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Abstract

A weakness of classical Markov decision processes (MDPs) is that they scale very poorly
due to the flat state-space representation. Factored MDPs address this representational
problem by exploiting problem structure to specify the transition and reward functions of
an MDP in a compact manner. However, in general, solutions to factored MDPs do not
retain the structure and compactness of the problem representation, forcing approximate
solutions, with approximate linear programming (ALP) emerging as a promising MDP-
approximation technique. To date, most ALP work has focused on the primal-LP formu-
lation, while the dual LP, which forms the basis for solving constrained Markov problems,
has received much less attention. We show that a straightforward linear approximation
of the dual optimization variables is problematic, because some of the required compu-
tations cannot be carried out efficiently. Nonetheless, we develop a composite approach
that symmetrically approximates the primal and dual optimization variables (effectively
approximating both the objective function and the feasible region of the LP), leading to
a formulation that is computationally feasible and suitable for solving constrained MDPs.
We empirically show that this new ALP formulation also performs well on unconstrained
problems.

1. Introduction

Classical methods for solving Markov decision processes (e.g., Puterman, 1994), based on
dynamic and linear programming, scale very poorly because of the flat state space, which
subjects them to the curse of dimensionality (Bellman, 1961), where model size grows expo-
nentially with the number of problem features. Fortunately, many MDPs are well-structured,
making possible compact factored MDP representations (Boutilier, Dearden, & Goldszmidt,
1995, 2000) that model the state space as a cross product of state features, represent the
transition function as a dynamic Bayesian network, and assume the reward function can be
expressed as a linear combination of several functions, represented compactly on the state
features.

However, well-structured problems do not always lead to well-structured solutions (Koller
& Parr, 1999; Dolgov & Durfee, 2004a), which precipitates the need for approximation tech-
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niques. Approximate linear programming (ALP) (Schweitzer & Seidmann, 1985; de Farias &
Van Roy, 2003) is a promising approach, with principled foundations and efficient solution
techniques (de Farias & Van Roy, 2003, 2004; Guestrin, Koller, Parr, & Venkataraman, 2003;
Patrascu, Poupart, Schuurmans, Boutilier, & Guestrin, 2002; Poupart, Boutilier, Patrascu,
& Schuurmans, 2002). However, ALP work has mostly focused on the primal LP, defined on
the space of value functions, and significantly less effort has been invested in approximat-
ing the dual LP, which operates on occupation measures (state-visitation frequencies) and
serves as the foundation for solving constrained MDPs (Altman, 1999; Kallenberg, 1983;
Dolgov & Durfee, 2004b).

Developing efficient solutions to factored MDPs with constraints requires an approx-
imate version of the dual LP, and there are two obvious ways to achieve this: take the
Dual of the Approximated version of the primal LP (DALP), or Approximate the Dual
LP (ADLP). The former formulation, the DALP, was considered and analyzed by Guestrin
(2003). A weakness of this approach (detailed in Section 2.3) is that it scales exponentially
with the induced width of the associated cluster graph, which can be very large (especially
for constrained MDPs, where the cost functions increase the interactions between state
features).

The second approach, ADLP, instead approximates the dual LP directly. Unfortunately,
as we demonstrate in Section 3, linear approximations of the optimization variables do not
interact with the dual LP as well as they do with the primal, because the constraint coeffi-
cients cannot be computed efficiently. To address this, in Section 4, we develop a composite
ALP that symmetrically approximates both the primal and the dual optimization coordi-
nates (the value function and the occupation measure), which is equivalent to approximat-
ing both the objective functions and the feasible regions of the LPs. This method provides
an efficient approximation to constrained MDPs and also performs well on unconstrained
problems, as we empirically show in Section 5.

As viewed from the latter perspective of solving unconstrained problems, a contribu-
tion of this work is that it extends the suite of currently available ALP techniques by the
composite-ALP approach, which has the following useful properties. First, it allows for com-
plete control of the quality-versus-complexity tradeoff in its approximation of the constraint
set, as opposed to other methods where the objective function is approximated, but the fea-
sible region is represented exactly (e.g., Guestrin, 2003; Guestrin et al., 2003). As such,
the composite ALP is beneficial for domains where the number of constraints required to
exactly represent the feasible region grows exponentially (which frequently occurs in MDPs
with costs and constraints); there, our approach trades quality for efficiency, compared to
more exact methods. Second, compared to other methods that do approximate the feasible
region, the benefit of our approach is that in some domains it might be easier to choose good
basis functions for the approximation than it is to find good values for other approximation
parameters (e.g., a sampling distribution over the constraint set as proposed by de Farias
and Van Roy (2003)).

