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Abstract

The majority of the work in the area of Markov decision processes has focused on expected values of rewards in the
objective function and expected costs in the constraints. Although several methods have been proposed to model risk-
sensitive utility functions and constraints, they are only applicable to certain classes of utility functions and allow limited
expressiveness in the constraints. We propose a construction that extends the standard linear programming formulation of
MDPs by augmenting it with additional optimization variables, which allows us to compute the higher order moments of
the total costs (and/or reward). This greatly increases the expressive power of the model, and supports reasoning about the
probability distributions of the total costs (reward). Consequently, this allows us to formulate more interesting constraints
and to model a wide range of utility functions. In particular, in this work we show how to formulate the constraint that
bounds the probability of the total incurred costs falling within a given range. Constraints of that type arise, for example,
when one needs to bound the probability of overutilizing a consumable resource. Our construction, which greatly increases
the expressive power of our model, unfortunately comes at the cost of significantly increasing the size and the complexity of
the optimization program. On the other hand, it allows one to choose how many higher order moments of the costs (and/or
reward) are modeled as a means of balancing accuracy against computational effort.

1 Introduction

Markov processes are widely used to model stochastic environments, due to their expressiveness and analytical tractability.
In particular, unconstrained (e.g. [3, 4, 8, 15]) as well as constrained (e.g. [1, 2]) Markov decision processes have gained
significant popularity in the AI and OR communities as tools for devising optimal policies under uncertainty. The vast
majority of the work in the area has focused on optimization criteria and constraints that are based on the expected values
of the rewards and costs. However, such risk-neutral approaches are not always applicable and expressive enough,1 thus
precipitating the need for extending the MDP framework to model risk-sensitive utility functions and constraints.

Several approaches [9, 12, 13] to modeling risk-sensitive utility functions have been proposed that work by transforming
risk-sensitive problems into equivalent risk-neutral problems, which can then be solved by dynamic programming. However,
this transformation only works for a certain class of utility functions. Namely, this has been done for exponential utility
functions that are characteristic of agents that have “constant local risk aversion” [14] or obey the “delta property” [9],
which says that a decision maker’s risk sensitivity is independent of his current wealth. This approximation has a number
of very nice analytical properties, but is generally considered somewhat unrealistic [9]. Our work attempts to address this
issue via approximate modeling of a more general class of utility functions.

As with utility functions, there has been a significant amount of work on risk-sensitive constraints in MDPs. These
methods typically work by constraining or including in the objective function the variance of the costs [6, 7, 10, 18, 19] or
reasoning about sample-path costs in the case of per unit-time problem formulations [2, 16, 17]. However, in some cases,
reasoning about the variance only is also not expressive enough (see [5] for a more detailed discussion).

We propose a method that allows explicit reasoning about the probability distributions of the total reward in the objective
function and the distribution of costs in constraints, thus allowing us to represent a wide class of interesting optimization
criteria and constraints. In this work, we describe a method for handling probabilistic constraints, but the approach is also
directly applicable to risk-sensitive objective functions. We focus on transient (or episodic) Markov processes [11] and

1As pointed out, for example, by Ross and Chen in the telecommunication domain [16].
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base our approach on the standard occupancy-measure linear programming formulation of constrained Markov decision
processes (CMDPs). We augment the classical program with additional optimization variables, which allows us to compute
the higher order moments of the total incurred costs for stationary Markov policies. This enables us to reason about the
probability distributions of the total costs, and consequently, to express more interesting constraints such as bounding the
probability that the total costs fall within a given range (or exceed a threshold).

It is important to note that, in general, arbitrary utility functions and arbitrary constraints do not obey the Markov
property, which means that stationary Markov (history-independent) policies are not guaranteed to be optimal under such
utility functions and constraints. However, given the practical difficulty of implementing non stationary history-dependent
policies, in this work we limit the search to the class of stationary Markov policies, i.e. we are interested in finding the best
policy that satisfies the given constraints and maximizes the given utility function, among the class of stationary history-
independent policies.

