
In Proceedings of The Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-06)

Resource Allocation Among Agents with Preferences
Induced by Factored MDPs

Dmitri Dolgov and Edmund Durfee
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

{ddolgov, durfee}@umich.edu

ABSTRACT
Distributing scarce resources among agents in a way that
maximizes the social welfare of the group is a computation-
ally hard problem when the value of a resource bundle is not
linearly decomposable. Furthermore, the problem of deter-
mining the value of a resource bundle can be a significant
computational challenge in itself, such as for an agent op-
erating in a stochastic environment, where the value of a
resource bundle is the expected payoff of the optimal pol-
icy realizable given these resources. Recent work has shown
that the structure in agents’ preferences induced by stochas-
tic policy-optimization problems (modeled as MDPs) can
be exploited to solve the resource-allocation and the policy-
optimization problems simultaneously, leading to drastic (of-
ten exponential) improvements in computational efficiency.
However, previous work used a flat MDP model that scales
very poorly. In this work, we present and empirically eval-
uate a resource-allocation mechanism that achieves much
better scaling by using factored MDP models, thus exploit-
ing both the structure in agents’ MDP-induced preferences,
as well as the structure within agents’ MDPs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design

Keywords
Task and resource allocation in agent systems, (Multi-)agent
planning.

1. INTRODUCTION
Resource allocation is recognized as an important prob-

lem in many research fields, such as computer science, eco-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

nomics, and operations research. The core question of re-
source allocation is how to distribute a set of scarce re-
sources among a set of agents (either cooperative or self-
interested) in the best possible way, with social welfare (sum
of agents’ utilities) as one of the most popular optimization
criteria. This problem is computationally challenging (NP-
complete [19]) when agents’ utility functions are defined
over bundles of resources and are not linearly decomposable.
Such computational challenges in combinatorial resource-
allocation problems have recently precipitated the move to-
wards resource-allocation mechanisms that model the mech-
anisms underlying agents’ resource preferences (e.g., [15]), as
opposed to the more-traditional black-box-utility models.

In particular, we have previously proposed a model where
an agent’s resource preferences are defined by an underly-
ing Markov decision process, where resources are required
to enable actions, and the value of a resource bundle is the
expected payoff of the optimal policy that is realizable given
these resources [8, 9]. In other words, an agent’s MDP is pa-
rameterized by the available resources, and the agent’s util-
ity for resources is defined as the expected value of the best
realizable policy. The model assumes that agents’ planning
problems are weakly-coupled [16], i.e., once the resources are
distributed, the agents are independent.

Under this model, a naive resource-allocation approach
would require each agent to formulate and solve an expo-
nential number of MDPs (one for each resource bundle) just
to define its utility function, and then to solve an NP-hard
allocation problem on the exponentially-large input. How-
ever, a superior method can be implemented that combines
the resource-allocation and the policy-optimization prob-
lems and formulates them as a single constrained MDP that
can then be reduced to a mixed integer program, leading to
an exponential reduction in the number of binary decision
variables. This approach exploits the structure in agents’
preferences that stems from the regularities of the underly-
ing Markov process, which leads to drastic improvements in
scalability of the resource-allocation problem.

There is, however, another source of intractability in the
model described above that is due to the MDP models them-
selves. The traditional flat way of representing an MDP re-
quires an explicit enumeration of all possible states of the
system, which subjects the model to the curse of dimension-
ality [2] and leads to an exponential blow-up of the state
space in terms of the number of state features of the prob-
lem. This representational challenge is addressed by factored
MDPs [3] that model the state space as a cross product
of state features, represent the transition function as a dy-

namic Bayesian network, and assume the reward function
can be additively decomposed into functions with compact
domains. Unfortunately, a solution to a well-structured fac-
tored MDP does not, in general, maintain the structure and
compactness of the problem [14, 7], which forces the need for
approximate solutions. One popular family of such methods
that is particularly well-suited for our goal is approximate
linear programming (ALP) [20, 6], for which there exist sev-
eral very efficient algorithms [17, 12, 5, 10].

The main contribution of this work is that it extends the
line of research on resource-allocation methods for agents
with MDP-induced preferences [8, 9] to factored MDP mod-
els. It builds on the ALP methodologies of [12] to construct
an efficient algorithm that combines resource allocation and
approximate policy optimization for factored MDPs. This
effectively exploits both the structure in agents’ preferences
that is due to the underlying MDPs, as well as the struc-
ture within the MDPs themselves, leading to exponential
improvements in efficiency both in terms of the size of the
resource-allocation problem (as the number of resource types
increases) and the size of the policy-optimization problem
(as the number of state features in an MDP grows).

2. FACTORED MDP AND ALP
A discrete-time, infinite-horizon, discounted MDP (e.g.,

[18]) can be described as 〈S,A, P, R, γ〉, where S = {s} is
the finite set of system states, A = {a} is a finite set of
actions, P : S × A × S 7→ [0, 1] is the transition function
(P (σ|s, a) is the probability of moving into state σ upon ex-
ecuting action a in state s), R : S×A 7→ R is the (bounded)
reward function (R(s, a) is the reward for executing action a
in state s), and γ ∈ [0, 1) is the discount factor (a unit re-
ward at time τ is aggregated into the total reward as γτ).