2. Background and Related Work

A discrete-time, infinite-horizon, discounted MDP (e.g., Puterman, 1994; Bertsekas & Tsit-
siklis, 1996; Sutton & Barto, 1998) can be described as (S, A, P, R, ), where S = {s} is the
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finite set of system states, A = {a} is a finite set of actions, P : S x A x § > [0, 1] is the
transition function (P4 is the probability of moving into state o upon executing action a
in state s), R: S x A — R defines the bounded rewards (R, is the reward for executing
action a in state s), and v € [0, 1) is the discount factor (a unit reward received at time 7
is aggregated into the total reward as 77).

A solution to such an MDP is a stationary, deterministic policy, and the key to obtaining
it is to compute the optimal value function v, which, for every state, defines the total
expected discounted reward of the optimal policy. Given the optimal value function, the
optimal policy is to act greedily with respect to it. The optimal value function can be
obtained, for example, using the following minimization LP, which is often called the primal
LP of an MDP (e.g., Puterman, 1994):

minZasvs
S
subject to: (1)
USZRsa%—yZPsagvg Vs € S,a € A,
ag

where « is an arbitrary strictly positive distribution over the state space (os > 0). This LP
has |S| optimization variables and |S||.A| constraints. The problem can also be formulated
as an equivalent dual LP with |S||A| variables and |S| constraints:!

maxz Rsqxsq
s,a
subject to:
(2)
Zxaa_fyzxsapsaa:am Vo € S;
a S,a
Tsq > 0, Vs € S,a € A,

where z is the occupation measure (44 is the discounted number of executions of action a
in state s), x5 = ), Tsq is the total expected discounted number of visits to state s, and
the constraints in (2) ensure the conservation of flow through each state. Given a solution
to (2), the optimal policy can be computed as:

_ Tsa _ ZTsa
- . - Y
Za Lsa Ls

where non-negativity of a guarantees that )  xs, > 0 Vs € S. This appears to lead to
randomized policies. However, a bounded LLP with n constraints always has a basic feasible
solution (e.g., (Bertsimas & Tsitsiklis, 1997)), which by definition has no more than n non-
zero components. If « is strictly positive, a basic feasible solution to the LP (2) will have
precisely |S| nonzero components (one for each state), which guarantees an existence of
an optimal deterministic policy. Such a policy can be easily obtained by most LP solvers
(e.g., simplex will always produce solutions that map to deterministic policies). Further, for

(3)

Tsa

1. Some authors (e.g., Altman, 1996, 1998) prefer the opposite convention, where (1) is called the dual, and
(2), the primal.
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strictly positive o, LPs (1) and (2) yield policies that are uniformly optimal, i.e., optimal
for all initial conditions.

The dual LP (2) is well-suited for the addition of constraints (Altman, 1999). Given a
set of T cost functions C*, t € [1,T], where each cost function is defined similarly to the
rewards: C* : S x A — R, the problem of maximizing the total expected reward subject
to constraints on total costs can be formulated as an LP by augmenting (2) with linear
constraints on costs, resulting in the following LP:

maxz Ryuxsq
S,a
subject to:
Zxaa - 'YZ;UsaPsaa = Qg, Vo € S; (4)
a S,a
ZC;axsa <, Vit e [1,T];
S,a
Tsq > 0, Vs € S,a € A;

where ¢ is the upper bound on cost of type t. Solutions to such constrained MDPs are, in
general, not uniformly optimal and are randomized (Kallenberg, 1983; Altman & Shwartz,
1991). Also, as discussed in Section 2.3, adding such costs to the model has a negative effect
on the complexity of factored approximations, as it aids in the propagation of dependencies.

2.1 Factored MDPs

The classical MDP model requires an enumeration of all possible system states and thus
scales very poorly. To combat this problem, a compact MDP representation has been pro-
posed (Boutilier et al., 1995) that defines the state space as the cross-product of the state
features: S = z1 X 29... 2N, and uses a factored transition function and an additively sepa-
rable reward function.

The transition function is specified as a two-layer dynamic Bayesian network (DBN)
(Dean & Kanazawa, 1989), with the current state features viewed as the parents of the next
time-step features:

N
Puoy = P(2(0)|2(5),0) = [ [ Pn(zn(0)la, 2, (s)), (5)
n=1

where z(-) is the instantiation of all Z features corresponding to a state, z,(-) denotes the
value of the n'!' state feature of a state, and z,, (-) is the instantiation of the set of features
Z,, that are the parents of z, in the transition DBN. Likewise, in the rest of the paper,
we will use Z, to refer to the set of features in the domain of function ¢, and z, to refer
to an instantiation of these features. The reward function for a factored MDP is compactly

defined as
M

Ry, = Tm(Zr,, (8),a), (6)
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where z,, (-) is an instantiation of a subset of state features Z, C Z that are in the domain
of the m'™" local reward function r,,.
For a constrained MDP, we can define factored cost functions analogously to the reward

function:
M

Cza = Z Clin(zcﬁn(s)7a)' (7)
m=1
Clearly, this factored representation is only beneficial if the local transition functions
Pn(2n(0)|2p, , a), local reward functions ry,(z,,,a), and local cost function ¢}, (2. ,a) have
small domains: |2, | < |Z], |Z,,,| <|Z], and |2 | < |Z], i.e., each function depends only
on a small subset of all state features Z.

