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ABSTRACT
Optimal resource scheduling in multiagent systems is a com-
putationally challenging task, particularly when the values
of resources are not additive. We consider the combinatorial
problem of scheduling the usage of multiple resources among
agents that operate in stochastic environments, modeled as
Markov decision processes (MDPs). In recent years, effi-
cient resource-allocation algorithms have been developed for
agents with resource values induced by MDPs. However, this
prior work has focused on static resource-allocation prob-
lems where resources are distributed once and then utilized
in infinite-horizon MDPs. We extend those existing models
to the problem of combinatorial resource scheduling, where
agents persist only for finite periods between their (prede-
fined) arrival and departure times, requiring resources only
for those time periods. We provide a computationally ef-
ficient procedure for computing globally optimal resource
assignments to agents over time. We illustrate and empiri-
cally analyze the method in the context of a stochastic job-
scheduling domain.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design

Keywords
Task and resource allocation in agent systems, Multiagent
planning.

1. INTRODUCTION
The tasks of optimal resource allocation and scheduling

are ubiquitous in multiagent systems, but solving such opti-
mization problems can be computationally difficult, due to
a number of factors. In particular, when the value of a set of
resources to an agent is not additive (as is often the case with
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resources that are substitutes or complements), the utility
function might have to be defined on an exponentially large
space of resource bundles, which very quickly becomes com-
putationally intractable. Further, even when each agent has
a utility function that is nonzero only on a small subset of
the possible resource bundles, obtaining optimal allocation
is still computationally prohibitive, as the problem becomes
NP-complete [14].

Such computational issues have recently spawned several
threads of work in using compact models of agents’ pref-
erences. One idea is to use any structure present in utility
functions to represent them compactly, via, for example, log-
ical formulas [15, 10, 4, 3]. An alternative is to directly model
the mechanisms that define the agents’ utility functions and
perform resource allocation directly with these models [9]. A
way of accomplishing this is to model the processes by which
an agent might utilize the resources and define the utility
function as the payoff of these processes. In particular, if
an agent uses resources to act in a stochastic environment,
its utility function can be naturally modeled with a Markov
decision process, whose action set is parameterized by the
available resources. This representation can then be used to
construct very efficient resource-allocation algorithms that
lead to an exponential speedup over a straightforward opti-
mization problem with flat representations of combinatorial
preferences [6, 7, 8].

However, this existing work on resource allocation with
preferences induced by resource-parameterized MDPs makes
an assumption that the resources are only allocated once and
are then utilized by the agents independently within their
infinite-horizon MDPs. This assumption that no reallocation
of resources is possible can be limiting in domains where
agents arrive and depart dynamically.

In this paper, we extend the work on resource allocation
under MDP-induced preferences to discrete-time scheduling
problems, where agents are present in the system for finite
time intervals and can only use resources within these in-
tervals. In particular, agents arrive and depart at arbitrary
(predefined) times and within these intervals use resources
to execute tasks in finite-horizon MDPs. We address the
problem of globally optimal resource scheduling, where the
objective is to find an allocation of resources to the agents
across time that maximizes the sum of the expected rewards
that they obtain.

In this context, our main contribution is a mixed-integer-
programming formulation of the scheduling problem that
chooses globally optimal resource assignments, starting times,
and execution horizons for all agents (within their arrival-



departure intervals). We analyze and empirically compare
two flavors of the scheduling problem: one, where agents
have static resource assignments within their finite-horizon
MDPs, and another, where resources can be dynamically
reallocated between agents at every time step.

In the rest of the paper, we first lay down the necessary
groundwork in Section 2 and then introduce our model and
formal problem statement in Section 3. In Section 4.2, we
describe our main result, the optimization program for glob-
ally optimal resource scheduling. Following the discussion of
our experimental results on a job-scheduling problem in Sec-
tion 5, we conclude in Section 6 with a discussion of possible
extensions and generalizations of our method.

2. BACKGROUND
Similarly to the model used in previous work on resource-

allocation with MDP-induced preferences [6, 7], we define
the value of a set of resources to an agent as the value of the
best MDP policy that is realizable, given those resources.
However, since the focus of our work is on scheduling prob-
lems, and a large part of the optimization problem is to
decide how resources are allocated in time among agents
with finite arrival and departure times, we model the agents’
planning problems as finite-horizon MDPs, in contrast to
previous work that used infinite-horizon discounted MDPs.