A solution to such an MDP is a stationary, deterministic
policy π. We define a policy as a mapping of states to prob-
ability distributions over actions: π : S × A 7→ [0, 1], where
π(s, a) defines the probability that action a is executed in
state s (for deterministic policies, only one π(s, a) per state
is nonzero). One way of solving an MDP is to compute the
optimal value function v, which defines, for every state, the
total expected discounted reward of the optimal policy. It
is then optimal to simply act greedily with respect to v.

The optimal value function can be obtained, for example,
using the following minimization linear program (LP), which
is often called the primal LP of an MDP (e.g., [18]):

min
X

s

α(s)v(s) s.t.:

v(s) ≥ R(s, a) + γ
X

σ

P (σ|s, a)v(σ), ∀s ∈ S, a ∈ A,
(1)

where α is an arbitrary strictly positive distribution over the
state space (α(s) > 0). This LP has |S| variables and |S||A|
constraints. Equivalently, the problem can be formulated as
the dual LP with |S||A| variables and |S| constraints:

max
X
s,a

R(s, a)x(s, a) s.t.:

X
a

x(σ, a)− γ
X
s,a

x(s, a)P (σ|s, a) = α(σ), ∀s ∈ S,
(2)

where x(s, a) ≥ 0 is called the occupation measure (x(s, a) is
the discounted number of executions of a in s), and the con-
straints ensure the conservation of flow through each state.

Given a solution to (2), an optimal policy can be com-
puted as: π(s, a) = x(s, a)/

P
a x(s, a). A policy thus ob-

tained is uniformly-optimal (optimal for all initial states)
when α(s) is strictly positive. The existence of uniformly-
optimal policies does not hold for the resource-parameterized
MDP models that we use in this work (detailed in Section 3),
so for such problems the initial conditions α will be an im-
portant part of problem specification.

2.1 Factored MDPs
The standard MDP model defined above requires an enu-

meration of all system states and thus scales very poorly.
This problem is addressed by a compact MDP representa-
tion [3, 4] that defines the state space as the cross-product of
state features: S = z1 × z2 . . . zN , and uses a factored tran-
sition function and an additively-separable reward function.

The transition function is specified as a two-layer dynamic
Bayesian network (DBN), with the current state features
viewed as the parents of the next time-step features:

P (σ|s, a) = P (z(σ)|z(s), a) =

JPY
j=1

pj(zj(σ)|a, zpj (s)), (3)

where z(·) is the instantiation of all Z features corresponding
to a state, zj(·) denotes the value of the jth state feature of
a state, and zpj (·) is the instantiation of the DBN-parents
Zpj of zj . Likewise, in the rest of this paper, we will use Zϕ

to refer to the set of features in the domain of function ϕ,
and zϕ to refer to an instantiation of these features.

The reward function is compactly defined as

R(s, a) =

JRX
j=1

rj(zrj (s), a), (4)

where zrj (·) is an instantiation of the features Zrj ⊆ Z that

are in the domain of the jth local reward function rj .
Clearly, this factored representation is only beneficial if

the local transition functions pj(zj(σ)|zpj , a) and local re-
ward functions rj(zrj , a) have small domains: |Zpj | � |Z|
and |Zrj | � |Z|, i.e., each reward and transition component
depends on a small subset of all state features Z.

2.2 Primal ALP
Approximate linear programming [20, 6] lowers the dimen-

sionality of the primal LP (1) by restricting the optimization
to the space of value functions that are linear combinations
of a predefined set of K basis functions h:

v(s) = v(z(s)) =

KX
k=1

hk(zhk (s))wk, (5)

where hk(zhk) is the kth basis function defined on a small
subset of the state features Zhk ⊂ Z, and w are the new
optimization variables. This technique is similar to linear
regression, where a function is approximated as a linear com-
bination of a given (in general, non-linear) basis. The differ-
ence, however, is that here instead of minimizing a measure
of error for the given data points, the goal is to minimize
the measure to the unknown optimal value function. For the
approximation to be computationally effective, the domain
of each basis function has to be small (|Zhk | � |Z|).

As a notational convenience, we can rewrite the above as
v = Hw, where H is a |S| × |w| matrix composed of basis

functions hk.1 Thus, the LP (1) becomes:

min αT Hw
˛̨
AHw ≥ r, (6)

where the constraint matrix is Asa,σ = δ(s, σ) − γP (σ|s, a)
(where δsσ is the Kronecker delta, δsσ = 1⇔ s = σ).

For this method to be effective, we need to be able to ef-
ficiently compute the objective function αT H and the con-
straints AH, which can be done as described in [12]. Con-
sider a factored initial distribution:

α(s) =

JαY
j=1

µj(zµj (s)),

where, as usual, the domain of each factor µj is taken to be
small (|Zµj | � |Z|). The objective function is computed as:

(αT H)k =
X

s

α(s)Hsk =
X

s

Y
i

µj(zµj (s))hk(zhk (s))

=
X
z′

Y
j′

µj′(z′µj′)hk(z′hk
),

where z′ iterates over all features in the union of the domain
of hk and the domains of those µj′ that have a non-zero
intersection with the domain of hk: z′ = {zµj ∪ zhk : Zµj ∩
Zhk 6= ∅}, because all µi that do not have any variables in
common with hk factor out and their sum is 1 (since it is a
sum of a probability distribution over its domain).2

The constraints in (6) are also computed efficiently:

(AH)sa,k =
X

σ

Asa,σhk(σ) =
X

σ

(δsσ − γP (σ|s, a))hk(σ)

=
X
z

δ(z(s), z)hk(z)− γ
X
z

P (z|z(s), a)hk(z).