2 Preliminaries

We formulate our optimization problem as a stationary, discrete-time, fully-observable constrained Markov decision pro-
cess. In this section, we review some well-known facts from the theory of standard [3, 15] and constrained [1] fully-
observable Markov decision processes.

A standard constrained Markov decision process (CMDP) can be defined as a tuple〈S,A,P,α, r, c〉, whereS is a finite
set of states,A is a finite set of actions,P = [P a

ij ] : S×S×A → [0, 1] defines the transition function (P a
ij is the probability

that the agent will go to statej if it executes actiona in statei), α = [αi] : S → [0, 1] is the initial probability distribution
over the state space,r = [ria] : S ×A → < defines the reward function (agent receives a reward ofria for executing action
a in statei), andc = [ci] : S → < are the costs.2

A solution to a CMDP is a policy that prescribes a procedure for selecting an action that typically maximizes some
measure of performance (based on the rewardsr), while satisfying constraints (based on the costsc). A stationary Markov
policy π can be described as a mapping of states to probability distributions over actions:π = [πia] : S × A → [0, 1]. We
address the problem of finding optimal stationary Markov policies, under probabilistic constraints (defined in section 3).

For a Markov system, the initial probability distributionα, the transition probabilities, and the policy together com-
pletely determine the evolution of the system in a stochastic sense:

ρ(t+ 1) = P̃ρ(t), ρ(0) = α, (1)

whereρ(t) = [ρi(t)] is the probability distribution of the system at timet, andP̃ = P̃(π) = [P̃ij ] is the probability
transition matrix induced by the policy (̃Pij =

∑
a πiaP

a
ij).

In this work we focus our attention on discrete-timetransient (or episodic) problems, where there is no predefined
number of time steps that the agent spends in the system, but it cannot stay there forever. Given a finite state space, this
assumption implies that there have to exist some state-action pairs{i, a} for which

∑
j P

a
ij < 1.

For most of the analysis in this paper we use the expected total reward as the policy evaluation criterion:V (π,α) =∑∞
t=0

∑
i ρi(t)

∑
a πiaria, which, for a transient system with bounded rewards, converges to a finite value.

A standard CMDP where constraints are imposed on the expected total costs, and the expected total reward is being
maximized can be formulated as the following linear program [1, 15]:

max
∑

i

∑
a

xiaria

∣∣∣∣ ∑
a xja −

∑
i

∑
a xiaP

a
ij = αj∑

i ci
∑

a xia ≤ C0, xia ≥ 0, (2)

whereC0 is the upper bound on the expected total incurred cost, and the optimization variablesxia are called theoccupancy
measureof a policy and be interpreted as the expected total number of times actiona is executed in statei.

3 Problem Description

Given a standard constrained MDP model〈S,A,P,α, r, c〉, we would like to find a policy that maximizes the total expected
reward, while satisfying the constraints on the probability of that the cost exceed a given upper bound, i.e.P [C ≥ C0] ≤ p0,

2The costs are said to be incurred for visiting states rather than executing actions, but all results can be trivially extended to the latter case. Also note
that most interesting problems involve several costs, and while we make the simplification that there is only one cost incurred for visiting a state, this is
done purely for notational brevity. All results presented in this work are directly applicable (and most useful) for problems with several costs.
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whereC is the total cost. In other words, we need to solve the following optimization problem:

max
∑

i

∑
a

riaxia

∣∣∣∣ ∑
a xja −

∑
i

∑
a xiaP

a
ij = αj

P [C ≥ C0] ≤ p0,
(3)

where the optimization variablesxia have the standard interpretation of the expected total number of times actiona is
executed in statei. If P [C ≥ C0] could be expressed as a simple function ofx = [xia], the problem would be solved, as
one could simply plug the expression into the above program. Unfortunately, things are not as wonderful, and the above
dependency is significantly more complex.