In the rest of this section, we first introduce some nec-
essary background on finite-horizon MDPs and present a
linear-programming formulation that serves as the basis for
our solution algorithm developed in Section 4. We also out-
line the standard methods for combinatorial resource schedul-
ing with flat resource values, which serve as a comparison
benchmark for the new model developed here.

2.1 Markov Decision Processes
A stationary, finite-domain, discrete-time MDP (see, for

example, [13] for a thorough and detailed development) can
be described as 〈S,A, p, r〉, where: S is a finite set of sys-
tem states; A is a finite set of actions that are available to
the agent; p is a stationary stochastic transition function,
where p(σ|s, a) is the probability of transitioning to state σ
upon executing action a in state s; r is a stationary reward
function, where r(s, a) specifies the reward obtained upon
executing action a in state s.

Given such an MDP, a decision problem under a finite
horizon T is to choose an optimal action at every time step
to maximize the expected value of the total reward accrued
during the agent’s (finite) lifetime. The agent’s optimal pol-
icy is then a function of current state s and the time until
the horizon. An optimal policy for such a problem is to act
greedily with respect to the optimal value function, defined
recursively by the following system of finite-time Bellman
equations [2]:

v(s, t) = max
a

r(s, a) +
X
σ

p(σ|s, a)v(σ, t+ 1),

∀s ∈ S, t ∈ [1, T − 1];

v(s, T ) = 0, ∀s ∈ S;

where v(s, t) is the optimal value of being in state s at time
t ∈ [1, T ].

This optimal value function can be easily computed using
dynamic programming, leading to the following optimal pol-
icy π, where π(s, a, t) is the probability of executing action

a in state s at time t:

π(s, a, t) =

(
1, a = argmaxa r(s, a) +

P
σ p(σ|s, a)v(σ, t+ 1),

0, otherwise.

The above is the most common way of computing the
optimal value function (and therefore an optimal policy) for
a finite-horizon MDP. However, we can also formulate the
problem as the following linear program (similarly to the
dual LP for infinite-horizon discounted MDPs [13, 6, 7]):

max
X
s

X
a

r(s, a)
X
t

x(s, a, t)

subject to:X
a

x(σ, a, t+ 1) =
X
s,a

p(σ|s, a)x(s, a, t) ∀σ, t ∈ [1, T − 1];

X
a

x(s, a, 1) = α(s), ∀s ∈ S;

(1)
where α(s) is the initial distribution over the state space, and
x is the (non-stationary) occupation measure (x(s, a, t) ∈
[0, 1] is the total expected number of times action a is ex-
ecuted in state s at time t). An optimal (non-stationary)
policy is obtained from the occupation measure as follows:

π(s, a, t) = x(s, a, t)/
X
a

x(s, a, t) ∀s ∈ S, t ∈ [1, T ]. (2)

Note that the standard unconstrained finite-horizon MDP,
as described above, always has a uniformly-optimal solu-
tion (optimal for any initial distribution α(s)). Therefore,
an optimal policy can be obtained by using an arbitrary
constant α(s) > 0 (in particular, α(s) = 1 will result in
x(s, a, t) = π(s, a, t)).

However, for MDPs with resource constraints (as defined
below in Section 3), uniformly-optimal policies do not in
general exist. In such cases, α becomes a part of the prob-
lem input, and a resulting policy is only optimal for that
particular α. This result is well known for infinite-horizon
MDPs with various types of constraints [1, 6], and it also
holds for our finite-horizon model, which can be easily es-
tablished via a line of reasoning completely analogous to the
arguments in [6].

2.2 Combinatorial Resource Scheduling
A straightforward approach to resource scheduling for a

set of agentsM, whose values for the resources are induced
by stochastic planning problems (in our case, finite-horizon
MDPs) would be to have each agent enumerate all possible
resource assignments over time and, for each one, compute
its value by solving the corresponding MDP. Then, each
agent would provide valuations for each possible resource
bundle over time to a centralized coordinator, who would
compute the optimal resource assignments across time based
on these valuations.