(7)
The first sum can be computed efficiently, because it is sim-
ply hk(zhk (s)), since δ is nonzero only at z(σ) = z(s).
The second term can also be computed efficiently, since
P (z(σ)|z(s), a) is a factored probability distribution (just
like in the case of α above).

Notice that in the above, the second term in (7) can be
precomputed efficiently by performing a backprojection of
every basis function hk:

gk(zgk , a) =
X
z

P (z′|z(s), a)hk(z) ∀k ∈ [1, K], (8)

where the domain of the backprojection gk is the union of
the DBN-parents of all features that are in the domain of
the kth basis function: Zgk =

S
j:zj∈Zhk

Zpj .

The primal ALP described above reduces the number of
optimization variables from |S| to |w| = K, and the coeffi-
cients of the objective function and every constraint row can
be computed efficiently. However, the number of rows in the
constraint matrix remains exponential at |S||A|, so the ALP
has to undergo some additional transformation (or approx-
imation) to become feasible. To address this issue, several
techniques have been proposed, such as exploiting problem
structure [12], sampling [5], and linear approximations [10].
The benefit of the former, compared to the latter two, is that

1Note that the exponentially-sized H is never explicitly writ-
ten out, since each column is a basis function that can be
represented compactly.
2See [11] or [10] for examples of how the LP coefficients can
be computed efficiently.

it does not introduce a new source of approximation error,
while the downside is that the number of constraints needed
to represent the feasible region exactly is exponential in the
induced tree width of the associated cluster graph (a graph
with a vertex per variable and edges between variables that
appear together in the domain of any function).

2.3 Dual ALP
When dealing with constrained MDPs (flat or factored),

such as the ones that arise in the resource allocation problem
discussed in Section 4, it is more practical to work with the
duals of the (A)LPs. Guestrin [11] considers the dual of (6):

max rT x
˛̨̨
HT AT x = α. (9)

This LP has |S||A| variables and |w| = K constraints (ap-
proximated flow conservation), where each of the K con-
straints corresponds to a linear combination of |Zhk | real
flow constraints, with hk defining the weights with which
they are aggregated into the new approximate constraint.
Clearly, (9) is always feasible. Furthermore, as shown in
[11], a solution to (9) constitutes a valid density function,
summing to (1−γ)−1, which implies that the LP is bounded.

A problem with the LP (9) is that it has an exponential
number of optimization variables. However, as proposed by
Guestrin [11], the exact occupation measure x can be repre-
sented more compactly by using marginal occupation mea-
sures (or marginal visitation frequencies) ξ, which define the
occupation measure over subsets of the state features. Let
us define a marginal occupation measure over each of the
following clusters of variables: the domain of every primal
basis function Zhk , the domain of every local reward func-
tion Zrj , and the domains of all backprojections of the basis
functions Zgk . The challenge then becomes in ensuring that
the marginal occupation measures ξ are consistent and cor-
respond to a valid global distribution over Z. Fortunately,
global consistency (but not necessarily correspondence to a
valid flat occupation measure x) can often be achieved via
local marginal consistency constraints [11] that ensure that
marginal occupation measures ξ1 and ξ2 agree on the val-
ues of features they share (with non-overlapping features
marginalized out):X

a

X
fzj ,a

ξj(zj , a) =
X

a

X
fzi,a

ξi(zi, a), ∀zji, (10)

where Zji = Zi

S
Zj are the shared features, and fZi =

Zj \Zi and fZj = Zi \Zj are unique. As is the case in graph-
ical models [13] more generally, and as observed for this par-
ticular case in [11], when the cluster graph associated with
the domains of the marginal occupation measures ξ forms a
junction tree3 local consistency implies global consistency.
If the original cluster graph does not form a junction tree,
it can be converted to one by applying the widely-used in
inference techniques of moralization and triangulation.4

Using the marginal occupation measures, the LP (9) can
be represented more compactly as the following LP defined

3A junction tree is an undirected tree with clusters of state
features as nodes, with the property that if a feature appears
in clusters A and B, it also appears in any cluster in the path
from A to B.
4Note that while the problem of computing the junction tree
with the smallest width is an NP-hard problem [1], there are
efficient approximations.