2.2 Primal Approximation (ALP)

Approximate linear programming (Schweitzer & Seidmann, 1985; de Farias & Van Roy,
2003) lowers the dimensionality of the primal LP (1) by restricting the optimization to
the space of value functions that are linear combination of a predefined set of K basis
functions h:

K
vs = 0(2(s)) = Y hi(zp, (5))wr, (8)
k=1

where hy(zp,) is the k' basis function defined on a small subset of the state features
Zp, C Z, and w are the new optimization variables. This technique is similar to linear
regression, where a function is approximated as a linear combination of a given (in general,
non-linear) basis. The difference, however, is that here instead of minimizing a measure of
error for the given data points, the goal is to minimize the measure of error to the unknown
optimal value function. For the approximation to be computationally effective, the domain
of each basis function has to be small (|2, | < |Z]).
As a notational convenience, we can rewrite the above as v = Hw, where H is a |S| X |w]
matrix composed of basis functions hy,.2
Thus, LP (1) becomes:
min ol Hw
subject to: (9)
AHw > r,

where we define the constraint matrix Asq o = 050 — YPsao (Where 05, is the Kronecker
delta, 05, = 1 < s = 0).

For this method to be effective, we need to be able to efficiently compute the objective
function a” H and the constraints AH, which can be done as described in (Guestrin et al.,
2003). Consider a factored initial distribution:

Qg = H ton(Zpi, (8))

2. While using this notation, it is important to keep in mind that the exponentially sized H would never
be explicitly written out, because each column is a basis function that can be represented compactly.



Dorcov & DURFEE

where, as usual, the domain of each factor ju,, is taken to be small (|Z,,,| < |Z|). Then,
the objective function can be computed as:?

(" H)p =) asHy, = ZH“W Zy (8)) k(21 (5))

(10)

where z’ iterates over all features in the union of the domain of hj, and the domains of those
U that have a non-zero intersection with the domain of hy: 2’ = {z,,, Uz, : 2, N2, #
&}, because all p, that do not have any variables in common with hy factor out and their
sum is 1 (since it is a sum of a probability distribution over its domain). This computation
is illustrated in the following example.

Example 1 Consider a state space S = 2z1 X zo X z3, a set of basis functions H =
[hi(21), ha(z2, 23), ha(23)], as well as the following initial distribution o = p1(z1) 2 (22)ps (22, 23).
Then,

(@"H) = > m(21)pa(22)ps(22, 23)ha (1)

21,22,23

—Z/ﬂ z1)hi(z1 Zm 2) 3 (22, 23) Z,Ul z1)h1(21),

22,23

which can be computed efficiently by summing over all values of z1 instead of z1 X zo X z3.
Similarly, both (a® H)s and (o™ H)3 can be computed by summing over za X 23. O

The constraint coefficients in (9) can also be computed efficiently:
(AH)sa,k = Z Asa,ahk(g) = Z((ssa - PYPsaJ)hk(U)
= o(a(s). 2)hi(z) =) Plalz(s), a)hy(2).

The first sum can be computed efficiently, because it is simply hy(zp, (s)), since § is nonzero
only at z(0) = z(s). The second term can also be computed efficiently, since P(z(0)|z(s), a)
is a factored probability distribution (just like in the case of a above). The following example
illustrates the computation.

Example 2 Consider S and H as in Example 1 and the transition model (with actions
omitted):
P(21, 25, 23|21, 22, 23) = p1(21|21)p2(24]21, 22)p2(25] 23)

3. Here and below the general expression is followed by a simple example; some readers might find it
beneficial to switch this order.
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Then, the second term in AH, shown for k = 3, becomes:

> Puohs(o) = > P(2i(0), 2(0), 24(0)|21, 22, 23) hs(0)
= > pi(=lz1(9)pa(25]21(s), 22(s))pa (25 23(s) ) ha (21)

! ! !
21,25,23

= Zps (Z§|Z3(5))h3(zé) Z pl(zﬂzl(s))m (Z§|21(5))

21722

= Sl ha )

which can be efficiently computed by summing over z. (|

The primal ALP described above reduces the number of optimization variables from
|S] to |w| = K, and, as just illustrated, the coefficients of the objective function and
every constraint row can be computed efficiently. However, the number of rows in the
constraint matrix remains exponential at |S||.A|, so the ALP has to undergo some additional
transformation (or approximation) to become feasible.