A simple linear approximation to the above program (when costs are non-negative) can be obtained by using the Markov
inequality:

P (C ≥ C0) ≤
E[C]
C0

=
1
C0

∑
i

ci
∑

a

xia, (4)

which allows one to expressP (C ≥ C0) as a linear function of the occupancy measurex. Our investigation [5] of
this approximation showed, unsurprisingly, that this linear approximation is computationally cheap but usually leads to
suboptimal policies, because the Markov inequality provides a very rough upper bound on the probability that the total cost
exceed a given limitC0. The purpose of this work is to improve this approximation.

To this end, we are going to come up with a system of coordinatesy, such that the constraintP [C ≥ C0] ≤ p0 can be
expressed as a simple function ofy, so that the expression can be plugged into the optimization program (eq. 3). However,
one has to note that there are only|S||A| free parameters in the system, so not all optimization variablesy are going to be
independent and additional constraints might have to be imposed.

As mentioned earlier, the method presented in this paper works for more general problems than (eq. 3), which we use
as an interesting example to illustrate the approach. Section 7 comments on other problems that this method applies to.

4 Calculating the Probability of Exceeding Cost Bounds

To find the probability of exceeding the cost bounds, it would be very helpful to know the probability density function (pdf)
fC(C). 3 Then, the probability of exceeding the cost bounds could be expressed simply asP [C ≥ C0] =

∫∞
C0
fC(C)dC.

Unfortunately,fC(C) is not easily available. However, it is a well-known fact that under some conditions the moments
of a random variable completely specify its distribution.4 Thekth moment of a random variablex is defined as the expected
value ofxk: Ek

x =
∫∞
−∞ fx(x)xkdx. One way to compute the pdffx(x), given the momentsEk

x is via an inverse Legendre

transform.5 Indeed, the Legendre polynomialsPl(x) = 1
2ll!

dl

dxl (x2 − 1)l form a complete orthogonal set on the interval

[−1, 1]:
∫ 1

−1
PlPm = 2

2l+1δlm. Therefore, a function on that interval[−1, 1] can be approximated as a weighted sum of
Legendre polynomials:f(x) =

∑∞
l=0 blPl(x), wherePl(x) is thelth Legendre polynomial, andbl is a constant coefficient,

obtained by multiplying the polynomials byf(x), integrating over[−1, 1], and using the orthogonality condition:

bl =
2l + 1

2

∫ 1

−1

f(x)Pl(x)dx =
∑

k

aklE
k
x (5)

Realizing that
∫
f(x)Pl(x)dx is just a linear combination of several momentsEk

x , we get:

f(x) =
∞∑

l=0

∑
k

aklE
k
xPl(x), (6)

where in the second summation, the indexk runs over all powers ofx present inPl. Therefore, for anx ∈ [−1, 1], we can
express the probability thatx is greater than somex0 as a linear function of the moments:

P [x ≥ x0] =
∫ 1

x0

fx(x)dx =
∫ 1

x0

∞∑
l=0

∑
k

aklE
k
xPl(x)dx =

∑
k

ψk(x0)Ek
x , (7)

3Note that, in general, for an MDP with finite state and action spaces, the total costs have a discrete distribution. However, we make no assumptions
about the continuity of the pdffC(C), and our analysis carries through for both continuous and discrete density functions; in the latter case,fC(C) can
be represented as a sum of Dirac delta functions:fC(C) =

∑
k pkδ(x− pk).

4This is true when the power series of the moments that specifies the characteristic function converges, which holds in our case due to the transient
nature of the Markov process and the fact that costs are finite.

5A more common and natural way involves inverting the characteristic function ofx via a Fourier transform, but the method does not work for this
problem.
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whereψk(x0) =
∑

l akl

∫ 1

x0
Pl(x)dx, in which the indexl runs over all polynomials that include thekth power ofx.

