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1. Introduction

1There are different ways of forgetting.

Completely forgetting In the movie ‘Men in Black’, Will
Smith makes you forget knowledge of extraterrestials by
flashing you with a light in the face. After that, you have
forgotten the green ooze flowing out of mock-humans and
such: you not remember that you previously had these ex-
periences. In other words, even though for some specific
forgotten fact p it is now the case that ¬Kp and ¬K¬p, the
flash victims have no memory that they previously knew the
value of p. Worse, they forgot that p is an atomic proposi-
tion at all. This sort of forgetting is dual to awareness—in
a logical setting it is uncommon that parameters of the lan-
guage, such as the set of atoms, shrink, although there are
ways to simulate that. We will leave this matter aside for
now.

Remembering prior knowledge A different sort of for-
getting is when you forgot which of two keys fits your office
door, because you have been away from town for a while.
In this case you remember that you knew which key it was,
and you currently don’t know which key it is. This is about
forgetting the value of a atomic proposition p. Previously,
either Kp or K¬p, but currently ¬Kp and ¬K¬p. This sort
of forgetting will be very central to our concerns.

Forgetting values Did it ever happen to you that you met
a person whose face you recognize but whose name you no
longer remember? Surely! Or that you no longer know the
pincode of your bankcard? Hopefully not. But such a thing
is very conceivable. This sort of forgetting means that you
forgot the value of a proposition, or the assignment of two
values from different sets of objects to each other. In the
case of a bankcard you the four-number code that you for-
got is just one one 10,000 options, so previous it was true
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that K0000 ∨ . . . ∨K9999 whereas currently we have that
¬(K0000 ∨ . . . ∨K9999). (Let 0000 stand for the propo-
sition that your pin number is 0000, etc.) Similarly, some-
what simplifying matters, the finite number of all humans
only have a finite, somewhat smaller, number of names. An
atomic proposition about your office keys is also a feature
namely with two values only, true and false. The multiple-
valued features can also be modelled as a number of atomic
propositions; this can be done in a very uneconomic fashion
as above, but also in a minimal way. We conclude that this
sort of forgetting is like the previous kind.

Defaulting on obligations But there are other kinds of
forgetting too. For example, say I forgot to pick you up
at the airport at 4:30 PM. Forgetting an action is very dif-
ferent from forgetting a proposition. Forgetting an action
amounts to defaulting on an obligation and the observation
of having forgotten it is not at all related to ignorance. It
points backwards in time to the moment when you were not
aware of the obligation. Obligations can be modelled with
deontic logics. We will not be concerned with this kind of
forgetting.

Multi-agent versions of forgetting In a multi-agent set-
ting additional, interactive, ways of forgetting crop up as
well. Some of the above have group versions. For exam-
ple, Will Smith only had to flash a whole group once, not
each of its members individually. And if you have been
flashed, although you don’t know that you knew about the
green ooze, Will Smith knows that you knew. So in a multi-
agent setting some aspects of ‘completely forgetting’ can
be modelled. When assuming standard notions of knowl-
edge, that is introspective, we now run straight into trouble
of another kind.

A group version for ‘remembering prior knowledge’ is
hard to justify, because its interpretation typically involves
introspection: you forgot something if you are aware of (in
the sense of ‘you know’) previous knowledge and present
ignorance of it. A setting wherein a group is collectively
aware of its prior (common) knowledge is somewhat harder
to imagine. It makes more sense to have a version of ‘re-
membering prior knowledge’ for individuals in a group, be-
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cause they can inform and are observed by others: here you
standing in front of your office door again now in company
of four freshmen students, “Ohmigod, I forgot again which
is my office key!”

For yet other multi-agent examples: I can notice that you
forgot to pick me up at the airport, or that you no longer ap-
pear to know the way around town. The last may even be
without me being aware of my ignorance. I may have for-
gotten whether you knew about a specific review result for
our jointly editored journal issue. In other words, previ-
ously KmeKyouaccept or KmeKyou¬accept but currently
¬KmeKyouaccept and ¬KmeKyou¬accept. Some mean-
ingful propositions that can be forgotten in a multi-modal
context are therefore modal.