To address this complexity issue, several techniques that exploit problem structure have
been proposed, such as constraint sampling (de Farias & Van Roy, 2004), constraint re-
formulation (Guestrin et al., 2003), and iterative constraint generation (Schuurmans &
Patrascu, 2001). However, these techniques have their weaknesses: to be effective, sampling
requires a good distribution over the constraint set, which can be hard to obtain, while
constraint re-formulation and generation are both exponential in the induced width of the
cluster graph associated with the problem (as discussed in more detail below in Section 2.3).

2.3 Dual of Primal Approximation (DALP)

The primal ALP (9) operates on the value function coordinates, and is thus not well-suited
for addition of costs and constraints (defined on the occupation measure). Guestrin (2003)
considers the dual of (9) that can be used for formulating constrained problems (we refer
to it as the DALP):

max 7"T$

subject to:
HT ATy = H o
x> 0.

(11)

This LP has |S||.A| variables (occupation-measure) and |w| = K constraints (approximated
flow conservation). The exact occupation measure can be represented more compactly by
using marginal occupation measures (or marginal visitation frequencies (Guestrin, 2003)),
which define the occupation measure over subsets of the state features (their domains are
defined by the transition, reward, and basis functions). However, assuring global consistency
of the marginal occupation measures (i.e., ensuring that there exists a global occupation
measure over the flat space with the same marginal occupation measures) requires expanding
their domains, making the complexity exponential in the size of the induced width of the
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cluster graph (a graph with a vertex per variable and edges between variables that appear
in one function). For some domains, the induced width is large, especially for constrained
MDPs, where the cost functions introduce additional edges into the cluster graph.

Guestrin (2003) also suggests an interesting further approximation of the DALP (11),
where global consistency of marginal occupation measures is not guaranteed. To date, this
approximation has not been carefully investigated, but is potentially promising. Another
implication of the DALP approach is that the number of constraints grows with the num-
ber of primal basis functions and their domains (the more functions, and the bigger their
domains, the larger the induced width of the cluster graph).

The new approach that we propose independently controls the number of optimization
variables (via the primal basis) and the number of constraints (via the dual basis), thus
providing an effective approximation method for problems with large induced graph widths.

3. Approximation of the Dual LP (ADLP)

Another way to construct an ALP suitable for constrained problems is to approximate the
variables of the dual LP (2) using the primal ALP techniques. We refer to this approximation
as the approximate dual LP (ADLP). The focus of this section is on the negative result that
shows that this approximation, by itself, is not computationally feasible, but the analysis
of this section also paves the way for the approximation presented in Section 4.

By straightforwardly applying the techniques from the primal ALP, we could restrict
the optimization in (2) to a subset of the occupation measures that belong to a certain dual
basis Q = [qi], 1 € [1, L]:

L

Tsq = x(2z(8),a) = qu(qu(s), a)y. (12)

=1

This would effectively reduce the number of optimization variables from |S||A]| to |y| =
leading to the following approximation of the dual LP (ADLP):

max ! Qy

subject to:
ATOy = a. (13)
Qy > 0.

For this approximation to be practical, we need to efficiently compute the objective func-
tion r’'Q and the constraint matrix A7Q, as well as deal with the exponential number of
constraints. The objective-function coefficients can be computed efficiently:

(TTQ)Z = Z( saQsal Z Z T'm Zrm )QI(qu)

s,a s,a m=1

[ Z rm (2, (), a)QI(Zqz)] ;

m=1 Zrm U Z‘IL

=0

NE
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where § = |Z\ (2, U Z,)| is the normalization constant that is the size of the domain
not included in the summation. Each of the M terms above can be efficiently computed by
summing over the state variables in the union Z, , |JZ,. Unfortunately, the same is not

true for the constraint coefficients, and therein lies the biggest problem of the approximate
dual LP (ADLP):
(ATQ>O',I = Z 650Ql(3a a) - Z 7Psaaql(37 a) (14)

s,a s,a

The first term can be calculated efficiently, as in the case of the primal ALP, since it is
simply ¢;(zp, (o), a). However, the second term presents problems, as demonstrated below.

Example 3 Consider S and P as in the previous examples. The problematic second term
in (14), for Q = [q1(z1, 22,a), q2(22,a), q3(23, a)], becomes (I = 3, with actions a omitted for
brevity):

Y as(z)p1(21(0)|21)p2(2h(0) |21, 22)p3(25(0) | 23)

=Y as(z)ps(z5(0)|z3) Y pi(21(0)|21)p2(21(0)]21, 22)

and computing the last term requires summing over the whole state space z1 X z9 X z3. [

This example demonstrates the critical difference between the primal ALP and the
approximation of the dual LP (ADLP), due to the difference between the left- and the right-
hand-side operators A(-) and (-) A, used in the primal ALP and the ADLP, respectively. The
former can be computed efficiently, because ), P(alb) = 1 and their product drops out of
the computation, while the latter cannot, since a product of terms of the form ), P(a|b)
is hard to compute efficiently. Therefore, the drawback of the dual ALP (13) is that it has
an exponential number of constraints, and computing the coefficients for each one of them
scales exponentially.