Therefore, if we normalizeC to be in the interval[−1, 1] (section 6 discusses in more detail the necessary transformation
for a transient system), we could use the above method to expressP [C ≥ C0] as a linear function of the momentsEk

C .
Now, if we could come up with a system of coordinatesy, such that the momentsEk

C could be expressed viay, we might
be able to formulate a manageable approximation to (eq. 3). However, it is important to note that unless we use an infinite
number of moments, the resulting program will be an approximation to the original one.

5 Computing the Moments

As mentioned in the previous section, the properties of the pdf of the total cost are not immediately obvious, as the total
cost is a sum of a random number of dependent random variables. We do, however, know how the system evolves with
time, i.e. given the initial probability distribution, a policy, and the corresponding transition probabilities over states, we
know the probability that the system is in statei at timet – it is simply(P̃tα)i, whereP̃ = P̃(π) = [P̃ij ] is the probability
transition matrix induced by the policy (̃Pij =

∑
a πiaP

a
ij). In other words, we know the probability distribution for the

random variablesni(t) = {0, 1}, whereni(t) = 1 if statei is visited at timet, and 0 otherwise.
Let us also define for every state a random variableNi =

∑∞
t=0 ni(t) that specifies the total number of times statei is

visited. Then, the momentsEk
C of C can be expressed as linear functions of the cross-momentsEi1...ik

= 〈Ni1Ni2 · · ·Nik
〉

(the expected value of the product) as follows:

E1
C = 〈

∑
i

ciNi〉 =
∑

i

ci〈Ni〉 =
∑

i

ciEi

E2
C = 〈

( ∑
i

ciNi

)2

〉 =
∑

i

∑
j

cicj〈NiNj〉 =
∑

i

∑
j

cicjEij

Ek
C =

∑
i1

∑
i2

. . .
∑
ik

ci1ci2 · · · cik
Ei1i2...ik

(8)

Let us now compute the first momentsEi = 〈
∑∞

t=0 ni(t)〉 =
∑∞

t=0〈ni(t)〉. Recalling thatni(t) = {0, 1}, and, therefore,
its mean equals the probability thatni(t) is 1:6

Ei =
∞∑

t=0

P [ni(t)] =
∞∑

t=0

(P̃tα)i = ((I− P̃)−1α)i, (9)

whereI is the identity matrix, and
∑∞

t=0 P̃t = (I − P̃)−1 holds, becauselimt→∞ P̃t = 0 for our transient system.
Multiplying by (I−P), we get:

Ei −
∑

j

P̃jiEj = αi (10)

Note that the above is exactly the “conservation of probability” constraint in (eq. 3). Indeed, sinceP̃ij =
∑

a P
a
ijπia and

xia = Eiπia, the two are identical. Let us now compute the second moments in a similar fashion:

Eij =〈NiNj〉 =
〈( ∞∑

t1=0

ni(t1)
)( ∞∑

t2=0

nj(t2)
)〉

=
∞∑

t1=0

∞∑
t2=0

〈ni(t1)nj(t2)〉

=
∞∑

t1=0

∞∑
t2=t1

〈ni(t1)nj(t2)〉+
∞∑

t2=0

∞∑
t1=t2

〈ni(t1)nj(t2)〉 −
∞∑

t=0

〈ni(t)nj(t)〉
(11)

Once again recalling thatni(t) are binary variables, and since the system can only be in one state at a particular time, the
mean of their product is:

〈ni(t1)nj(t2)〉 =

{
P [ni(t1), nj(t2)], if t1 6= t2

δijP [ni(t1)], if t1 = t2,
(12)

6Hereafter we use the notationP [x] for binary variables as a shorthand forP [x = 1], andP [x, y] for P [(x = 1) ∧ (y = 1)]
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whereP [ni(t1), nj(t2)] is the probability that statei is visited at timet1 and statej is visited at timet2. Also, since the
system is Markovian, fort1 ≤ t2, we have:

P [ni(t1), nj(t2)] = P [ni(t2)|nj(t1)]P [nj(t1)] = (P̃ t2−t1)ijP [ni(t1)] (13)

Substituting, we obtain:

Eij =
∞∑

t1=0

∞∑
t2=t1

(P̃ t2−t1)ijP [ni(t1)] +
∞∑

t2=0

∞∑
t1=t2

(P̃ t1−t2)ijP [nj(t2)]−
∞∑

t=0

δijP [ni(t1)]

=
∞∑

t1=0

P [ni(t1)]
∞∑

∆t=0

(P̃∆t)ij +
∞∑

t2=0

P [nj(t2)]
∞∑

∆t=0

(P̃∆t)ji − δij

∞∑
t=0

P [ni(t1)]

=(I− P̃)−1
ij Ei + (I− P̃)−1

ji Ej − δijEi

(14)

Unfortunately, as can be seen from the above expression, the second moments cannot be tied to the first moments via a
linear function. Therefore, we cannot use the moments as the optimization variables directly. Instead, we are going to work
with the following asymmetric terms where the order of indexes ofM corresponds to an temporal ordering of the terms in
the sums:

Mi =
∞∑

t=0

〈ni(t)〉 =
∑

j

αj(I− P̃)−1
ij

Mij =
∞∑

t1=0

∞∑
t2=t1

〈ni(t1)nj(t2)〉 =
∞∑

t1=0

∞∑
t2=t1

P [nj(t2)|ni(t1)]P [ni(t1)] = Mi(I− P̃)−1
ij

Mi1i2...ik−1ik
=Mi1...ik−1(I− P̃)−1

ik−1ik

(15)

We will refer to the above terms as theasymmetric moments(although they do not correspond to moments of any real
variables). Clearly, all of thekth order asymmetric moments can be expressed as a linear function of the asymmetric
moments of orderk − 1 by moving the(I − P̃) term to the left-hand side. For example, for the second moments this step
can be easily done by rewriting (eq. 15) in matrix form:

M′′ = D(Mi)(I− P̃)−1, (16)

whereM′′ = [Mij ] is the matrix of second order asymmetric moments, andD(Mi) is a diagonal matrix, with values of the
first order momentMi on the diagonal. Multiplying by(I− P̃) on the right, we getM′′ −M′′P̃ = D(Mi). Similarly, for
the other moments we get:

Mi −
∑

j

MjP̃ji = αi

Mij −
∑

k

MikP̃kj = δijMi

Mi1i2...ik−1ik
−

∑
j

Mi1i2...ik−1 P̃ik−1j = δi1ik
Mi1i2...ik−1

(17)

Furthermore, it can be seen that the true moments of orderk can be expressed as linear functions of the asymmetric
moments of orders 1 throughk:

Ei =Mi, Eij = Mij +Mji − δijMi

Eijk =Mijk +Mikj +Mjik +Mjki +Mkij +Mkji − δijMik − δijMki − δikMij − δikMji−
δjkMji − δjkMij + δijkMi

(18)

Indeed, for the first moments, there is only one state index and therefore the first asymmetric moment equals the
true moment. For the second moments, bothMij andMji include the term (t1 = t2), and thus we have to subtract∑

t1

∑
t2=t1

〈ni(t1)nj(t2)〉 = δijMi. The expressions for other moments are obtained in a similar manner.
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The last step that remains in formulating the optimization program is to substitute the transition probabilitiesP̃ij =∑
a Pijπia and to define the actual optimization variables. This is where we hit a problem that breaks the linearity of the

program. Recall that for the standard CMDP, the optimization variables are defined asxia = Eiπia = Miπia and have the
interpretation of the expected total number of times actiona is executed in statei. As mentioned earlier, this allows one to
express the first-order constraint from (eq. 17) as a linear function ofxia. Indeed, since