When resources can be allocated at different times to dif-
ferent agents, each agent must submit valuations for ev-
ery combination of possible time horizons. Let each agent
m ∈ M execute its MDP within the arrival-departure time
interval τ ∈ [τam, τ

d
m]. Hence, agent m will execute an MDP

with time horizon no greater than Tm = τdm−τam+1. Let bτ be
the global time horizon for the problem, before which all of
the agents’ MDPs must finish. We assume τdm < bτ , ∀m ∈M.



For the scheduling problem where agents have static re-
source requirements within their finite-horizon MDPs, the
agents provide a valuation for each resource bundle for each
possible time horizon (from [1, Tm]) that they may use. Let
Ω be the set of resources to be allocated among the agents.
An agent will get at most one resource bundle for one of the
time horizons. Let the variable ψ ∈ Ψm enumerate all pos-
sible pairs of resource bundles and time horizons for agent
m, so there are 2|Ω| × Tm values for ψ (the space of bundles
is exponential in the number of resource types |Ω|).

The agent m must provide a value vψm for each ψ, and
the coordinator will allocate at most one ψ (resource, time
horizon) pair to each agent. This allocation is expressed as
an indicator variable zψm ∈ {0, 1} that shows whether ψ is
assigned to agent m. For time τ and resource ω, the function
nm(ψ, τ, ω) ∈ {0, 1} indicates whether the bundle in ψ uses
resource ω at time τ (we make the assumption that agents
have binary resource requirements). This allocation problem
is NP-complete, even when considering only a single time
step, and its difficulty increases significantly with multiple
time steps because of the increasing number of values of ψ.

The problem of finding an optimal allocation that satisfies
the global constraint that the amount of each resource ω
allocated to all agents does not exceed the available amountbϕ(ω) can be expressed as the following integer program:

max
X
m∈M

X
ψ∈Ψm

zψmv
ψ
m

subject to:X
ψ∈Ψm

zψm ≤ 1, ∀m ∈M;

X
m∈M

X
ψ∈Ψm

zψmnm(ψ, τ, ω) ≤ bϕ(ω), ∀τ ∈ [1, bτ ], ∀ω ∈ Ω;

(3)
The first constraint in equation 3 says that no agent can

receive more than one bundle, and the second constraint
ensures that the total assignment of resource ω does not, at
any time, exceed the resource bound.

For the scheduling problem where the agents are able to
dynamically reallocate resources, each agent must specify
a value for every combination of bundles and time steps
within its time horizon. Let the variable ψ ∈ Ψm in this case
enumerate all possible resource bundles for which at most
one bundle may be assigned to agent m at each time step.
Therefore, in this case there are

P
t∈[1,Tm](2

|Ω|)t ∼ 2|Ω|Tm

possibilities of resource bundles assigned to different time
slots, for the Tm different time horizons.

The same set of equations (3) can be used to solve this
dynamic scheduling problem, but the integer program is dif-
ferent because of the difference in how ψ is defined. In this
case, the number of ψ values is exponential in each agent’s
planning horizon Tm, resulting in a much larger program.

This straightforward approach to solving both of these
scheduling problems requires an enumeration and solution
of either 2|Ω|Tm (static allocation) or

P
t∈[1,Tm] 2

|Ω|t (dy-

namic reallocation) MDPs for each agent, which very quickly
becomes intractable with the growth of the number of re-
sources |Ω| or the time horizon Tm.

3. MODEL AND PROBLEM STATEMENT
We now formally introduce our model of the resource-

scheduling problem. The problem input consists of the fol-
lowing components:

• M,Ω, bϕ, τam, τdm, bτ are as defined above in Section 2.2.

• {Θm} = {S,A, pm, rm, αm} are the MDPs of all agents
m ∈M. Without loss of generality, we assume that state
and action spaces of all agents are the same, but each has
its own transition function pm, reward function rm, and
initial conditions αm.

• ϕm : A×Ω 7→ {0, 1} is the mapping of actions to resources
for agent m. ϕm(a, ω) indicates whether action a of agent
m needs resource ω. An agent m that receives a set of
resources that does not include resource ω cannot execute
in its MDP policy any action a for which ϕm(a, ω) 6= 0. We
assume all resource requirements are binary; as discussed
below in Section 6, this assumption is not limiting.