1.1. Forgetting and progression

In theory change (belief revision) the operation of for-
getting is a form of belief contraction. Given prior belief in
p or its negation, we want to remove that from the set of be-
lieved formulas including all its dependencies. In artificial
intelligence this has become a search for efficient ways to
implement such a contraction. The following way to model
/ implement forgetting an atomic proposition has recently
been proposed [5]. Given a set of formulas (‘theory’) Φ, we
compute the effect of forgetting information about atom p
by a binary operation

Fg(Φ, p) := {ϕ(!/p) ∨ ϕ(⊥/p) | ϕ ∈ Φ}

Here, ϕ(ψ/p) is the replacement of all (possibly zero) oc-
currences of p in ϕ by ψ. This proposal can be called the
(syntactic) progression of Φ by the function Fg, relative to
the forgotten information about p. It is well-known that this
way to model forgetting as progression does not work for
modal formulas. For example, if the agent already does
not know whether p, surely that should remain the case af-
ter forgetting the value of p. But we now have that (write
Fg(ϕ, p) for Fg({ϕ}, p)):

Fg(¬Kp ∧ ¬K¬p, p)
=
(¬K! ∧ ¬K¬!) ∨ (¬K⊥ ∧ ¬K¬⊥)
⇔
(¬! ∧ ¬⊥) ∨ (¬⊥ ∧ ¬!)
⇔
⊥

For another example of an undesirable feature, it is also not
the case that knowledge of p is transformed into ignorance
about p by this procedure:

Fg(Kp, p) ↔ (K! ∨K⊥) ↔ !.

In other words, this approach does not lead anywhere for
modal formulas. Surely, one would like that ¬Kp ∧¬K¬p
is true after forgetting the value of p, even when this was
not true initially. For any theory Φ and atom p, the result of
forgetting p should entail ignorance about p:

Fg(Φ, p) |= ¬Kp ∧ ¬K¬p.

The difficulties in obtaining this result by theory revision
motivated us to model forgetting as an event in a dynamic
epistemic logic.

1.2. Forgetting or no-forgetting, that’s the
question

We model the action of forgetting an atomic proposi-
tion p as an event Fg(p) (in its sense of remembering prior
knowledge about p). We do this in a propositional logic
expanded with an epistemic modal operator K and a dy-
namic modal operator [Fg(p)] (including multi-agent ver-
sions). As usual, Kϕ describes that the agent knows ϕ. For-
mula [Fg(p)]ϕ means that after the agent forgets his knowl-
edge about p, ϕ is true.

The obvious precondition for event Fg(p) is prior knowl-
edge of the value of p: Kp ∨ K¬p. The obvious post-
condition for event Fg(p) is ignorance of the value of p:
¬Kp ∧ ¬K¬p. In other words

(Kp ∨K¬p) → 〈Fg(p)〉(¬Kp ∧ ¬K¬p)

should be valid in the information state prior to the event of
forgetting (〈Fg(p)〉 is the diamond version of [Fg(p)]). Or,
abstracting from that precondition, it should be valid that:

[Fg(p)](¬Kp ∧ ¬K¬p).

Wasn’t dynamic epistemic logic supposed to satisfy the
principle of ‘no forgetting’? So how on earth can one model
forgetting in this setting? We can, because we cheat. ‘No
forgetting’ (a.k.a. ‘perfect recall’) means that if states s and
t resulting from the execution of (possibly different) events
are indistinguishable, then the states before the execution of
these respective events are also indistinguishable. If after
the event of forgetting I am ignorant about p I cannot distin-
guish a p-state from a ¬p-state. Therefore, because of the
principle of ‘no forgetting’, I should already have been un-
able to distinguish these states before the execution of this
supposed event Fg(p)... I should have been already ignorant
about p before... We solve this dilemma by the standard ev-
eryday solution of forgetful people: blame others for your
forgetfulness. In this case, we blame the world, i.e., the
state of the world: we simulate forgetting by nondetermin-
istically changing the value of p in the actual or other states,
in a way unobservable by the agent. Thus resulting in his
ignorance about p. Note that this solution is different from
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how belief revision is modelled in dynamic epistemic logic:
prior belief in p that is revised with ¬p and results in belief
in ¬p is standardly modelled by considering this a ‘soft’
or defeasible form of belief (i.e., not knowledge) and im-
plemented by changing a preference relation between states
[11, 3].