Z1, Z2

Z1, Z3 Z2, Z4

Figure 1: A cluster graph that forms a junction tree.

on marginal occupation measures ξj(zj), one per each clus-
ter in Zhk , Zgk , Zrj :

5

max

MX
m=1

X
a

X
zrj

rj(zrj , a)ξrj (zrj , a) s.t.:

X
a

ξhk (zhk , a)hk(zhk)− γ
X

a

gk(a)ξgk (zhk , a) =X
zhk

α(zhk)hk(zhk), ∀k ∈ [1, K];

X
fzj

ξj(zj , a) =
X

fzi

ξi(zi, a),

∀a, ξj , ξi, zj , zi, fZi = Zj \ Zi, fZj = Zi \ Zj ;X
a

X
zj

ξj(zj , a) = (1− γ)−1, ∀j, zj ;

ξj(zj , a) ≥ 0, ∀a, j, zj .
(11)

Given a solution ξj(zj) to the above LP, the optimal pol-
icy for any given state can be computed in the following way,
detailed in [12]. Given the dual solution ξj(zj), compute the
primal solution w that defines the value-function approxima-
tion. Given the current state, do a one-step lookahead and,
for each possible next state, compute the value-function es-
timate based on w, and greedily select the action that maxi-
mizes the sum of the one-step reward and the expected value
of the next step (as in the standard MDP).

Another way of obtaining the policy is to calculate it
directly from the marginal occupation measures ξ. Each
marginal occupation measure forms a valid distribution on
its domain, so we can use a variant of the junction-tree infer-
ence algorithm for calculating the distribution over actions,
given the current state. The procedure is described in Algo-
rithm 1 and works by simply traversing the cluster tree from
the root and factoring in the marginal occupation measures
along the way, while normalizing appropriately. Note that
because the marginal occupation measures (even if globally
consistent) do not necessarily correspond to a valid occu-
pation measure, there is not a one-to-one correspondence
between the marginals ξ and policy π, as between x and π
in the flat case.

Example 1. Consider the cluster graph in Figure 1. The
marginal occupation measures are: ξ(z1, z2, a), ξ(z1, z3, a),
and ξ(z2, z4, a). This graph forms a junction tree, so global
consistency of marginal occupation measures is guaranteed

5Here and below, for simplicity we assume the cluster graph
is a junction tree. If not, the LP will have to undergo a
preprocessing step, as described above.

Algorithm 1: Policy from occupation measures.

Function PolicyForState
in : z – current state
out : π(z, a) – policy for current state

π(z, a)← PolicyForStateRec(z, root-cluster, 1, ∅)
if

P
a π(z, a) = 0 then

/* use any action supported by marginals */

π(z, a)← 1 for any a, s.t., ∃j, z′j : ξj(z
′
j , a) > 0

end

Function PolicyForStateRec
in : z – current state

: j – cluster id

: π(z, a) – marginal policy

: Ω – features already factored into policy

out : π′(z, a) – marginal policy

: Ω′ – features already factored into policy

/* update features already factored in */

Ω′ ← Ω
S
Zξj

/* factor in jth marginal */

π′(z, a)← π(z, a)ξ(zj , a)

/* normalize by overlapping features */

Z ′ ← Ω
T
Zξj

π′(z, a)← π′(z, a)/ξ(z′)

/* factor in children */

forall m ∈ Children(j) do
π′′ ← PolicyForStateRec(j, π′, Ω)
π′(z, a)← π′(z, a)π′′(z, a)

end

whenever local consistency constraints are satisfied:X
z2

ξ(z1, z2, a) =
X
z3

ξ(z1, z3, a), ∀z1, a;

X
z1

ξ(z1, z2, a) =
X
z4

ξ(z2, z4, a), ∀z2, a.

The global distribution for this problem is:

x(z1, z2, z3, z4, a) =
ξ(z1, z2, a)ξ(z1, z3, a)ξ(z2, z4, a)P

z1
ξ(z1, z2, a)

P
z2

ξ(z1, z2, a)
,

which is what would be computed by Algorithm 1. �

3. SINGLE-AGENT MODEL
We now briefly describe the model of the capacity-limited

agent with an MDP whose action set is parameterized by the
resources available to the agent. This is a slight extension of
the model described in [8] to factored problems and arbitrary
resource requirements.

The justification behind the model described in this sec-
tion is that often an agent has many capabilities that are
all in principle available to it, but not all combinations of
these capabilities are realizable within the agent’s architec-
tural limitations, because choosing to enable some of the
capabilities might seize the resources needed to enable oth-
ers. In other words, a particular policy might not be feasible

because the agent’s architecture does not support the com-
bination of capabilities required for that policy.

We model this constrained policy-optimization problem
as follows. The agent has a set of actions that are poten-
tially executable, and each action requires a certain com-
bination of resources. All resources have capacity costs,
and each agent has capacity constraints that limit what re-
sources it can make use of. For example, a delivery company
needs vehicles and loading equipment (resources) to make its
deliveries (execute actions). However, all equipment costs
money and requires manpower to operate it (capacity costs).
Therefore, the amount of equipment the agent can acquire
and successfully utilize is constrained by factors such as its
budget and limited manpower (capacity bounds).

