A, the following implications hold: its policy to makeS; Markov, since that, in general, would
increasem’s payoff. The fourth assumption says that the
Y C Xy = U(m,) <U(mm) agent’s state is Markov only on supersets of its minimal do-
Y2 X, = Ulr,) <U(mm), main, because the agent would want to increase the domain

of its policy just enough to make its state Markov. These as-

sumptions are slightly redundant (e.g., 4 could be deduced
Essentially, this definition allows us to talk about the sets from weaker conditions), but we use this form for brevity.

of agents whose joint state space is necessary and sufficient

for determining optimal actions of agent. From now on, 3.2. Transitivity

whenever we use the notatiaf), : Sy, — A,,, We im-

whereU (7) is the payoff that is being maximized.

plicitly assume thak,,, is the minimal domain ofr,;,. Using the results of the previous sections, we can now
formulate an important claim that will significantly simplify
3.1. Assumptions the analysis that follows.

Proposition 1 Consider two agents:,! € M, where the

As mentioned earlier, one of the main goals of the fol- | - 20 ;
optimal policies ofm and ! have minimal domains ot,,

lowing sections will be to characterize the minimal domains >
of agents’ policies under various conditions. Let us make a 2nd i, respectivelyg,,, : Sx,, — Am, m : Sx, — A).
few observations and assumptions about properties of min-1"€n, under Assumption 1, the following holds:
imal domains that allow us to avoid some non-interesting
degenerate special cases and to focus on the “hardest” cases
in our analysis. These assumptions do not limit the generalproof: We will show this by contradiction. Let us consider
complexity results that follow, as the latter only require that g agent fromi’s minimal domain:k € A;. Let us as-
there exissomeproblems for which the assumptions hold. - g me (contradicting the statement of the proposition) that
In the rest of the paper, we implicitly assume thatthey hold. ; ¢ x ' putk ¢ x,,. Consider the set of agents that con-
Central to our future discussion will be an analysis of gjsts of the union of the two minimal domaifs, and X},
which random variables (rewards, states, etc.) depend oryt with agent removed?,, = X,, |J(X;\k). Then, since
which others. It will be very useful to talk about the con- 5, | 2 X, Assumption 1.4 implies tha, is non-Markov on

ditional independence of future values of some variables,sym_ Thus, Assumption 1.3 impligs¢ X,,, which contra-
given the current values of others. dicts our earlier assumptioll

Definition 2 We say that a random variabl® is Markov Essentially, this proposition says that the minimal do-
on the joint state spac§) of some set of agend$ if, given mains have a certain “transitive” property: if agemineeds

the current values of all states iy, the future values of ~ to base its action choices on the state of adetten, in

X are independent of any past information. If that property general;n also needs to base its actions on the states of all

does not hold, we say thaf is non-Markov orSy,. agents in the minimal domain éf As such, this proposi-
tion will help us to establish lower bounds on policy sizes.

In the rest of the paper, we analyze some classes of prob-
lems to see how large the minimal domains are, under var-
ious conditions and assumptions, and for domains where
minimal domains are not prohibitively large, we outline so-
lution algorithms that exploit graphical structure. In what
follows, we focus on two common scenarios: one, where the
agents work as a team and aim to maximize the social wel-

The first assumption allows us to avoid some special casedare of the group (sum of individual payoffs), and the other,
with sets of agents with highly-correlated states, where Where each agent maximizes its own payoff.

equivalent policies can be constructed as functions of ei-

ther of the sets. The second assumption implies that an op4. Maximizing Social Welfare

timal policy of every agent depends on its own state. The

third assumption says that the state space of any adjeatt The following proposition characterizes the structure of
is in the minimal domain ofn must be Markov on the state the optimal solutions to graphical multi-agent MDPs under
space of the minimal domain. Since the state space of agenthe social welfare optimization criterion, and as such serves

ZGXm = X nga

Assumption 1 For a minimal domain¥,,, of agentm’s op-
timal policy, and a set of agenjs, the following hold:

X, IS unique

m € X,

le X, = & isMarkovonSy,,
Sm is MarkovonSy < YD X,

W=



as an indication of whether the compactness of this particu-cial payoff. Also, suppose that the interactions between the
lar representation can be exploited to devise an efficient so-agents are only local — for example, the agents are operat-
lution algorithm for such problems. We demonstrate that, ing an assembly line, where each agent receives the product
in general, when the social welfare of the group is consid- from a previous agent, modifies it, and passes it on to the
ered, the optimal actions of each agent depend on the statesext agent. Let us now suppose that each agent has a certain
of all other agents (unless the dependency graph is disconprobability of breaking down, and if that happens to at least
nected). Let us note that this case where all agents are maxiene of the agents, the assembly line fails. In such an exam-
mizing the same objective function is equivalent to a single- ple, the optimal policy for the agents would be to participate
agent factored MDP, and our results for this case are analin the assembly-line production until one of them fails, at
ogous to the well-known fact that the value function in a which point all agents should switch to working on their lo-
single-agent factored MDP does not, in general, retain thecal tasks (perhaps processing items already in the pipeline).
structure of the problem [8]. Clearly, in that example, the policy of each agent is a func-
tion of the states of all other agents.
Proposition 2 For a graphical MMDP with a connected The take-home message of the above is that, when the
(ignoring edge directionality) dependency graph, under the 5gents care about the social welfare of the group, even
optimization criterion that maximizes the social welfare of |yhan the interactions between the agents are only local, the
all agents, an optimal policy,, of agentn, in general, de-  54ents' policies depend on the joint state space of all agents.
pends on the states of all other agents,t,g.: Sa — Anm. The reason for this is that a state change of one agent might
lead all other agents to want to immediately modify their
behavior. Therefore, our particular type of compact graph-
ical representation (by itself and without additional restric-
tions) cannot be used to compactly represent the solutions.

Proof (Sketch): Agentm must, at the minimum, base its ac-
tion decisions on the states of its immediate (both transition-
and reward-related) parents and children. Indeed, agent
should worry about the states of its transition-related par-
ents, N, (P), because their states affect the one-step tran-
sition probabilities ofn, which certainly have a bearingon 5 Maximizing Own Welfare
m’s payoff. Agentm should also include in the domain of

its policy the states of its reward-related parent, (1), In this section, we analyze problems where each of the
because they affech’s immediate rewards and agemt  qents maximizes its own payoff. Under this assumption,
might need to act so as to “synchronize” its state with the \njike the discouraging scenario of the previous section,
state of its parents. Similarly, since the agent cares about thgy,o complexity of agents’ policies is slightly less frighten-

social welfare of all agents, it will need to consider the ef- ;g The following result characterizes the size of the min-

fect that its actions have on the states and rewards of its im'imal domain of optimal policies for problems where each
mediate children, and must thus base its policy on the statesOlgent maximizes its own utility.

of itsimmediate childretV,} (P) and,/ (R) to potentially

“set them up” to get higher rewards. Proposition 3 For a graphical MMDP with an optimiza-
Having established that the minimal domain of each tion criterion where each agent maximizes its own reward,

agent must include the immediate children and parents ofthe minimal domain of’s policy consists ofy itself and all

the agent, we can use the transitivity property from the pre- of its transition- and reward-related ancestor;, = &,

vious section to extend this result. Although Proposition 1 where we defing,. = m|J O, (P)J O;, (R).

only holds under the conditions of Assumption 1, for our

purpose of determining the complexity of policiesgen- Proof (Sketch): To show the correctness of the proposition,

eral, it is sufficient that there exist problems for which As- we need to prove that, (1) the minimal domain must include

sumption 1 holds. It follows from Proposition 1 that the atleastn itself and its ancestorsy{,, 2 &), and (2) that

minimal domain of agent» must include all parents and &, does not include any other agents,( C £.).

children of m’s parents and children, and so forth. Fora  We can show (1) by once again applying the transitiv-

connected dependency graph, this expands the minimal doity property. Clearly, an agent’s policy should be a function

main of each agent to all other agentshih. B of the states of the agent’s reward-related and transition-
The above result should not be too surprising, as it makesrelated parents, because they affect the one-step transition

clear, intuitive sense. Indeed, let us consider a simple exam-robabilities and rewards of the agent. Then, by Proposi-

ple that has a flavor of a commonly-occurring production tion 1, the minimal domain of the agent's policy must also

scenario. Suppose that there is a set of agents that can einclude all of its ancestors.

ther cooperate to generate a certain product, yielding a very We establish (2) as follows. We assume that it holds for

high reward, or they can concentrate on some local tasksall ancestors ofn, and show that it must then hold fes.

that do not require cooperation, but which have lower so- We then expand the statement to all agents by induction.