∑
a πia = 1, the first moments are

simplyMi =
∑

a xia, and recalling thatxia = Eiπia = Miπia, we have for the first order constraint:

Mi −
∑

j

MjP̃ji =
∑

a

xia −
∑

j

Mj

∑
a

Pjiπja =
∑

a

xia −
∑

j

∑
a

Pjixja (19)

Unfortunately, the same trick does not work for the higher order constraints. If we were to define similar variables for
the higher-order moments (ex.xija = Mijπja), we could, of course, rewrite (eq. 17) as linear functions of these variables.
However, by doing this, we would introduce too many free parameters into the program. To retain the original desired
interpretation of the variables, we would also have to add constraints to ensure that the policyπ implied by the higher-order
variables is the same as the one computed from the first-orderxia. Clearly, these new constraints would be quadratic:

xja1

xja2

=
xija1

xija2

= . . . =
πja1

πja2

(20)

Hence, it appears that there is no easy way to avoid the quadratic expressions (Mijπja) in the constraints on the moments:∑
a

xia −
∑

j

∑
a

xiaP
a
ji = αi

Mij −
∑

k

Mik

∑
a

P a
kjπka = δijMi

Mijk −
∑

l

Mijl

∑
a

P a
lkπla = δikMij

Mi1i2...ik−1ik
−

∑
j

Mi1i2...ik−1

∑
a

P a
ik−1jπik−1a = δi1ik

Mi1i2...ik−1

πiaxi0 = πi0xia

(21)

We are therefore left with an optimization program inxia and the asymmetric moments (Mij ,Mji,Mijk, . . .) that has: a
linear objective function

∑
i

∑
a xiaria, a constraint on the probability of the total cost exceeding a given threshold, which

is linear in the momentsE (eq. 7), which are linear inM (eq. 18), and a system of quadratic constraints that synchronizes
the moments (eq. 21).

6 An Example

As an example of the use of the method presented in the previous sections, let us consider a toy problem, for which we can
analytically compute the distribution of the total cost, and formulate a constrained optimization program for it using the first
three moments of the total cost. In this section we present a more careful derivation of the optimization program, paying
more attention to some steps that were just briefly described in section 4. We also present a preliminary empirical analysis
that shows how closely our model approximates the true cumulative probability distribution function of the total cost. The
purpose of the latter is to serve as a rough indication of the accuracy of our approach, which we cannot yet directly report
on, as at the time of writing we do not have the optimization implemented yet.

Consider the problem depicted in figure 1(a). In this problem, there are two states, one of which (i = 2) is a sink state.
If the agent starts in state 1 (α = [1, 0]), the total received reward is the same as the total incurred cost, and both equal the
total number of visits to state 1. The obvious optimal policy for the unconstrained problem is to always execute action 1 in
state 1 (π = [1, 0, 1, 0]). If we set the upper bound on the cost asC0 = 10, the unconstrained optimal policy has about a
30% chance of exceeding that bound. As we decrease the acceptable probability of exceeding the cost bound, the policies
should become more conservative, i.e. they should prescribe higher probabilities of executing action 2 in state 1.

In order to apply the Legendre approximation from section 4, one has to ensure that the total costC is in the range
[−1, 1]. Clearly, this is not generally the case for our problem. Therefore, to satisfy this condition, we apply a transformation
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Figure 1: (a) – simple problem with two states and two actions; (b) – the actual cdf of the total cost and the cdf computed
from a third-degree Lagrange approximation of the pdf of the cost; (c) – relative error of the approximation in (b).