Given the above, the goal is to assign to the agent a
subset of the available resources that does not violate its
capacity constraints, such that the optimal feasible policy
under that resource assignment yields the highest expected
utility. We can model such an optimization problem as
〈S,A, P, R, α,O, ρ, C, κ, bκ, 〉, where:

• 〈S,A, P, R, γ, α〉 are the components of a factored MDP,
represented in a factored manner, as defined in Section 2.1.
• O = {o} is the set of resource types (e.g., O = {production

equipment, vehicle , . . .}).
• ρ : A × O 7→ R is a function that specifies the resource

requirements of all actions; ρ(a, o) defines how much of
resource o is needed for action a (e.g., ρ(a, vehicle) = 1
means that action a requires one vehicle to be executable).
• C = {c} is the set of capacities of our agent (e.g., C =

space, money, manpower, . . .}).
• κ : O×C 7→ R is a function that specifies the capacity costs

of resources; κ(o, c) defines how much of capacity c a unit
of resource o consumes (e.g., κ(vehicle, money) = $50000
defines the cost of a vehicle).
• bκ : C 7→ R specifies the upper bounds on capacities; bκ(c)

gives the upper bound on capacity c (e.g., bκ(money) =
$1,000,000 defines the agent’s budget constraints).

Given the above, the agent’s optimization problem is to
find the set of resources whose capacity costs satisfy the con-
straints imposed by bκ, such that the best realizable policy,
given these resources (as induced by action resource require-
ments ρ) yields the highest expected discounted reward. As
we have previously shown in [8] (for flat MDPs and binary
resource-requirements), this problem is NP-complete.6 This
complexity result still holds for factored MDPs (the mod-
els are equivalent in expressiveness and worst-case space re-
quirements), as well as for non-binary resource requirements
(binary is a special case). Furthermore, in [8] we presented a
reduction of the problem to a mixed integer linear program
(MILP). We now develop an analogous reduction for the fac-
tored model of the single-agent capacity-constrained MDPs.
This factored MILP will serve as the basis for the resource-
allocation algorithm in the multiagent setting, discussed in
Section 4.

Given a flat occupation measure x, the agent’s capacity
constraints can be formulated as:X

o

κ(o, c)max
a

n
ρ(a, o)H

` X
s

x(s, a)
´o
≤ bκ(c), ∀c ∈ C,

(12)

6It is essentially a multidimensional KNAPSACK problem
with item values defined by the MDP.

where H is the Heaviside “step” function of a nonnegative
argument, defined as

H(z) =

(
0 z = 0;

1 z > 0.

To describe (12) in turns of marginal occupation mea-
sures, we use the following Lemma.

Lemma 1. Consider a set of marginal occupation mea-
sures {ξj} that are globally consistent and a corresponding
policy π(z, a) computer via Algorithm 1. Then

∀z, a : π(z, a) > 0 ⇐⇒ ∃j : ξj(zj , a) > 0, (13)

i.e., the policy prescribes non-zero probability of executing
action a in state z if and only if there is a marginal that
prescribes a non-zero probability to that action in same state.

Proof. The proof is essentially be definition. The “⇒ ”
direction follows from how policy π is constructed in Algo-
rithm 1: in order for the global distribution to assign a non-
zero probability to some event, there must exist a marginal
that assigns a non-zero probability to a subset of features
corresponding to the same event. The “ ⇐ ” direction fol-
lows from global consistency of the marginals. Indeed, as-
sume the opposite: ξj(zj , a) > 0 and π(z, a) = 0. This
would violate the following consistency constraint:

(1− γ)−1ξj(zj , a) =
X

fzj

π(zj , a),

where fZj = Z\Zj are the features not in the scope of ξj .

It immediately follows from Lemma 1 that the flat con-
straints (12) can be equivalently represented on the marginal
occupation measures ξ:X

o

κ(o, c)max
a

n
ρ(a, o)H

` X
j

X
zj

ξj(zj , a)
´o
≤ bκ(c), ∀c ∈ C.

(14)
The difficulty is that these constraints are non-linear due

to the maximization over a and the Heaviside function H.
To get rid of the first source of nonlinearity, let us observe
that a constraint with a single max over a finite set of dis-
crete values can be trivially linearized by expanding out the
set over which the maximization is taken:

max
z∈Z

f(z) ≤ a ⇐⇒ f(z) ≤ a, ∀z ∈ Z.

In (14), we have a finite sum of max’s, but it can also be
linearized by observing that the inequality

nX
i

g(ui)max
z∈Z

f(z, ui) =

g(u1)max
z∈Z

f(z, u1) + . . . + g(un)max
z∈Z

f(z, un) ≤ a

is equivalent to the system of |Z|n linear inequalities:

g(u1)f(z1, u1) + g(u2)f(z2, u2) + . . . + g(u2)f(z2, u2) ≤ a,

∀z1, z2, zn ∈ Z.

Applying this to the constraints in (14), we can express the
original system of |C| nonlinear constraints:X

o

κ(o, c)max
a

n
ρ(a, o)H

` X
j

X
zj

ξj(zj , a)
´o
≤ bκ(c), ∀c ∈ C,

as the following system of |C||A||O| linear constraints:X
o

κ(o, c)ρ(ao, o)H
` X

j

X
zj

ξj(zj , ao)
´
≤ bκ(c),

∀c ∈ C, ao1 , ao2 , . . . ∈ A.