4. Composite ALP

The ADLP (13) approximates the dual variables x, which is equivalent to approximating
the feasible region of the primal ALP (9); the primal does the opposite. We can combine
the two by applying the dual approximation x = Qy to the DALP (11):

maxr! Qy
subject to:

HTATQy = H o,

Qy =0,

(15)

where we retain the non-negativity constraint Qy > 0, so that the mapping of occupation
measures to policies (3) remains valid.

This ALP still has an exponential number (|S||.A|) of constraints in Qy > 0, but this
can be resolved in several ways. These constraints can be reformulated using the non-serial
dynamic programming approach (Bertele & Brioschi, 1972) (analogously to its application in
(Guestrin et al., 2003)), yielding an equivalent, but smaller, constraint set. Another approach
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is to simply restrict attention to non-negative basis functions @ and replace the constraints
with a stricter condition y > 0 (introducing another source of approximation error). We will
adopt the latter approach (which works quite well, as shown by our experiments), leading
to the following LP:

max 1 Qy

subject to:
HTATQy = HT o,
y > 0.

(16)

The above gives the dual form of the composite ALP. The equivalent primal form is:

min of Hw
subject to: (17)
QTAHw > Q"'r.

The primal form of the composite ALP has K variables (one per primal basis function hy)
and L constraints (one per dual basis function ¢;); its dual form is the opposite. Thus, the
composite ALP combines the efficiency gains of approximating both the primal and the
dual variables. However, as in the case of the primal and the dual ALPs, the usefulness of
the composite ALP is contingent upon our ability to efficiently compute the coefficients of
its objective function and constraints.

The objective functions of the two forms of the composite ALP are the same as in the
primal and the dual ALPs, respectively, so both can be computed efficiently as described
in the earlier sections.

Thus, the important question is whether the constraint coefficients can be computed
efficiently. A first glance at the constraints conveys some pessimism, because of the term
AT @, which was the stumbling block in the dual ALP. However, despite that, the compu-
tation can be carried out efficiently if we apply the primal approximation first and then the
dual approximation to the result. Consider the primal approximation:

(AH)sak = hk th 'YZ H Pn Zn‘zpn ) a)hk(zhk)

Zhy, NiZn€Zp,
= hi(zn,) — VYr(2y,, a),

where we introduced 1 to refer to the second term, which is a compact function whose
domain is the union of the DBN parents of all features that are in the domain of the k™

basis function: Zy, = J,,.. ¢ 2, Zpn- Applying the dual approximation to the result:
2n€2p,

(QT(AH)) ZQZ s, a (hk Zn, (5)) —wk(zwkaa))

= Z ql(qu,a)hk(th) - Z q (qu )ka(zﬁik’ )

zhkUqu,a z¢kUqu,

The first term can be computed efficiently by summing over Zj, |J Z,,, the union of the
domains of the k™ primal and the I*" dual basis function. The second term is obtained by

10
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summing over the action space and Zy, |J 2, = (Un:znezhk Z,.) U Zg, the domain of ¢
dual basis function and the union of the DBN parents of all features in the domain of hy.
This calculation is therefore exponential in the size of Z, |J Z,, and Zy, | Z,,. However,
the sizes of these sets are often significantly smaller than the induced width of the cluster
graph derived from the transition DBN factors, the reward terms, and the basis functions,
because the former are defined by local function domains only, while the induced width is a
global property of the factored MDP and can therefore grow very large for some problems.
Therefore, the composite ALP leads to a more computationally feasible approximation,
compared to the primal ALP (9) or the DALP (11).

In summary, the coefficients of the composite constraint matrix can be computed effi-
ciently by summing over relatively small domains (assuming the domains of all basis func-
tions are small and the transition DBN is well-structured).

Example 4 Consider S, P, and H as in the previous examples. Then, for k = 3, we have:

(AH)sa3 = h3(23(s ’YZP 23] 23(s), a) ha(23)

Thus, Zy, = {23}, and 3 can be computed efficiently by summing over z5. Multiplying by
Q, we get forl = 2:

(QTAH)2 3= Z(QT)2,sa(AH)sa,3

= @(z2)ha(zs) =7 Y ga(z2) ZP 23] 23, a) ha(z3)

22,23 22,23
which can be computed by summing over za X z3. O

Another important issue to consider is the feasibility and boundedness of the composite
ALPs (17) and (16). All ALPs that approximate only the optimization variables (primal
ALP (9); its dual, DALP (11); the dual approximation, ADLP (13)) are bounded, because
the approximation limits the search to a subset of possible solutions. Feasibility of the primal
ALP (9) can also be ensured by adding a constant to H (de Farias & Van Roy, 2003). In
the case of the composite ALP, where both the feasible region and the objective function
are approximated, guaranteeing boundedness and feasibility is slightly more complicated.