Once we have the above, the relation with theory pro-
gression becomes clear. Let (M, s) be an information state
(pointed Kripke model with designated state) for the theory
Φ. Suppose we want to know if Fg(Φ, p) |= ψ. The artifi-
cial intelligence community is particularly interested in ef-
ficient ways to perform such computations. Well, if it is the
case, we then should also have M, s |= [Fg(p)]ψ. We pro-
pose a [Fg(p)]-operator that can be reduced (eliminated):
there is an epistemic formula χ such that [Fg(p)]ψ ↔ χ.
There are fast and efficient algorithms to determine the truth
of an epistemic formula in a given Kripke model: M, s |= χ
can be done quickly. This answers the question whether
Fg(Φ, p) |= ψ. There is one drawback: the reduction of
[Fg(p)]ψ to a formula without reference to an event that
should be initially true is known as regression. But in AI
we also want to do progression: compute some Φ′ from
Fg(Φ, p). This is harder, also in a dynamic epistemic logi-
cal context, and we have no answer to that, although a few
suggestions.

Expanding our perspective This contribution focusses
on a clean solution on how to model an event Fg(p) sat-
isfying (Kp ∨ K¬p) → 〈Fg(p)〉(¬Kp ∧ ¬K¬p). From
there on, the modelling desiderata diverge. There are many
interesting options.

Is our perspective that of a modelling observer, in which
case we might require that forgetting is an information-
changing event only, so that the value of p in the actual state
should not change? Or is our perspective that of an agent
in the system, so that we are only considering the value of
local propositions, i.e., formulas of the form Kϕ? Whether
we simulate the desiderata by factual change inducing in-
formational change does not matter in that case.

Are we talking about one or about all agents forgetting?
How about forgetting epistemic propositions?

Our solution presumes the interpretation of Kϕ as ‘the
agent knows ϕ’ and, correspondingly, even though our se-
mantics is general all our examples are of S5-structures.
There are obvious slightly weaker modellings of forgetting
to model introspective belief (to be interpreted on KD45-
structures.

From the perspective of the agent we also want to look
backwards. Let Fg(p)− be the converse of Fg(p) (e.g. in the
sense of [1, 15, 8]). All the time we are saying that an agent
that has forgotten about p remembers prior knowledge of p.
This we can now express as the validity of

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

in the information state after the event of forgetting. (Note
the different perspective from before, where our perspec-
tive was the information state before the act of forgetting.)
In other words: the agent is aware of its current ignorance
and its previous knowledge. We will indicate some ways to
address this in the further research section at the end of our
contribution. There is one main drawback of this approach:
there is no way to reduce expressions with converse events
to purely epistemic formulas. So, the advantage of dynamic
epistemic logic for regression questions in AI has not been
reached there (yet).

2. Language and semantics

Language Our language is

p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | FgB(p)

In the single-agent context write Kϕ for Kaϕ and Fg(p)
for Fga(p).

Later on, in a multi-agent context, we write Fg(p) for
FgA(p), and we also distinguish the converse (‘remember’)
operator FgB(p)−. For the forgetting of (not necessarily
atomic) formulas ϕ we write FgB(ϕ).

Structures Our structures are pointed Kripke models
(S, R, V ), s) (with R : A → P(S×S) and V : P → P(S))
and multiple-pointed event models (‘action models’). Our
typical example structures are S5 to model knowledge and
knowledge change and for KD45 to model belief and belief
change.