S = 2C/Cmax−1 withCmax = 50 (a reasonable approximation, asP [C ≥ 50] = 0.004).7 Figure 1(b) shows the resulting
cumulative distribution functionFS(S) for the unconstrained optimal policy and the cdf computed from a third-degree
approximation of the pdff(S). Figure 1(c) shows the relative error of the third-degree approximation and serves to show that
we can expect to get a reasonably good approximation of the cdf using just the first three moments. Note that the pdf for this
problem is discrete (thus, harder to approximate with continuous Legendre polynomials), but we can still get a reasonably
good approximation of the cdf, which is what we really care about, as our goal is to estimateP (S > S0) = 1 − FS(S0).
Let us now compute a third-order approximation tofS(S) for an arbitrary policy by computing the coefficientsbl (eq. 5):

b0 =
1
2
E0

S , b1 =
3
2
E1

S , b2 = −5
4
E0

S +
15
4
E2

S , b3 = −21
4
E1

S +
35
4
E3

S . (22)

Notice that here we have to use the moments ofS ∈ [−1, 1]. However, the constraints in (eq. 21) operate on moments
of C, and since our optimization variables are going to be the moments ofC ∈ [0, Cmax], we have to be able to express the
former via the latter. This can be easily done by solving the following linear system of equations forES :

E0
C =

∫ Cmax

0

fC(C)dC =
1
2
Cmax

∫ 1

−1

fS(S)dS =
1
2
CmaxE

0
S ,

E1
C =

1
4
C2

max(E1
S + E0

S), E2
C =

1
8
C3

max(E2
S + 2E1

S + E0
S), E3

C =
1
16
C4

max(E3
S + 3E2

S + 3E1
S + E0

S)

(23)

Now, the probability of exceeding the cost bounds is simplyP [C ≥ C0] =
∫ Cmax

C0
fC(C)dC = Cmax/2

∫ 1

S0
fC(S)dS,

whereS0 = 2C0/Cmax − 1.

7 Conclusions

In this paper we have introduced a method for approximately reasoning about the probability distributions of rewards and
costs in Markov decision processes. The main three sources of approximation error in our method are: 1) the use of
Legendre polynomials to approximate the true pdf, 2) the use of a finite number of moments (the more moments are used,
the better the approximation), and 3) truncation of the costs at some upper boundCmax (the lower the mass of the remaining
cost

∫∞
Cmax

CfC(C), the better the approximation).
We demonstrated the approach on a specific problem that bounds the probability that the total cost exceeds a given upper

bound. However, it is easy to see that the method allows one to model a wide range of risk-sensitive objective functions
and constraints. Indeed, one can just as easily approximate the distribution of the total (normalized) reward and express the
expected value of the utility function as (similarly to (eq. 7)):

E[u(R)] =
∫ 1

−1

u(R)fR(R)dR =
∫ 1

−1

∞∑
l=0

∑
k

aklE
k
Ru(R)Pl(R)dR =

∑
k

φkE
k
R, (24)

whereφk =
∑

l akl

∫ 1

−1
u(R)Pl(R)dR, u(R) is the utility of getting rewardR, andfR(R) is the distribution of the total

reward. Then, the approximation methods of sections 4 and 5 are directly applicable. Of course, the above relies on the fact

7For a transient system with bounded rewardslimC0→∞ P [C > C0] = 0. Thus one can always compute or estimate a reasonableCmax for which
P [C > Cmax] is arbitrary small.
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that there either exists a natural upper bound on the largest possible utility value of a policy, or that there exists an upper
boundRmax such that the weighted tail of the utility distribution

∫ 1

Rmax
fR(R)u(R)dR is sufficiently small.

Even though our construction yields more complex optimization programs than the standard constrained MDP approach,
it is more expressive than the standard risk-neutral CMDP techniques, because our formulation allows one to reason about
the probability distributions instead of the expected values of the total cost and rewards. Our ongoing efforts in extending
this work include several directions such as looking at ways of efficiently encoding and implementing the optimization
program, more careful investigation of the complexity and convergence properties of the model (as more moments are
used), exploring heuristics for choosing an appropriate number of moments, and a formal analysis of properties of the
problem and the corresponding solutions.
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