Proposition 1 The primal form of the composite ALP (17) is feasible for any dual basis
@ > 0 and any primal basis H that contains a constant function hy(zp, ) = 1.

Proof: By the results of de Farias and Van Roy (de Farias & Van Roy, 2003), the primal
ALP (9) is feasible whenever the primal basis H contains a constant. Call a feasible solution
to the primal ALP w*. By definition, w* satisfies

AHw* > r.

Then, for any Q > 0, QT AHw* > Q”r also holds, meaning that (17) also has a feasible
solution. g

11



Dorcov & DURFEE

In other words, introducing a dual approximation ) only enlarges the feasible region of
the primal form of the composite ALP (17), thus guaranteeing its feasibility. Unfortunately,
(17) is not, in general, bounded, because the dual basis ) might contain too few constraints.
Intuitively, to bound (17), we need at least as many constraints as optimization variables.
Therefore, an important question is: Given a primal basis H, how big must the dual basis
@ be to ensure the boundedness of the primal form (17), or, equivalently, the feasibility of
the dual form (16)?

Proposition 2 For any primal basis H (|S| x K ), there exists a dual basis Q (|S||A| x L),
such that the number of dual basis functions does not exceed the number of primal functions
(L < K), and the dual form of the composite ALP (16) is feasible for H and Q.

Proof: A flat set of constraints ATz = « is always feasible, thus there also always exists a
solution to
HT ATz = H o,

Let rank(HT AT) = m < K. Then, let us reorder rows and columns such that the upper-left
m x m corner of HT AT is non-singular. Let the dual basis contain m linearly independent
functions and reorder the rows of () such that the top m rows are also linearly independent.
Then, H' ATQ will be K x m, with a non-singular m x m matrix in the upper-left corner,
with the remaining rows (and right-hand sides H” ), their linear combinations. Thus, the
resulting system HT ATQy = H” a will have a solution. O

Therefore, for any primal basis H with K functions, there exists a dual basis Q with
L < K functions, which guarantees feasibility of the dual form of the composite ALP
(16). By standard properties of LPs, this ensures the boundedness of the primal form (16),
thus assuring a feasible and bounded solution to both. Intuitively, the composite ALP
(16) has more variables than equations (L > K), thus it is usually feasible. So, from the
practical standpoint, ensuring boundedness and feasibility of the composite ALPs is not
difficult (when L > K, all but the most degenerate systems are underconstrained), which
was confirmed by our experiments where using a meaningful dual basis with several times
more functions than the primal (but on the same order of magnitude), resulted in a feasible
LP (16). Notice that adding dual basis functions is equivalent to increasing the number of
variables in the system of linear constraints HX ATQ = H” «.. Therefore, from the practical
perspective, a computationally easy way to ensure feasibility of the composite ALP is to
start with an initial set of desired basis functions H and ) and if the resulting LP proves
infeasible, augment () with random perturbations of the functions in the initial set until
feasibility is achieved.

For factored MDPs with cost functions (7) and cost constraints (4), we can add such
constraints to the dual form of the composite ALP (16):

maxr! Qy
subject to:
HTATQy = H' q, (18)
CQy<C,
y = 0.
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The coefficients of each of the T" rows of the constraint CQy < C can be computed efficiently,
in exactly the same way as the reward function 77 Qy, since each row of the constraint
matrix C' defines the cost function of type ¢ € [1,7], which is assumed to be additively
decomposable as in (7), just like the reward function r.

5. Experimental Evaluation

One of the main driving forces behind this work was to construct an efficient ALP suitable
for constrained MDPs, but the approach can certainly also be applied to unconstrained
problems. Therefore, since there is a wider variety of algorithms for unconstrained MDPs,
we focus on unconstrained domains in our empirical evaluation. This ignores one of the
advantages of the composite ALP, but gives a more direct and clear comparison to other
methods.

We evaluated the composite ALP on the “SysAdmin” problem (Guestrin et al., 2003).
The domain involves a network of n computers, each of which can fail with a probability
that depends on the status of neighboring computers. The state of the system is defined
by n binary features, where each feature defines the status of one computer. At each time
step, the decision maker can reboot a computer and receives a reward that is proportional
to the number of computers that are up and running. For reproducibility, we include a more
detailed description of the domain in Appendix A.