The dynamic structures are event models, i.e., action
models including assignments of atoms (a.k.a. substitu-
tions) [10, 13]. We follow notational conventions as in [13]:
if in event s the precondition is ϕ and the postcondition is
that the valuation of atom p becomes that of ψ, we write: in
s: if ϕ then p := ψ.

We visualize S5 models by linking states that are indis-
tinguishable for an agent, possibly labelling the link with
the agent name (not in the single-agent situation). Transi-
tivity is assumed. In pictures of event models: a formula
next to an event is its precondition, an assignment next to it
a postcondition.

Semantics Assume an epistemic model M = (S, R, V ).

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s )|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t ∈ S : (s, t) ∈ Ra

implies M, t |= ϕ
M, s |= [FgB(p)]ψ iff for all M ′, s′ : (M, s)[[FgB(p)]](M ′, s′)

implies M ′, s′ |= ϕ
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where [[FgB(p)]] is a binary relation between pointed epis-
temic states, as usual for the interpretation of events in dy-
namic epistemic logic. Of course, we model the execution
of an event FgB(p) as a restricted modal product and this
will be the relation induced by that. In the next section we
will define the event model FgB(p). The set of validities in
our logic is called FG.

3. Forgetting

In a single-agent setting we model forgetting as the non-
deterministic event where the (anonymous) agent is uncer-
tain which of two assignments have taken place: p be-
comes true, or p becomes false. Formally, this is a non-
deterministic event model consisting of two events 0 and
1 that are indistinguishable for the agent, and such that
pre(0) = pre(1) = Kp ∨ K¬p, post(0)(p) = ⊥, and
post(1)(p) = #. We can visualize this event model Fg(p)
as follows (postconditions above, preconditions below ac-
tions):

The dynamic structures are event models, i.e., action models including assignments of
atoms (a.k.a. substitutions) [10, 13]. We follow notational conventions as in [13]: if in event
s the precondition is ϕ and the postcondition is that the valuation of atom p becomes that
of ψ, we write: in s: if ϕ then p := ψ.

We visualize S5 models by linking states that are indistinguishable for an agent, possibly
labelling the link with the agent name (not in the single-agent situation). Transitivity is
assumed. In pictures of event models: a formula next to an event is its precondition, an
assignment next to it a postcondition.

Semantics Assume an epistemic model M = (S, R, V ).

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s "|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t ∈ S : (s, t) ∈ Ra implies M, t |= ϕ
M, s |= [FgB(p)]ψ iff for all M ′, s′ : (M, s)[[FgB(p)]](M ′, s′) implies M ′, s′ |= ϕ

where [[FgB(p)]] is a binary relation between pointed epistemic states, as usual for the
interpretation of events in dynamic epistemic logic. Of course, we model the execution of
an event FgB(p) as a restricted modal product and this will be the relation induced by
that. In the next section we will define the event model FgB(p). The set of validities in
our logic is called FG.

3 Forgetting

In a single-agent setting we model forgetting as the non-deterministic event where the
(anonymous) agent is uncertain which of two assignments have taken place: p becomes
true, or p becomes false. Formally, this is a non-deterministic event model consisting of
two events 0 and 1 that are indistinguishable for the agent, and such that pre(0) = pre(1) =
Kp ∨K¬p, post(0)(p) = ⊥, and post(1)(p) = &. We can visualize this event model Fg(p)
as follows (postconditions above, preconditions below actions):

p := & p := ⊥
1 0

Kp ∨K¬p Kp ∨K¬p

The event model Fg(p) is non-deterministic choice between two deterministic events (Fg(p), 1)
and (Fg(p), 0). For the interpretation of such a pointed event we use the standard se-
mantics of ‘action models’, for events/points i = 0, 1 (and we recall the equivalence
[Fg(p)]ψ ↔ ([Fg(p), 0]ψ ∧ [Fg(p), 1]ψ):