Given the above input, the optimization problem we con-
sider is to find the globally optimal—maximizing the sum
of expected rewards—mapping of resources to agents for all
time steps: ∆ : τ ×M× Ω 7→ {0, 1}. A solution is feasible
if the corresponding assignment of resources to the agents
does not violate the global resource constraint:X

m

∆m(τ, ω) ≤ bϕ(ω), ∀ω ∈ Ω, τ ∈ [1, bτ ]. (4)

We consider two flavors of the resource-scheduling prob-
lem. The first formulation restricts resource assignments to
the space where the allocation of resources to each agent is
static during the agent’s lifetime. The second formulation al-
lows reassignment of resources between agents at every time
step within their lifetimes.

Figure 1 depicts a resource-scheduling problem with three
agentsM = {m1,m2,m3}, three resources Ω = {ω1, ω2, ω3},
and a global problem horizon of bτ = 11. The agents’ arrival
and departure times are shown as gray boxes and are {1, 6},
{3, 7}, and {2, 11}, respectively. A solution to this problem
is shown via horizontal bars within each agents’ box, where
the bars correspond to the allocation of the three resource
types. Figure 1a shows a solution to a static scheduling prob-
lem. According to the shown solution, agent m1 begins the
execution of its MDP at time τ = 1 and has a lock on all
three resources until it finishes execution at time τ = 3. Note
that agent m1 relinquishes its hold on the resources before
its announced departure time of τdm1 = 6, ostensibly because
other agents can utilize the resources more effectively. Thus,
at time τ = 4, resources ω1 and ω3 are allocated to agent
m2, who then uses them to execute its MDP (using only
actions supported by resources ω1 and ω3) until time τ = 7.
Agent m3 holds resource ω3 during the interval τ ∈ [4, 10].

Figure 1b shows a possible solution to the dynamic version
of the same problem. There, resources can be reallocated
between agents at every time step. For example, agent m1

gives up its use of resource ω2 at time τ = 2, although it
continues the execution of its MDP until time τ = 6. Notice
that an agent is not allowed to stop and restart its MDP, so
agent m1 is only able to continue executing in the interval
τ ∈ [3, 4] if it has actions that do not require any resources
(ϕm(a, ω) = 0).

Clearly, the model and problem statement described above
make a number of assumptions about the problem and the
desired solution properties. We discuss some of those as-
sumptions and their implications in Section 6.



(a) (b)

Figure 1: Illustration of a solution to a resource-scheduling problem with three agents and three resources: a) static

resource assignments (resource assignments are constant within agents’ lifetimes; b) dynamic assignment (resource

assignments are allowed to change at every time step).

4. RESOURCE SCHEDULING
Our resource-scheduling algorithm proceeds in two stages.

First, we perform a preprocessing step that augments the
agent MDPs; this process is described in Section 4.1. Sec-
ond, using these augmented MDPs we construct a global
optimization problem, which is described in Section 4.2.

4.1 Augmenting Agents’ MDPs
In the model described in the previous section, we assume

that if an agent does not possess the necessary resources to
perform actions in its MDP, its execution is halted and the
agent leaves the system. In other words, the MDPs cannot
be “paused” and “resumed”. For example, in the problem
shown in Figure 1a, agentm1 releases all resources after time
τ = 3, at which point the execution of its MDP is halted.
Similarly, agents m2 and m3 only execute their MDPs in the
intervals τ ∈ [4, 6] and τ ∈ [4, 10], respectively. Therefore, an
important part of the global decision-making problem is to
decide the window of time during which each of the agents
is “active” (i.e., executing its MDP).

To accomplish this, we augment each agent’s MDP with
two new states (“start” and “finish” states sb, sf , respec-
tively) and a new “start/stop” action a∗, as illustrated in
Figure 2. The idea is that an agent stays in the start state
sb until it is ready to execute its MDP, at which point it
performs the start/stop action a∗ and transitions into the
state space of the original MDP with the transition prob-
ability that corresponds to the original initial distribution
α(s). For example, in Figure 1a, for agent m2 this would
happen at time τ = 4. Once the agent gets to the end of its
activity window (time τ = 6 for agent m2 in Figure 1a), it
performs the start/stop action, which takes it into the sink
finish state sf at time τ = 7.