Figure la compares the values of policies for a problem involving a network with a
unidirectional-ring topology. The values of policies obtained by the following methods are
compared:

e Optimal: the optimal policy, which was obtained by “flattening out” the factored
MDP and using the exact LP to solve the resulting MDP.

e Primal ALP: the primal ALP (9) with basis functions over all pairs of features (notice
that this is different from all pairs of connected neighbours, as used in (Guestrin
et al., 2003)). The size of problem input grew quadratically with the number of state
features. Note that for unconstrained problems, the primal ALP (9) is equivalent to
the DALP (11).

e Composite: the composite ALP (17) with the same primal basis as in the primal
ALP above and a dual basis defined over triplets of neighbors. The size of problem
input grew quadratically with the number of state features.

e Primal ALP (singles): the primal ALP (9) with basis functions over single features.
The size of problem input grew linearly with the number of state features.

e Random: a policy obtained by selecting a random deterministic action for every
state.

e Worst: a policy, obtained by negating the reward function.

All policies were evaluated in closed form using a “flattened out” version of the MDP, which
is possible for such small problems.

As described in Appendix A, we performed no optimizations of the basis functions, and
only used very simple functions, such as constants, binary indicators, and identity matrices.
The plot in Figure la show the actual values of policies (not the value functions), which
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Figure 1: Comparison of ALP methods on a uni-directional ring problem. (a): policy value;
(b): relative complexity (ratio of size of constraint matrices);

is a more accurate metric, as constraint approximation in the composite ALP can lead to
unrealizable value functions.*

Figure 1b shows the efficiency gains of the composite ALP, relative to the exact LP and
the two primal ALPs variations, measured as the relative size of the LP constraint matrices.
We chose this metric instead of simply the running time, because it is less sensitive to the
differences in implementation of the LP solver, and provides a lower bound on the relative
complexity of our method. We discuss the running time of our method below in the context
of larger domains.

A problem where each pair of variables appears in at least one function has an induced
width that equals the total number of state variables. Thus, the composite ALP achieves
exponential speedup, compared to a primal ALP or a DALP with a basis set defined on
all pairs of features, but without a significant loss in quality (Figure la). The complexity
of the composite ALP in these experiments roughly matches the complexity of the primal
ALP (or the DALP) with basis functions over single features (Figure 1b), but the composite
ALP produces noticeably better policies (Figure 1a).

However, on more structured problems, basis functions over single features might work
sufficiently well, as shown in Figure 2, for the more symmetric case of a bidirectional-ring
network.

All of the experiments whose results are summarized in Figure 1 and Figure 2 were
conducted using a discount factor of v = 0.99. An interesting question is how the various
ALP methods will perform on problems with lower values of the discount factor. Figure 3
presents an evaluation of the same approaches as before on the uni-directional and the bi-

4. Given the same primal basis, the composite ALP will, in general, produce lower-quality solutions than
the primal ALP, because the former also approximates the feasible region. The data point in Figure 1la,
corresponding to 10 computers, is unusual. There, the value function computed by the composite ALP
maps to a better policy than a more accurate value function produced by the primal ALP.
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Figure 2: Comparison of quality of ALP methods on a more symmetric bi-directional net-
work.

directional network for several values of the discount factor. As can be seen from the figures,
as the discount factor decreases, the quality of all ALP methods approaches optimal. This
should not be surprising, because as the discount factor decreases, the exact value of the
optimal value function becomes less important, and the relative quality of greedy policies
increases.

The above experiments give an indication that composite ALP performs competitively,
compared to other approaches for solving factored MDP. However, we also observe that
on the simpler problems (high symmetry as in the bi-directional ring case, or low discount
factor), it might be possible to obtain good performance with other ALP approaches (e.g.,
primal ALP with a few low-dimensional basis functions).

We also tested the performance of the composite ALP on larger problems. The results
for the SysAdmin problem (with up to 20 features, which corresponds to over 10° states) are
shown in Figure 4. The results were obtained on a 3.4Ghz Pentium-D PC with 2Gb of RAM.
For such problems it is not feasible to exactly evaluate a (factored) policy, so (unlike the
results presented above) the results shown here were obtained by Monte-Carlo simulation.
Further, it is not feasible to obtain the optimal policy for such problems, so we are not able
to present a direct comparison to optimal solutions. However, for a qualitative comparison,
we plot the values of random and greedy (zero value function) policies. Comparing the
growth of policy value of solutions to the composite ALP to the trend in the growth of the
optimal policy on smaller problems (recall Figure 1), the quality of composite-ALP solutions
doesn’t appear to degrade significantly.

6. Discussion, Conclusions, and Future Work

Our main motivation in this work has been to develop a tractable approximation to con-
strained MDPs, for which exact solutions are predominantly based on the dual LP (2). The
sole previous ALP formulation based on the dual LP is Guestrin’s DALP (Guestrin, 2003).
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Figure 3: Policy value for uni- and bi-directional ring for several discount factors (7).