M, s |= [Fg(p), i]ϕ iff M, s |= Kp ∨K¬p implies M ⊗ Fg(p), (s, i) |= ϕ

6

The event model Fg(p) is non-deterministic choice between
two deterministic events (Fg(p), 1) and (Fg(p), 0). For the
interpretation of such a pointed event we use the standard
semantics of ‘action models’, for events/points i = 0, 1
(and we recall the equivalence [Fg(p)]ψ ↔ ([Fg(p), 0]ψ ∧
[Fg(p), 1]ψ):

M, s |= [Fg(p), i]ϕ iff M, s |= Kp ∨K¬p implies
M ⊗ Fg(p), (s, i) |= ϕ

In the language we’d like to avoid directly referring to
the pointed versions (out of some possibly mistaken sense
of minimalism), and therefore introduce the pointed ver-
sions of forgetting by abbreviation (and this amounts indeed
to the same):

〈Fg(p), 0〉ϕ = 〈Fg(p)〉(¬p ∧ ϕ)
〈Fg(p), 1〉ϕ = 〈Fg(p)〉(p ∧ ϕ)

To obtain a complete axiomatization for FG we can
simply apply the reduction axioms for event models, as
specified in [13]. This is the axiomatization FG in Ta-
ble 1. Note that from the above abbreviation also follows
that [Fg(p)](p → ϕ) is equivalent to [Fg(p), 1]ϕ, and that
[Fg(p)](¬p → ϕ) equals [Fg(p), 0]ϕ.

Proposition 3.1 Axiomatization FG is sound and com-
plete.

[Fg(p)]p ↔ ¬(Kp ∨K¬p)
[Fg(p)]q ↔ (Kp ∨K¬p) → q for q *= p
[Fg(p)]¬ϕ ↔ (Kp ∨K¬p) →

(¬[Fg(p)](¬p → ϕ) ∧ ¬[Fg(p)](p → ϕ))
[Fg(p)](ϕ ∧ ψ) ↔ [Fg(p)]ϕ ∧ [Fg(p)]ψ
[Fg(p)]Kϕ ↔ (Kp ∨K¬p) → K[Fg(p)]ϕ

Table 1. Axiomatization FG—only reduction
rules involving Fg are presented

Proof. We show that the axiomatization resulted from
application of the reduction axioms in action model logic
by Baltag et al. [2], by applying, case by case, the standard
reduction rules for event models. This kills two birds
(soundness and completeness) at one throw.

Case p.
[Fg(p)]p
⇔
[Fg(p), 0]p ∧ [Fg(p), 1]p
⇔
(pre(0) → post(0)(p)) ∧ (pre(1) → post(1)(p))
⇔
((Kp ∨K¬p) → ⊥) ∧ ((Kp ∨K¬p) → #)
⇔
(Kp ∨K¬p) → ⊥
⇔
¬(Kp ∨K¬p)

In other words, it is not the case that p is true after every
execution of Fg(p).

Case q.
[Fg(p)]q
⇔
[Fg(p), 0]q ∧ [Fg(p), 1]q
⇔
(pre(0) → post(0)(q)) ∧ (pre(1) → post(1)(q))
⇔ pre(0) = pre(1) = Kp ∨K¬p, post(0)(q) =
post(q)(1) = q
(Kp ∨K¬p) → q

This axiom expresses that, if Fg(p) is executable, the value
of atoms q other than p remains the same.

Case ¬ϕ.
[Fg(p)]¬ϕ
⇔
[Fg(p), 0]¬ϕ ∧ [Fg(p), 1]¬ϕ
⇔
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(pre(0)→ ¬[Fg(p), 0]ϕ) ∧ (pre(1)→ ¬[Fg(p), 1]ϕ)
⇔ pre(0) = pre(1) = Kp ∨K¬p
(Kp ∨K¬p)→ (¬[Fg(p), 0]ϕ ∧ ¬[Fg(p), 1]ϕ)
⇔
(Kp ∨K¬p)→ (¬[Fg(p)](¬p→ ϕ) ∧ ¬[Fg(p)](p→ ϕ))

Note that the expression on the right is not equivalent to
¬[Fg(p)]ϕ. It would be if the conjunction in the middle
had been a disjunction.