More precisely, given an MDP 〈S,A, pm, rm, αm〉, we de-
fine an augmented MDP 〈S ′,A′, p′m, r′m, α′m〉 as follows:

S ′ = S ∪ sb ∪ sf ; A′ = A ∪ a∗;

p′(s|sb, a∗) = α(s), ∀s ∈ S; p′(sb|sb, a) = 1.0, ∀a ∈ A;

p′(sf |s, a∗) = 1.0, ∀s ∈ S;

p′(σ|s, a) = p(σ|s, a), ∀s, σ ∈ S, a ∈ A;

r′(sb, a) = r′(sf , a) = 0, ∀a ∈ A′;
r′(s, a) = r(s, a), ∀s ∈ S, a ∈ A;

α′(sb) = 1; α′(s) = 0, ∀s ∈ S;

where all non-specified transition probabilities are assumed
to be zero. Further, in order to account for the new starting

state, we begin the MDP one time-step earlier, setting τam ←
τam − 1. This will not affect the resource allocation due to
the resource constraints only being enforced for the original
MDP states, as will be discussed in the next section. For
example, the augmented MDPs shown in Figure 2b (which
starts in state sb at time τ = 2) would be constructed from
an MDP with original arrival time τ = 3. Figure 2b also
shows a sample trajectory through the state space: the agent
starts in state sb, transitions into the state space S of the
original MDP, and finally exists into the sink state sf .

Note that if we wanted to model a problem where agents
could pause their MDPs at arbitrary time steps (which might
be useful for domains where dynamic reallocation is possi-
ble), we could easily accomplish this by including an extra
action that transitions from each state to itself with zero
reward.

4.2 MILP for Resource Scheduling
Given a set of augmented MDPs, as defined above, the

goal of this section is to formulate a global optimization pro-
gram that solves the resource-scheduling problem. In this
section and below, all MDPs are assumed to be the aug-
mented MDPs as defined in Section 4.1.

Our approach is similar to the idea used in [6]: we be-
gin with the linear-program formulation of agents’ MDPs
(1) and augment it with constraints that ensure that the
corresponding resource allocation across agents and time is
valid. The resulting optimization problem then simultane-
ously solves the agents’ MDPs and resource-scheduling prob-
lems. In the rest of this section, we incrementally develop a
mixed integer program (MILP) that achieves this.

In the absence of resource constraints, the agents’ finite-
horizon MDPs are completely independent, and the globally
optimal solution can be trivially obtained via the following
LP, which is simply an aggregation of single-agent finite-
horizon LPs:

max
X
m

X
s

X
a

rm(s, a)
X
t

xm(s, a, t)

subject to:X
a

xm(σ, a, t+ 1) =
X
s,a

pm(σ|s, a)xm(s, a, t),

∀m ∈M, σ ∈ S, t ∈ [1, Tm − 1];X
a

xm(s, a, 1) = αm(s), ∀m ∈M, s ∈ S;

(12)
where xm(s, a, t) is the occupation measure of agent m, and



(a) (b)

Figure 2: Illustration of augmenting an MDP to allow for variable starting and stopping times: a) (left) the original

two-state MDP with a single action; (right) the augmented MDP with new states sb and sf and the new action a∗

(note that the origianl transitions are not changed in the augmentation process); b) the augmented MDP displayed as

a trajectory through time (grey lines indicate all transitions, while black lines indicate a given trajectory.

Objective Function
(sum of expected rewards over all agents)

max
X
m

X
s

X
a

rm(s, a)
X
t

xm(s, a, t) (5)

Meaning Implication Linear Constraints

Tie x to θ. Agent is
only active when occupa-
tion measure is nonzero
in original MDP states.