As discussed in Section 2.3, DALP unfortunately scales exponentially with the induced
width of the cluster graph, which can be quite large, especially for constrained problems.
We have presented the composite ALP approach as a more tractable yet still effective al-
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Figure 4: Performance of composite ALP on larger problems. (a): Policy Value; (b): Time
for solving the linear program for the composite ALP.

ternative that approximates both the optimization variables and the feasible regions of the
LPs, symmetrically handling both the primal and dual variables. The composite ALP can
also be effective in solving unconstrained MDPs, as we have empirically shown in Section 5.
Overall, our experiments confirm the intuition behind composite ALPs: if the objective func-
tion is approximated, then using the exact feasible region can be wasteful. In the future, we
would also like to establish more definitive quality bounds for the approach.

An alternative feasible-region approximation technique, which statistically samples the
constraint set, was proposed by de Farias and Van Roy (2003). However, applying this idea
to the dual formulation is problematic, since computing the coefficients for a given constraint
in the ADLP (13) is computationally hard, as demonstrated in Section 3. For unconstrained
problems, a careful comparison of the constraint sampling scheme to the composite ALP is
an interesting direction for future work, but a direct comparison is difficult, because, even
given the same primal basis H, the performance of the two algorithms can vary greatly
depending on the choice of constraint-approximation parameters (sampling distribution and
the dual basis Q). Another possible way of approximating dual LPs for problems with large
induced cost-network widths is to use the DALP (13) with marginal occupation measures
that are not globally consistent, as suggested by Guestrin (2003). Exploration of this idea
(and its comparison to our composite ALP) deserves future study.
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Appendix A. Experimental Setup

The details of the factored MDP for the SysAdmin problem used in our experiments are
described below. For a problem with m computers, the state space is defined by m binary
features z,,, where z,, = 1 means the computer is up and running, and z,, = 0 means the
computer is down. There are m + 1 actions, where action ¢ € [1, m] reboots computer ¢, and
action m —+ 1 is a noop. The factored transition function for the uni-directional network is:

Pz =12}, 20,0 =1) = 1,

P(2 = 1]t = 0,20, = 0,a # i) = 0.0238,
P(zt = 1]t = 0,20, = 1,a # i) = 0.0475,
P! =1]2f = 1,20, = 0,0 # i) = 0475,
Pz = 1)zt = 1,20, = 1,a # i) = 0.95,

where i + 1, taken modulo m is the neighbour of computer 1.
For the bi-directional network, the transition function is:

P(zt =102} 2l 2,0 =0) = 1,
P(z™ =1/0,0,0,a # i) = 0.01,
P(z™ =1/0,1,0,a # i) = 0.24,
P(z™ =1]0,0,1,a # i) = 0.24,
P(z™ =1/0,1,1,a # i) = 0.05,
P(z™ =1]1,0,0,a # i) = 0.23,
P(ziT = 1|1,0,1,a # i) = 0.475,
P(zT = 1|1,1,0,a # i) = 0.475,
P(zT =1|1,1,1,a # i) = 0.95,

where, again, i + 1 and ¢ — 1 is assumed to wrap around the interval [1,m]. Below we use
the same notation ¢ + 1 and ¢ — 1 to refer to neighbours of 7.

The reward is a function of the number of running computers, with computers with
higher IDs providing higher utility (to break the symmetry):

r(21,- o zm) = Y _(1+0.1i)z. (19)

7

We used a uniform initial distribution over the state space:
a(z1y...,2m) = 1/]2™] V21, ... Zm- (20)

We should point out that in the primal ALP formulation of unconstrained MDPs, solution
quality is sensitive to the choice of «, which are often referred to as the state-relevance
weights (de Farias & Van Roy, 2003). Further, for unconstrained problems, there always
exist uniformly optimal policies (optimal for all initial conditions «). Therefore, since for the
exact LP any positive initial distribution « can be chosen, when formulating an ALP for an
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unconstrained problem, one should attempt to choose one that leads to the best solution.
However, since for constrained problems uniformly optimal solutions do not in general exist,
« becomes a part of the problem definition and cannot be changed arbitrarily. We therefore
help « fixed in our experiments.

The discount factor used in the various experiments varied in the interval [0.95,0.99],
with the exact values identified in Section 5.

The following primal basis functions H that scale linearly with the number of features
were used in all of our experiments:

no = 1;
h}(zi) = z;, Vi € [1,m];

10

(21)
h?(zi,ziﬂ) = 5(21',2’1'_;,_1) = ( 0 1 ) , Vi€ [l,m].

In some of the experiments (as explained in Section 5), the following quadratic functions
were added to the primal set:

h3(zi,zj) =0(z,25), Vi,je[l,m],j>1. (22)

For the composite ALP, the following set of dual basis functions that scales linearly with
the number of state features was used:

¢’ =1
¢ (zi,a) =1, Vz € {0,1},i € [1,m],a € [1,m + 1]; (23)
(2, zig1,0) = 3z, 25), Vi e [1,m],a € [1,m+ 1];

q2(zi,zi,1,zi+1,a) =1, Vz,zit1,2i-1 €{0,1},1 € [1,m],a € [1,m + 1].
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