Case ϕ ∧ ψ.
[Fg(p)](ϕ ∧ ψ)
⇔
[Fg(p), 0](ϕ ∧ ψ) ∧ [Fg(p), 1](ϕ ∧ ψ)
⇔
[Fg(p), 0]ϕ ∧ [Fg(p), 0]ψ ∧ [Fg(p), 1]ϕ ∧ [Fg(p), 1]ψ
⇔
[Fg(p)]ϕ ∧ [Fg(p)]ψ

Case Kϕ.
[Fg(p)]Kϕ
⇔
[Fg(p), 0]Kϕ ∧ [Fg(p), 1]Kϕ
⇔
(pre(0)→ K[Fg(p)]ϕ) ∧ (pre(1)→ K[Fg(p)]ϕ)
⇔
(Kp ∨K¬p)→ K[Fg(p)]ϕ
QED

Proposition 3.2 The formula [Fg(p)](¬Kp ∧ ¬K¬p) is
valid and derivable.

Proof. Validity is trivial. Thus we have derivability. It
is instructive to see part of the derivation. We apply the
reduction rules in the axiomatization FG.

[Fg(p)](¬Kp ∧ ¬K¬p)
⇔
[Fg(p)]¬Kp ∧ [Fg(p)]¬K¬p

Left conjunct of previous line:
[Fg(p)]¬Kp
⇔
(Kp ∨K¬p)→ (¬[Fg(p), 0]Kp ∧ ¬[Fg(p), 1]Kp)
⇔
((Kp ∨ K¬p) → ¬[Fg(p), 0]Kp) ∧ ((Kp ∨ K¬p) →
¬[Fg(p), 1]Kp)

Again, left conjunct of previous line:
(Kp ∨K¬p)→ ¬[Fg(p), 0]Kp
⇔
(Kp ∨K¬p)→ ¬((Kp ∨K¬p)→ K[Fg(p)]p
⇔
(Kp ∨K¬p)→ ¬((Kp ∨K¬p)→ K¬(Kp ∨K¬p))

⇔
(Kp ∨K¬p)→ ¬⊥
⇔
&

All together we have four cases (conjuncts), of which have
now done one. The four cases are similar. QED

Proposition 3.3 [Fg(p)][Fg(p)]ϕ is valid.

Proof. Assume the first Fg(p) can be executed. Then the
precondition Kp ∨ K¬p was satisfied in the initial model.
After the execution of that Fg(p), we have ¬(Kp ∨K¬p).
Therefore the second Fg(p) cannot be executed. (So, triv-
ially, any postcondition ϕ of that is then true.) QED

Unlike in real life, you cannot forget something twice.
After you have forgotten it the first time, you have to be in-
formed again about p and only then you can forget it again.
Maybe that’s quite a bit like real life after all.

Progress towards seeing this modelling of forgetting as
progression in the AI sense would be made if we were to
prove that ψ → [Fg(p)]ψ is valid for all ψ that do not con-
tain occurrences of p. We think this is valid, and it may even
be trivial, but we haven’t given it sufficient attention yet.

4. Forgetting without changing the real world

An unfortunate side effect of our modelling of forgetting
is that the actual value of p gets lost in the process. This
is ‘somewhat strange’ if we only want to model that the
agents forget the value of p, but that ‘otherwise’ nothing
changes: the real value of p should then be unchanged. We
can overcome that deficiency in the alternative modelling
(Fg, n). It is very much like Fg(p) except that there is one
more alternative event in the model, indistinguishable from
the other two, that represents the event ‘nothing happens’
except that the truth of p should be known (its precondition
is Kp∨K¬p and there are no postconditions). Also, unlike
Fg(p), the alternative (Fg, n) is pointed: this event model
is deterministic, the real event is event n. This ensures that
the real value of p does not change. In the figure we have
not indicated the preconditions Kp ∨K¬p.