θm(τ) = 0 =⇒ xm(s, a, τ−τam+1) = 0
∀s /∈ {sb, sf}, a ∈ A

X
s/∈{sb,sf}

X
a

xm(s, a, t) ≤ θm(τam + t− 1)

∀m ∈M, ∀t ∈ [1, Tm]

(6)

Agent can only be active
in τ ∈ (τam, τ

d
m) θm(τ) = 0 ∀m ∈M, τ /∈ (τam, τ

d
m) (7)

Cannot use resources
when not active

θm(τ) = 0 =⇒ ∆m(τ, ω) = 0
∀τ ∈ [0, bτ ], ω ∈ Ω ∆m(τ, ω) ≤ θm(τ) ∀m ∈M, τ ∈ [0, bτ ], ω ∈ Ω (8)

Tie x to ∆ (nonzero x
forces corresponding ∆
to be nonzero.)

∆m(τ, ω) = 0, ϕm(a, ω) = 1 =⇒
xm(s, a, τ − τam + 1) = 0

∀s /∈ {sb, sf}

1/|A|
X
a

ϕm(a, ω)
X

s/∈{sb,sf}

xm(s, a, t) ≤ ∆m(t+ τam − 1, ω)

∀m ∈M, ω ∈ Ω, t ∈ [1, Tm]
(9)

Resource bounds

X
m

∆m(τ, ω) ≤ bϕ(ω) ∀ω ∈ Ω, τ ∈ [0, bτ ] (10)

Agent cannot change
resources while ac-
tive. Only enabled for
scheduling with static
assignments.

θm(τ) = 1 and θm(τ + 1) = 1 =⇒
∆m(τ, ω) = ∆m(τ + 1, ω)

∆m(τ, ω)− Z(1− θm(τ + 1)) ≤
∆m(τ + 1, ω) + Z(1− θm(τ))

∆m(τ, ω) + Z(1− θm(τ + 1)) ≥
∆m(τ + 1, ω)− Z(1− θm(τ))

∀m ∈M, ω ∈ Ω, τ ∈ [0, bτ ]
(11)

Table 1: MILP for globally optimal resource scheduling.

Tm = τdm − τam + 1 is the time horizon for the agent’s MDP.
Using this LP as a basis, we augment it with constraints

that ensure that the resource usage implied by the agents’
occupation measures {xm} does not violate the global re-
source requirements bϕ at any time step τ ∈ [0, bτ ]. To formu-
late these resource constraints, we use the following binary
variables:

• ∆m(τ, ω) = {0, 1}, ∀m ∈ M, τ ∈ [0, bτ ], ω ∈ Ω, which
serve as indicator variables that define whether agent m
possesses resource ω at time τ . These are analogous to
the static indicator variables used in the one-shot static
resource-allocation problem in [6].

• θm = {0, 1}, ∀m ∈ M, τ ∈ [0, bτ ] are indicator variables
that specify whether agent m is “active” (i.e., executing
its MDP) at time τ .

The meaning of resource-usage variables ∆ is illustrated in
Figure 1: ∆m(τ, ω) = 1 only if resource ω is allocated to
agent m at time τ . The meaning of the “activity indica-
tors” θ is illustrated in Figure 2b: when agent m is in either
the start state sb or the finish state sf , the corresponding
θm = 0, but once the agent becomes active and enters one
of the other states, we set θm = 1 . This meaning of θ can be
enforced with a linear constraint that synchronizes the val-
ues of the agents’ occupation measures xm and the activity



indicators θ, as shown in (6) in Table 1.
Another constraint we have to add—because the activity

indicators θ are defined on the global timeline τ—is to en-
force the fact that the agent is inactive outside of its arrival-
departure window. This is accomplished by constraint (7) in
Table 1.

Furthermore, agents should not be using resources while
they are inactive. This constraint can also be enforced via a
linear inequality on θ and ∆, as shown in (8).

Constraint (6) sets the value of θ to match the policy
defined by the occupation measure xm. In a similar fashion,
we have to make sure that the resource-usage variables ∆ are
also synchronized with the occupation measure xm. This is
done via constraint (9) in Table 1, which is nearly identical
to the analogous constraint from [6].

After implementing the above constraint, which enforces
the meaning of ∆, we add a constraint that ensures that the
agents’ resource usage never exceeds the amounts of avail-
able resources. This condition is also trivially expressed as
a linear inequality (10) in Table 1.