Let us fix the policiesr;, of all agents except.. Consider
the n-tuple(Sg;l,Am, PE;L,R&;), whereP; - andR, - are
defined as follows:

Pg;l (ig;l7am7jg;l) = Pm(iN;(P)a my Qs Jm)

H Py (7:./\/’];(13)7 Uk, Wk(ig;)ajk) 2)

k€O,
Rg* (i5* ) = Rm,(ij\[;(Ry im,)

m m

The above constitutes a fully-observable MDP&n. and

A,, with transition functionP,, and reward functiorz,,,.
Let us label this decision proced3$D P;. By properties of
fully-observable MDPs, there exists an optimal stationary
deterministic solutionr,, of the form=,, : Sp - — A,

Also consider the following MDP on an augmented state

space thatincludes the joint state space of all the agents (an

not justm’s ancestors)M D P, (Samty Amy Pa, Rag),
wherePy, and R are defined as follows:

PM(iMaa‘majM) = Pm(iNT;(P)aim7am7jm)

IT P (ine oy ins el ), )

k€O,

II

ke M\m\O,,
RM (ZM) = Rm(iNT;(R)a im)

. A &
Py (ZN;(P)Jk’?ﬂ-k(ZM)v]k)

Basically, we have now constructed two fully-observable
MDPs: M DP; that is defined onS&;, and M DP;, that
is defined onS,¢, where M DP; is essentially a “projec-
tion” of MDP, onto S —. We need to show that no so-
lution to M DP, can have a higher val@ghan the opti-
mal solution toM DP;. Let us refer to the optimal solu-
tionto M DP; asr),. Suppose there exists a solutiof) to
M D P, that has a higher value thar},. The policyr2, de-

the joint space of all agent${,) to m’s actions. Then, by
using induction, we can expand this statement to all agents
(for acyclic graphs we use the root nodes as the base case,
and for cyclic graphs, we use agents that do not have any an-
cestors that are not simultaneously their descenddiits).

The point of the above proposition is that, for situations
where each agent maximizes its own utility, the optimal ac-
tions of each agent do not have to depend on the states of
all other agents, but rather only on its own state and the
states of its ancestors. In contrast to the conclusions of Sec-
tion 4, this result is more encouraging. For example, for de-
pendency graphs that are trees (typical of authority-driven
organizational structures), the number of ancestors of any
agent equals the depth of the tree, which is logarithmic in
the number of agents. Therefore, if each agent maximizes
iYLS own welfare, the size of its policy will be exponential in

e depth of the tree, but only linear in the number of agents.

5.1. Acyclic Dependency Graphs

Thus far we have shown that problems where agents op-
timize their own welfare can allow for more compact policy
representations. We now describe an algorithm that exploits
the compactness of the problem representation to more ef-
ficiently solve such policy optimization problems for do-
mains with acyclic dependency graphs.

It is a distributed algorithm where the agents exchange
information, and each one solves its own policy optimiza-
tion problem. The algorithm is very straightforward and
works as follows. First, the root nodes of the graph (the ones
with no parents) compute their optimal policies that are sim-
ply mappings of their own states to their own actions. Once
a root agent computes a policy that maximizes its welfare,
it sends the policy to all of its children. Each child waits to
receive the policies, k € N, from its ancestors, then

fines some stochastic trajectory for the system over the statd0'ms @ MDP on the state space of itself and its ancestors as

spaceS,,. Let us label the distribution over the state space
at timet as p(in, t). It can be shown that under our as-

in (eq. 2). It then solves this MDRS,.—, Ay, Pe—, R-)
to produce a policyr,, : £ — A,,, at which point it

m

Sumptions we can a|WayS construct a non_stationary po“cysends the pO“Cy and the pO|iCieS of its ancestors to its chil-

Ta(t) + Sg- — Ay, for MDP; that yields the same dis-
tribution (i, t) Over the state spacg.- as the one pro-
duced byr2,. Thus, there exists a non-stationary solution to
M D P, that has a higher payoff thar},, which is a contra-

diction, since we assumed thg}, was optimal forA/ D P; .

dren. The process repeats until all agents compute their op-
timal policies. Essentially, this algorithm performs, in a dis-
tributed manner, a topological sort of the dependency graph,
and computes a policy for every agent.

We have therefore shown that, given that the policies of 5.2. Cyclic Dependency Graphs

all ancestors ofn depend only on their own states and the

states of their ancestors, there always exists a policy that

maps the state space of and its ancestorsSg-) to m’s

We now turn our attention to the case of depen-
dency graphs with cycles. Note that the complexity

actions (4,,) that is at least as good as any policy that maps result of Proposition 3 still applies, because no assump-

3 The proof does not rely on the actual type of optimization criterion
used by each agent and holds for any criterion that is a function only
of the agents’ trajectories.

tions about the cyclic or acyclic nature of dependency
graphs were made in the statement or proof of the proposi-
tion. Thus, the minimal domain of an agent’s policy is still
the set of its ancestors.