4 Forgetting without changing the real world

An unfortunate side effect of our modelling of forgetting is that the actual value of p gets
lost in the process. This is ‘somewhat strange’ if we only want to model that the agents
forget the value of p, but that ‘otherwise’ nothing changes: the real value of p should
then be unchanged. We can overcome that deficiency in the alternative modelling (Fg, n).
It is very much like Fg(p) except that there is one more alternative event in the model,
indistinguishable from the other two, that represents the event ‘nothing happens’ except
that the truth of p should be known (its precondition is Kp ∨ K¬p and there are no
postconditions). Also, unlike Fg(p), the alternative (Fg, n) is pointed: this event model
is deterministic, the real event is event n. This ensures that the real value of p does not
change. In the figure we have not indicated the preconditions Kp ∨K¬p.

1

0

p := "

p := ⊥

n

The reduction rules for (Fg, n) are the same as for Fg except for the atomic case p and
for negation, where:

[Fg(p), n]p ↔ (Kp ∨K¬p)→ p
[Fg(p), n]¬ϕ ↔ (Kp ∨K¬p)→ (¬[Fg(p), 0]ϕ ∧ ¬[Fg(p), 1]ϕ ∧ ¬[Fg(p), n]ϕ)

We can introduce (Fg(p), 0) and (Fg(p), 1) by abbreviation, somewhat different from before.
We now have the interesting results that

Proposition 4 Valid are (proof omitted):

ψ → [Fg, n]ψ for boolean ψ
[Fg, n]Kψ ↔ [Fg]Kψ for any ψ

In other words: from the perspective of the agent, the different modellings of forgetting
are indistinguishable. That makes the simpler modelling Fg(p) preferable over the slightly
more complex (Fg(p), n).

5 Further research and variations

In this section we present some less developed lines of research.

10
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The reduction rules for (Fg, n) are the same as for Fg
except for the atomic case p and for negation, where:

[Fg(p), n]p ↔ (Kp ∨K¬p) → p
[Fg(p), n]¬ϕ ↔ (Kp ∨K¬p) → (¬[Fg(p), 0]ϕ∧

¬[Fg(p), 1]ϕ ∧ ¬[Fg(p), n]ϕ)

We can introduce (Fg(p), 0) and (Fg(p), 1) by abbrevia-
tion, somewhat different from before. We now have the in-
teresting results that

Proposition 4.1 Valid are (proof omitted):

ψ → [Fg, n]ψ for boolean ψ
[Fg, n]Kψ ↔ [Fg]Kψ for any ψ

In other words: from the perspective of the agent, the dif-
ferent modellings of forgetting are indistinguishable. That
makes the simpler modelling Fg(p) preferable over the
slightly more complex (Fg(p), n).

5. Further research and variations

In this section we present some less developed lines of
research.

5.1. Forgetting by bisimulation quantifica-
tion

A not strictly modal way to model forgetting is to see
forgetting p as universal bisimulation quantification over p
(as in [Hollenberg] [Visser]), i.e.:

[Fg∀(p)]ϕ := ∀pϕ

where

M, s |= ∀pϕ
⇔
for all (M ′, s′) such that (M ′, s′)↔P−p(M, s) : (M ′, s′) |= ϕ

The notation (M ′, s′)↔P−p(M, s) means that epistemic
state (M ′, s′) is bisimilar to epistemic state (M, s) with re-
spect to the set P of all atoms except p. In other words
the valuation of p may vary ‘at random’. This includes the
models constructed by Fg(p) and by (Fg(p), n) from that
given M . That is, for any epistemic model M we have that

M ↔P−p M ⊗ Fg(p)
M ↔P−p M ⊗ Fg(p)

from which follow the validities

[Fg∀(p)]ψ → [Fg(p)]ψ
[Fg∀(p)]ψ → [Fg(p), n]ψ

The axiomatizations of such bisimulation quantified logics
are often complex; for S5 models they behave somewhat
better [4]. We treat a bisimulation quantification operation
non-standardly as ‘some sort of dynamic modal operator’
here. We justify this because it is a model changing opera-
tion. This perspective is also explored in [12].