Finally, for the problem formulation where resource as-
signments are static during a lifetime of an agent, we add a
constraint that ensures that the resource-usage variables ∆
do not change their value while the agent is active (θ = 1).
This is accomplished via the linear constraint (11), where
Z ≥ 2 is a constant that is used to turn off the constraints
when θm(τ) = 0 or θm(τ + 1) = 0. This constraint is not
used for the dynamic problem formulation, where resources
can be reallocated between agents at every time step.

To summarize, Table 1 together with the conservation-
of-flow constraints from (12) defines the MILP that simul-
taneously computes an optimal resource assignment for all
agents across time as well as optimal finite-horizon MDP
policies that are valid under that resource assignment.

As a rough measure of the complexity of this MILP, let
us consider the number of optimization variables and con-
straints. Let TM =

P
Tm =

P
m(τam − τdm + 1) be the sum

of the lengths of the arrival-departure windows across all
agents. Then, the number of optimization variables is:

TM + bτ |M||Ω|+ bτ |M|,
TM of which are continuous (xm), and bτ |M||Ω|+ bτ |M| are
binary (∆ and θ). However, notice that all but TM|M| of
the θ are set to zero by constraint (7), which also immedi-
ately forces all but TM|M||Ω| of the ∆ to be zero via the
constraints (8). The number of constraints (not including
the degenerate constraints in (7)) in the MILP is:

TM + TM|Ω|+ bτ |Ω|+ bτ |M||Ω|.
Despite the fact that the complexity of the MILP is, in the

worst case, exponential1 in the number of binary variables,
the complexity of this MILP is significantly (exponentially)
lower than that of the MILP with flat utility functions, de-
scribed in Section 2.2. This result echos the efficiency gains
reported in [6] for single-shot resource-allocation problems,
but is much more pronounced, because of the explosion of
the flat utility representation due to the temporal aspect of
the problem (recall the prohibitive complexity of the combi-
natorial optimization in Section 2.2). We empirically analyze
the performance of this method in Section 5.

1Strictly speaking, solving MILPs to optimality is NP-
complete in the number of integer variables.

5. EXPERIMENTAL RESULTS
Although the complexity of solving MILPs is in the worst

case exponential in the number of integer variables, there
are many efficient methods for solving MILPs that allow
our algorithm to scale well for parameters common to re-
source allocation and scheduling problems. In particular,
this section introduces a problem domain—the repairshop
problem—used to empirically evaluate our algorithm’s scal-
ability in terms of the number of agents |M|, the number of
shared resources |Ω|, and the varied lengths of global timebτ during which agents may enter and exit the system.

The repairshop problem is a simple parameterized MDP
adopting the metaphor of a vehicular repair shop. Agents
in the repair shop are mechanics with a number of indepen-
dent tasks that yield reward only when completed. In our
MDP model of this system, actions taken to advance through
the state space are only allowed if the agent holds certain
resources that are publicly available to the shop. These re-
sources are in finite supply, and optimal policies for the shop
will determine when each agent may hold the limited re-
sources to take actions and earn individual rewards. Each
task to be completed is associated with a single action, al-
though the agent is required to repeat the action numerous
times before completing the task and earning a reward.

This model was parameterized in terms of the number
of agents in the system, the number of different types of
resources that could be linked to necessary actions, a global
time during which agents are allowed to arrive and depart,
and a maximum length for the number of time steps an agent
may remain in the system.

All datapoints in our experiments were obtained with 20
evaluations using CPLEX to solve the MILPs on a Pentium-
4 computer with 2Gb of RAM. Trials were conducted on
both the static and the dynamic version of the resource-
scheduling problem, as defined earlier.

Figure 3 shows the runtime and policy value for inde-
pendent modifications to the parameter set. The top row
shows how the solution time for the MILP scales as we in-
crease the number of agents |M|, the global time horizon bτ ,
and the number of resources |Ω|. Increasing the number of
agents leads to exponential complexity scaling, which is to
be expected for an NP-complete problem. However, increas-
ing the global time limit bτ or the total number of resource
types |Ω|—while holding the number of agents constant—
does not lead to decreased performance. This occurs because
the problems get easier as they become under-constrained,
which is also a common phenomenon for NP-complete prob-
lems. We also observe that the solution to the dynamic ver-
sion of the problem can often be computed much faster than
the static version.