The problem is, however, that the solution algorithm of agents use. Let us say that if an agent receives a history of
the previous section is inappropriate for cyclic graphs, be- rewardsH(r) = {r(t)} = {r(0),7(1),...}, its payoff is
cause it will deadlock on agents that are part of a cycle, U(H(r)) = U(r(0),7(1),...). Then, in order for our re-
since these agents will be waiting to receive policies from sults to holdU has to bdinear additive
each other. Indeed, when self-interested agents mutually af-
fect each other, it is not clear how they should go about U(H(r1 +12)) = U(H(r1)) + U(H(r2))  (6)
constructing their policies. Moreover, in general, for such ) ) )
agents there might not even exist a set of stationary de-Notice that this assumption holds for the commonly-used
terministic policies that are in equilibrium, i.e., since the fisk-neutral MDP optimization criteria, such as expected to-
agents mutually affect each other, the best responses otal reward, expected _total discounted reward,_ar_pl average
agents to each others’ policies might not be in equilibrium. Per-step reward, and is, therefore, not greatly limiting.

A careful analysis of this case falls in the realm of  In the rest of this section, for simplicity, we focus on
Markov games, and is beyond the scope of this paper. How-Problems with two agents — more specifically, on two in-
ever, if we assume that there exists an equilibrium in sta-teresting special cases, shown in Figure 1b and 1c. How-
tionary deterministic policies, and that the agents in a cy- €ver, the results can be generalized to problems with multi-
cle have some “black-box” way of constructing their poli- Ple agents and arbitrary dependency graphs.
cies, we can formulate an algorithm for computing optimal ~ First of all, let us note that both of these problems have
policies, by modifying the algorithm from the previous sec- cyclic dependency graphs. Therefore, if the reward func-
tion as follows. The agents begin by finding the largest cy- tions of the agents were not additively-separable, per our
cle they are a part of, and then, after the agents receive p0|i.earlier results of Section 5, there would be no guarantee that
cies from their parents who are not also their descendantsthere exists an equilibrium in stationary deterministic poli-
the agents proceed to devise an optimal joint policy for their Cies. However, as we show below, our assumption about the

cycle, which they then pass to their children. additivity of the reward functions changes that and ensures
that an equilibrium always exists.
6. Additive Rewards Let us consider the case in Figure 1b. Clearly, the policy

of neither agent affects the transition function of the other.
In our earlier analysis, a reward functidt), of an agent ~ Thus, given our assumptions about additivity of rewards and
could depend in an arbitrary way on the current states of theutility functions, it is easy to see that the problem of maxi-
agent and its parents (eq. 1). In fact, this is why agents, inmizing the payoff is separable for each agent. For example,
general, needed to “synchronize” their states with the stategfor agent 1 we have:
of their parents (and children in the social welfare case),

which, in turn, was why the effects of reward-related depen- hax Ur(H(R1)) = hax Ur(H(ri +r21)) =
dencies propagated just as the transition-related ones did. max U (H(r11)) + max U (H(ra1)) @
In this section, we consider a subclass of reward func- T T2

tions whose effects remain local. Namely, we focus on

additively-separableeward functions: Thus, regardless of what policy agent 2 chooses, agent

1 should adopt a policy that maximizes the first term in
Ron(ipg= (> im) = Tmm (im) + Z Pk (in), () (eq. 7). In game-theoretic terms, each of the agents has a
(weakly) dominant strategy, and will adopt that strategy, re-
gardless of what the other agent does. This is what guaran-
wherer,;, is a function ¢, : S, — R) that specifies the  tees the above-mentioned equilibrium. Also notice that this
contribution of agenk to m’s reward. In order for all of our  result does not rely on reward linearity (eq. 5) and holds for
following results to hold, these functions have to be subject any additively-separable (eq. 4) reward functions.
to the following condition: Now that we have demonstrated that, for each agent,
TR o it suffices to optimize a function of only that agent’s own
Tk (ik) = Lns (Tin (1)) ©) states and actions, it is clear that each agent can construct
wherel,,,, is a positive linear functionlf,;(z) = ax + its optimal policy independently. Indeed, each agent has to
3, a > 0,3 > 0). This condition implies that agents’ pref- solve a standard MDP on its own state and action space with
erences over each other states are positively (and linearly) slightly modified reward function®,,, (i,,) = rmm (im),
correlated, i.e., when an agent increases its local rewardwhich differs from the original reward function (eq. 4) in
its contribution to the rewards of its reward-related children that it ignores the contribution efi’'s parents to its reward.
also increases linearly. Let us now analyze the case in Figure 1c, where the state
Furthermore, the results of this section are only valid un- of agent 1 affects the transition probabilities of agent 2, and
der certain assumptions about the optimization criteria thethe state of agent 2 affects the rewards of agent 1. Again,