Although theoretically an interesting alternative, the
much simpler Fg(p) and (Fg(p), n) seem to be preferable
for computational results. However, the bisimulation ver-
sion may have other advantages we are currently unaware
of.

5.2. Single agent forgetting in a multi-agent
context

Suppose a single agent says ‘I forgot p’ in the presence
of others. This can be modelled by the multi-agent event
model Fga(p), where, again, all preconditions are Kap ∨
Ka¬p.
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A not strictly modal way to model forgetting is to see forgetting p as universal bisimulation
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valuation of p may vary ‘at random’. This includes the models constructed by Fg(p) and
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M ↔P−p M ⊗ Fg(p)

from which follow the validities

[Fg∀(p)]ψ → [Fg(p)]ψ
[Fg∀(p)]ψ → [Fg(p), n]ψ

The axiomatizations of such bisimulation quantified logics are often complex; for S5 models
they behave somewhat better [4]. We treat a bisimulation quantification operation non-
standardly as ‘some sort of dynamic modal operator’ here. We justify this because it is a
model changing operation. This perspective is also explored in [12].

Although theoretically an interesting alternative, the much simpler Fg(p) and (Fg(p), n)
seem to be preferable for computational results. However, the bisimulation version may
have other advantages we are currently unaware of.

5.2 Single agent forgetting in a multi-agent context

Suppose a single agent says ‘I forgot p’ in the presence of others. This can be modelled by
the multi-agent event model Fga(p), where, again, all preconditions are Kap ∨Ka¬p.
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The visualization means that all agents except a can dis-
tinguish between the three alternatives. (So for all agents
in A − a the accessibility relation is the identity on the do-
main.) In this case, a similar two-event model (as in the
single-agent approach) would not suffice (said to be irrele-
vant from agent a’s point of view), as we also have to take
the other agents into consideration: surely, we don’t want
them do doubt the value of p all of a sudden.

Again, there is an obvious complete axiomatization ap-
plying the reduction rules for event models, and we have the
validity

[Fga(p)]CA(¬Kap ∧ ¬Ka¬p)
where CA stands for ‘common knowledge among group A.’

5.3. Remembering that you have forgotten

To remember in the object language that you have for-
gotten something requires a language allowing

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

By instead of pointed Kripke models taking what is known
as the ‘forest’ produced by the initial model and all possi-
ble sequences of all Fg(p) events (for all atoms) (see [9]
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and various other publications, this relates strongly to the
history-based approaches by Parikh & Ramanujam [7], and
later Pacuit [6], and others [14]), we get a model that al-
lows us to refer to past events (à la [15] and [8] — Sack’s
approach is also properly based on histories). We can now
combine this recent strand of research, with another strand
of adding assignments to the language, as we already did,
and additionally to that we can add theories for event mod-
els using converse actions, as done in [1] and also outlined
in, e.g. [9]. This not so grand but nevertheless not yet real-
ized scheme leads somewhere, namely to a complete axiom-
atization, but very likely not to the desirable result that ex-
pressions containing event operators (converse or not) can
be reduced to epistemic formulas. So from an AI point of
view, this is probably not a productive point of view. From
a cognitive modelling point of view, it is of course interest-
ing as we can refer to previous knowledge. (Also note that,
unlike the typical counterexamples in [15], in this case the
agent knows that prior to the current situation he/she had
knowledge of p—absence of that created the problems with
finding reduction axioms. So within this restricted setting
of specific events, maybe more useful can be done... To be
continued.

5.4. Other matters

Modeling the forgetting of features with multiple values
can be done by a simple adjustment of the above proposals.
This is easy. How to model the forgetting modal formulas
is a different piece of cake altogether; in this case we have
made no progress yet.
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