The bottom row of Figure 3 shows the joint policy value
of the policies that correspond to the computed optimal
resource-allocation schedules. We can observe that the dy-
namic version yields higher reward (as expected, since the
reward for the dynamic version is always no less than the
reward of the static version). We should point out that these
graphs should not be viewed as a measure of performance of
two different algorithms (both algorithms produce optimal
solutions but to different problems), but rather as observa-
tions about how the quality of optimal solutions change as
more flexibility is allowed in the reallocation of resources.

Figure 4 shows runtime and policy value for trials in which
common input variables are scaled together. This allows
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Figure 3: Evaluation of our MILP for variable numbers of agents (column 1), lengths of global-time window (column

2), and numbers of resource types (column 3). Top row shows CPU time, and bottom row shows the joint reward of

agents’ MDP policies. Error bars show the 1st and 3rd quartiles (25% and 75%).
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Figure 4: Evaluation of our MILP using correlated input variables. The left column tracks the performance and CPU

time as the number of agents and global-time window increase together (bτ = 10|M|). The middle and the right column

track the performance and CPU time as the number of resources and the number of agents increase together as

|Ω| = 2|M| and |Ω| = 5|M|, respectively. Error bars show the 1st and 3rd quartiles (25% and 75%).



us to explore domains where the total number of agents
scales proportionally to the total number of resource types
or the global time horizon, while keeping constant the av-
erage agent density (per unit of global time) or the average
number of resources per agent (which commonly occurs in
real-life applications).

Overall, we believe that these experimental results indi-
cate that our MILP formulation can be used to effectively
solve resource-scheduling problems of nontrivial size.

6. DISCUSSION AND CONCLUSIONS
Throughout the paper, we have made a number of as-

sumptions in our model and solution algorithm; we discuss
their implications below.

• Continual execution. We assume that once an agent
stops executing its MDP (transitions into state sf ), it
exits the system and cannot return. It is easy to relax
this assumption for domains where agents’ MDPs can be
paused and restarted. All that is required is to include an
additional “pause” action which transitions from a given
state back to itself, and has zero reward.

• Indifference to start time. We used a reward model
where agents’ rewards depend only on the time horizon
of their MDPs and not the global start time. This is a
consequence of our MDP-augmentation procedure from
Section 4.1. It is easy to extend the model so that the
agents incur an explicit penalty for idling by assigning a
non-zero negative reward to the start state sb.

• Binary resource requirements. For simplicity, we have
assumed that resource costs are binary: ϕm(a, ω) = {0, 1},
but our results generalize in a straightforward manner to
non-binary resource mappings, analogously to the proce-
dure used in [5].

• Cooperative agents. The optimization procedure dis-
cussed in this paper was developed in the context of coop-
erative agents, but it can also be used to design a mecha-
nism for scheduling resources among self-interested agents.
This optimization procedure can be embedded in a Vickrey-
Clarke-Groves auction, completely analogously to the way
it was done in [7]. In fact, all the results of [7] about the
properties of the auction and information privacy directly
carry over to the scheduling domain discussed in this pa-
per, requiring only slight modifications to deal with finite-
horizon MDPs.

• Known, deterministic arrival and departure times.
Finally, we have assumed that agents’ arrival and depar-
ture times (τam and τdm) are deterministic and known a
priori. This assumption is fundamental to our solution
method. While there are many domains where this as-
sumption is valid, in many cases agents arrive and de-
part dynamically and their arrival and departure times
can only be predicted probabilistically, leading to online
resource-allocation problems. In particular, in the case of
self-interested agents, this becomes an interesting version
of an online-mechanism-design problem [11, 12].

In summary, we have presented an MILP formulation for
the combinatorial resource-scheduling problem where agents’
values for possible resource assignments are defined by finite-
horizon MDPs. This result extends previous work ([6, 7])
on static one-shot resource allocation under MDP-induced

preferences to resource-scheduling problems with a temporal
aspect. As such, this work takes a step in the direction of de-
signing an online mechanism for agents with combinatorial
resource preferences induced by stochastic planning prob-
lems. Relaxing the assumption about deterministic arrival
and departure times of the agents is a focus of our future
work.

We would like to thank the anonymous reviewers for their
insightful comments and suggestions.
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