keEN . (R)



without the assumption that rewards are additive, this cy- 7. Conclusions
cle would have caused the policies of both agents to depend
on the cross product of their state spaSes< S,, and fur- We have analyzed the use of a particular compact, graph-
thermore the existence of equilibria in stationary determin- ical representation for a class of multi-agent MDPs with lo-
istic policies between self-interested agents is not guaran-cal, asymmetric influences between agents. We have shown
teed. However, when rewards are additive, the problem isthat, generally, because the effects of these influences prop-
simpler. Indeed, due to our additivity assumptions, we can agate with time, the compactness of the representation is
write the optimization problems of the two agents as: not fully preserved in the solution. We have shown this for
multi-agent problems with the social welfare optimization
mnax Ui(..) = max Ur(H(ru)) + max Ur(H(r12)) criteriog, Whpich are equivalent to single-agen'? problems,
max Us(...) = max Us(H(r21)) + max Uz (H(ra2)) and for which similar results are known. We have also ana-
T2 m T2 lyzed problems with self-interested agents, and have shown
(®) the complexity of solutions to be less prohibitive in some
Notice that here the problems are no longer separable (as irtases (acyclic dependency graphs). We have demonstrated
the previous case), so neither agent is guaranteed to have #hat under further restrictions on agents’ effects on each
dominant strategy. However, if we make use of the assump-other (positive-linear, additively-separable rewards), local-
tion that the rewards are positively and linearly correlated ity is preserved to a greater extent — equilibrium sets of sta-

(eq. 5), we can show that there always exists an equilib-tionary deterministic policies for self-interested agents al-
rium in stationary deterministic policies. This is due to the ways exist even in some classes of problems with reward-

fact that a positive linear transformation of the reward func-
tion does not change the optimal policy (we show this for
discounted MDPs, but the statement holds more generally):

Observation 2 Consider two MDPs:A = (S, A, R, P)
and A’ = (S, A R, P), whereR'(s) = «a(R(s)) + 3,

a > 0andfg > 0. Then, a policyr is optimal for A un-
der the total expected discounted reward optimization crite-
rion iff it is optimal for A".

Proof (Sketch): It is easy to see that the linear transforma-
tion R'(i) = aR(i) + S of the reward function will lead
to a linear transformation of th§ function: Q'(¢, a)
aQ(i,a) + B(1 —v)~1, wherey is the discount factor. In-
deed, the multiplicative factar just changes the scale of all
rewards, and the additive fact@rsimply produces an ex-
tra discounted sequence of rewards that sunggto-~) !
over an infinite horizon. Then, since the optimal policy is
7(i) = max, aQ(i,a) + B(1 — )~ = max, Q(i,a), a
policy = is optimal forA iff it is optimal for A’. R

Observation 2 implies that, for any poliey, a policyms
that maximizes the second term@f in (eq. 8) will be si-
multaneously maximizing (given;) the second term df’,
in (eqg. 8). In other words, given any;, both agents will
agree on the choice of;. Therefore, agent 1 can find the
pair (71, m2) that maximizes its payoft/; and adopt that
m1. Then, agent 2 will adopt the corresponding since de-
viating from it cannot increase its utility.

To sum up, when rewards are additively-separable (eq. 4)
and satisfy (eq. 5), for the purposes of determining the min-
imal domain of agents’ policies (in two-agent problems),

we can ignore reward-related edges in dependency graphs.

Furthermore, for graphs where there are no cycles with

transition-related edges, the agents can formulate their opti{11]

mal policies via algorithms similar to the ones described in
Section 5.1, and these policies will be in equilibrium.

related cyclic relationships between agents.

Our future work will combine the graphical representa-
tion of multi-agent MDPs with other forms of problem fac-
torization, including constrained multi-agent MDPs [4].
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