(15)

Notice that this straightforward way of eliminating the
maximization exponentially increases the number of con-
straints, because the above expansion enumerates all pos-
sible actions for each resource: it enumerates policies where
each resource o is used by action a1, where it is used by
action a2, action a3, etc. However, in many problems not
all resources are used by all actions. In such cases, most of
the above constraints become redundant, and the number
of constraints can be reduced from |C||A||O| to |C|

Q
o |Ao|,

where Ao is the number of actions that use resource o. Fur-
thermore, in a special case, where the resource requirements
of actions are binary, the number of constraints can be re-
duced much more significantly, as discussed in Section 3.1.

To linearize the Heaviside function, we augment the origi-
nal optimization variables x with a set of |A| binary variables
∆(a) ∈ {0, 1}, where

∆(a) = H
“ X

j

X
zj

ξj(zj , ao)
”
. (16)

In other words, ∆(a) is an indicator variable that shows
whether action a is used in the policy with non-zero prob-
ability. Using ∆ and expanding the max as above, we can
rewrite the resource constraints in (14) as:X

o

κ(o, c)ρ(ao, o)∆(ao) ≤ bκ(c), ∀c ∈ C, ao1 , ao2 , . . . ∈ A,

(17)
which are linear in ∆. We can then synchronize ∆ and each
of the marginal occupation measures ξj via the following
linear inequalities:X

j

X
zj

ξj(zj , a)(1− γ) ≤ ∆(a), ∀a ∈ A. (18)

Indeed, ξj(zj , a)(1 − γ) ≤ 1, because
P

zj ,a ξj(zj , a) =

(1− γ)−1, which ensures that when any marginal ξ(·, a) as-
signs a non-zero probability to action a, this drives the cor-
responding ∆(a) to be 1. On the other hand, when all ξ(·, a)
are 0 for a given a, both ∆(a) = 0 and ∆(a) = 1 satisfy (18),
in which case ∆(a) will be driven down to ∆(a) = 0 by the
capacity constraints (if they are binding; if they are not, the
value of ∆(a) is irrelevant).

Putting it all together, the single-agent factored MDP
with resources and capacity constraints can be formulated
as an MILP by augmenting the LP (11) with binary vari-
ables ∆(a) and constraints (17) and (18).

3.1 Binary Resource Requirements
As a special case of the problem discussed in the previous

section, consider a domain where the resource requirements
are binary: ρ(a, o) = {0, 1}. Under these conditions the
single-agent MILP (11,17,18) can be simplified significantly.

First, observe that, when ρ(a, o) = {0, 1}, the total re-

source requirements of a policy can be simplified as follows:

max
a

n
ρ(a, o)H

` X
j

X
zj

ξj(zj , a)
´o

=

H
“ X

a

ρ(a, o)
X

j

X
zj

ξj(zj , a)
”
.

Therefore, instead of introducing |A| binary variables ∆(a)
that specify whether action a is used in the policy, it suffices
to use |O| variables δ(o) ∈ {0, 1}:

δ(o) = H
“ X

a

ρ(a, o)
X

j

X
zj

ξj(zj , a) ≤ bκ(c)
”
, (19)

where δ(o) indicates whether the policy requires resource o.
We can then synchronize the marginals ξ and the binary

variables δ(o) similarly to ∆(a) above, leading to the follow-
ing equivalent of (17,18) for binary resources:X

o

κ(o, c)δ(o) ≤ bκ(c), ∀c ∈ C;X
a

ρ(a, o)
X
j=1

X
zj

ξj(zj , a) ≤ δ(o), ∀o ∈ O.
(20)

4. RESOURCE ALLOCATION
We now consider the multiagent problem of resource al-

location between several agents, where the resource pref-
erences of the agents are defined by factored MDPs with
capacity-constraints, as described in the previous section.
As mentioned previously, we assume that agents are weakly-
coupled [16], i.e., they only interact through the shared re-
sources, and once the resources are allocated, the agents’
transitions and rewards are independent. Also, to simplify
the following discussion, we assume that agents’ resource re-
quirements are binary (as discussed in Section 3.1), but all
results directly map to to the non-binary case by making
straightforward substitutions from Section 3.

The problem of distributing a set of indivisible resources
O among a set of agents Λ = {λ} is described as follows:

• {〈S,A, P λ, Rλ, αλ, ρλ, bκλ〉} is the collection of single-agent
factored weakly-coupled MDPs, as defined in Section 3.
For simplicity, but without loss of generality we assume
that all agents have the same state and action spaces S
and A, but each has its own transition and reward func-
tions P λ and Rλ, initial conditions αλ, as well as its own
resource requirements ρλ : A × O 7→ {0, 1} and capacity
bounds bκλ : C 7→ R.
• bρ : O 7→ R specifies the upper bound on the amounts of

the shared resources (this defines the additional bound for
the multiagent problem).

Given the above model, the goal is to find an allocation
of the available resources among the agents that maximizes
the sum of the expected discounted rewards of the agents’
optimal policies under the resource allocation. This can be
achieved via a straightforward combination of the single-
agent MILPs from the previous section, augmented with an
additional constraint that ensures that the allocation does
not exceed the bounds on the total amounts of resources bρ.

Putting it all together, we arrive at an MILP that achieves
the goal we set forth in this work – an algorithm for simul-
taneously solving the resource-allocation and the resource-
parameterized policy-optimization problem for the factored

Markov model. The following MILP has, for every agent λ,
a set of marginal occupation measures ξλ and a set of binary
variables δλ(o). Each agent has its own basis functions hλ

k ,
and therefore its own backprojections gλ

k .

max
X

λ

X
a

JRX
j

X
zλ

rj

rλ
j (zλ

rj
, a)ξλ

rj
(zλ

rj
, a) s.t.:

X
a

ξλ
hk

(zλ
hk

, a)hλ
k(zλ

hk
)− γ

X
a

gλ
k (a)ξλ

gk
(zλ

hk
, a) =X

zhk

αλ(zλ
hk

)hλ
k(zλ

hk
), ∀k ∈ [1, K], λ ∈ Λ;

X
fzλ
j

ξλ
j (zλ

j , a) =
X

fzλ
i

ξλ
i (zλ

i , a),

∀λ ∈ Λ, a ∈ A, ξλ
j , ξλ

i , zλ
j , zλ

i ,fZλ
i = Zλ

j \ Zλ
i , fZλ

j = Zλ
i \ Zλ

j ;X
a

X
zλ

j

ξλ
j (zλ

j , a) = (1− γ)−1, ∀j, zj ;

X
o

κ(o, c)δλ(o) ≤ bκλ(c), ∀λ ∈ Λ, c ∈ C;

JeX
j=1

X
a

X
zλ

ρj

ρλ
j (zλ

ρj
, a)ξλ

ρj
(zλ

ρj
, a) ≤ δλ(o), ∀zλ

j , o;

(21)
As in the flat-MDP model of [8], this MILP has |Λ||O|

binary variables, which is an exponential reduction from a
naive resource-allocation scheme that has a decision variable
per resource bundle (thus requiring on the order of |Λ|2|O|
variables). Furthermore, the number of occupation-measure
variables can be drastically reduced in this factored MILP,
compared to the flat variant. The actual gains in efficiency
and the associated losses in quality depend on what basis
functions hk are used and on how well-structured the MDP
is (which ultimately defines the domain sizes of ξ).

5. EXPERIMENTAL RESULTS
We investigated the behavior of the resource-allocation

MILP (21) on the factored “SysAdmin” problem [12], which
we extended to include resources and capacities.

The problem involves a network of N computers, each of
which might fail with probability that depends on the status
of the neighboring computers. The job of the decision-maker
(the SysAdmin) is to keep the network running. The state
of the system is defined by a set of N binary features, each
corresponding to the status of a computer. At each time
step the SysAdmin can reboot at most one computer and re-
ceives a reward for every computer that is functioning prop-
erly. We used a network with a unidirectional-ring topology,
where each computer influenced and was influenced by the
status of a single other computer. The parameters of the
transition and reward model are described in detail in [12].

We extended the domain to the multiagent setting with
resources as follows. Each SysAdmin agent was in charge of
running its own network of N computers. In our domain,
computer failures were caused by more serious malfunctions
(e.g., a virus infection) that could not be fixed by simply
rebooting the computer, and thus performing the recovery
actions required resources (e.g., specialized software, hard-

ware, or trained personnel). Further, the computers were
heterogeneous (mail servers, web servers, data storage, etc.),
and thus the recovery of each computer required a different
subset of the resources. The total quantity of the resources
was limited, and each SysAdmin also had a limited budget,
which constrained the resources it could acquire.

For a local MDP with N computers, there were |O| = N
resources, and each recovery action required two resources,
which were randomly selected at the time of problem gen-
eration. There was a single capacity cost c (money) and all
resources had a unit capacity cost κ(o, c) = 1.

A thorough empirical analysis of ALP solutions to the
SysAdmin problem is presented in [12], and it discusses the
quality of solutions and the computational complexity of
solving the ALP for various network topologies and differ-
ent ways of selecting the basis functions. In particular, the
experiments in [12] demonstrate that using basis functions
over singletons of features leads to high-quality approxima-
tions at a very low computational cost. Therefore, we used
the same basis functions and focused on evaluating the com-
putational complexity of the resource-allocation MILP (21).

Figure 2a shows the running time of the MILP (21) as a
function of the number of state features (computers). As
can be seen, the factored MDP approach allows us to easily
scale the resource-allocation problem up to MDPs with more
than 1015 states. Figure 2b demonstrates the correspond-
ing exponential gain in efficiency of the factored MILP (21),
compared to the one with a flat-MDP model. Note that
the flat MILP [8] in itself commonly achieves exponential
speedup over a straightforward resource-allocation mecha-
nism that enumerates all resource bundles [9].

Finally, Figure 2c shows the complexity of the factored
MILP as a function of the number of agents. The graph
demonstrates that although the number of binary variables
in the MILP is proportional to the number of agents, the ap-
proach shows promise for scaling to large numbers of agents.

Overall, the trends in these results support the analytical
claims about the efficiency gains of using factored models
and ALP in the resource-allocation problem.

6. CONCLUSIONS
Recent work on resource-allocation problems has demon-

strated that it can be extremely beneficial from the stand-
point of computational efficiency to have a good model of the
processes that define agents’ preferences over resources. For
a realistic agent that has to deal with uncertainty, Markov
decision processes with action spaces that depend on the
resources available to the agent provide a natural model
of the agent’s utility-formation mechanism. Moreover, re-
source preferences induced by MDPs are well-structured,
which enables the construction of resource-allocation mech-
anisms that are very computationally efficient[8, 9].

We presented a mechanism that fruitfully exploits the
structure in agents’ utility functions that is due to the under-
lying MDPs, as well as the structure within the MDPs them-
selves (via an approximation). For well-structured MDPs,
the latter can lead to another order of exponential speedup
over flat MDP methods, as supported by our experiments.

Some interesting directions of our ongoing and future work
in this area include exploring factored resource-allocation
MILPs on cluster graphs that are not junction trees, as well
as looking at other types of structure in agent’s MDPs (e.g.,
context-specific structure [12]).

10 20 30 40 50

10−1

100

101

102

Number of state features (computers)

t,
se

c

Factored−MDP MILP running time

4 agents
8 agents
12 agents

1 2 3 4 5 6 7 8 910−1

100

101

102

103

of state features

Sp
ee

du
p

Relative speedup (flat / factored)

1 agents
2 agents
3 agents
4 agents

5 10 15 20 25 30

10−1

100

101

Number of agents |M|

t,
se

c

Factored−MDP MILP running time

10 state features
15 state features
20 state features

(a) (b) (c)

Figure 2: Efficiency of resource allocation with factored MDPs. (a): Running time of factored MILP as a
function of the number of state features. (b): Relative speedup of factored MILP, compared to the flat MILP
(ratio of running times). (c): Running time of the factored MILP as a function of the number of agents.

7. ACKNOWLEDGMENTS
This material is based upon work supported in part by

the DARPA/IPTO COORDINATORs program and the Air
Force Research Laboratory under Contract No. FA8750–05–
C–0030. The views and conclusions contained in this docu-
ment are those of the authors, and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency
or the U.S. Government.

8. REFERENCES
[1] S. Arnborg, D. G. Corneil, and A. Proskurowski.

Complexity of finding embeddings in a k-tree. SIAM
J. Algebraic Discrete Methods, 8(2):277–284, 1987.

[2] R. Bellman. Adaptive Control Processes: A Guided
Tour. Princeton University Press, 1961.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt.
Exploiting structure in policy construction. In
Proceedings of the 14th International Joint Conference
on AI, pages 1104–1111, 1995.

[4] C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored
representations. AI, 121(1-2):49–107, 2000.

[5] D. de Farias and B. Van Roy. On constraint sampling
in the linear programming approach to approximate
dynamic programming. Mathematics of Operations
Research, 29(3):462–478, 2004.

[6] D. P. de Farias and B. Van Roy. The linear
programming approach to approximate dynamic
programming. Operations Research, 51(6), 2003.

[7] D. A. Dolgov and E. H. Durfee. Graphical models in
local, asymmetric multi-agent Markov decision
processes. In Proc. of the 3rd Int. Joint Conf on
Autonomous Agents and Multiagent Systems, 2004.

[8] D. A. Dolgov and E. H. Durfee. Optimal resource
allocation and policy formulation in loosely-coupled
Markov decision processes. In Proceedings of the 14th
International Conference on Automated Planning and
Scheduling, pages 315–324, 2004.

[9] D. A. Dolgov and E. H. Durfee. Computationally
efficient combinatorial auctions for resource allocation

in weakly-coupled MDPs. In Proc. of the Fourth
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-05), 2005.

[10] D. A. Dolgov and E. H. Durfee. Symmetric
primal-dual approximate linear programming for
factored MDPs. In Proc. of the Ninth Int. Symposium
on AI and Math. (AI&M-06), January 2006.

[11] C. Guestrin. Planning Under Uncertainty in Complex
Structured Environments. PhD thesis, CS Dept.,
Stanford University, August 2003.

[12] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs.
Journal of AI Research, 19:399–468, 2003.

[13] M. I. Jordan. Graphical models. Statistical Science
(Special Issue on Bayesian Stat.), 19:140–155, 2004.

[14] D. Koller and R. Parr. Computing factored value
functions for policies in structured MDPs. In Proc. of
the Sixteenth International Conference on Artificial
Intelligence IJCAI-99, pages 1332–1339, 1999.

[15] K. Larson and T. Sandholm. Mechanism design and
deliberative agents. In Proc. of the 4th International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 650–656. ACM Press, 2005.

[16] N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin,
L. Kaelbling, T. Dean, and C. Boutilier. Solving very
large weakly coupled Markov decision processes. In
AAAI/IAAI, pages 165–172, 1998.

[17] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier,
and C. Guestrin. Greedy linear value-approximation
for factored Markov decision processes. In Proc. of the
18th National Conf. on AI, pages 285–291, 2002.

[18] M. L. Puterman. Markov Decision Processes. John
Wiley & Sons, New York, 1994.

[19] M. H. Rothkopf, A. Pekec, and R. M. Harstad.
Computationally manageable combinational auctions.
Management Science, 44(8):1131–1147, 1998.

[20] P. Schweitzer and A. Seidmann. Generalized
polynomial approximations in Markovian decision
processes. Journal of Mathematical Analysis and
Applications, 110:568 582, 1985.

