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Abstract

[8] merges the semantic frameworks of Dynamic Epis-
temic Logic DEL ([1, 3]) and Epistemic Temporal Logic
ETL ([2, 6]). We consider the logic TDEL on the merged
semantic framework and its extension with the labeled
past-operator “Pε” (“The event ε has happened before
which...”). To axiomatize the extension, we introduce a
method to transform a given model into a normal form in
a suitable sense. These logics suggest further applications
of DEL in the theory of agency, the theory of learning, etc.

1. Introduction

[8] provides a framework for generating the models of
Epistemic Temporal Logic (ETL, [2, 6]) from the models of
Dynamic Epistemic Logic (DEL, [1, 3]). In the framework,
the temporal transitions in DEL are captured by sequences
of event models, called DEL-protocols, and each transition
made by a product update is encoded into the tree struc-
tures of ETL. This allows us to say that DEL-models gen-
erate ETL-models. The framework allows for a systematic
comparison between the two major trends, DEL and ETL,
in describing agents’ intelligent interactions, and suggests a
direction for the studies of new logics that are hybrids of the
two.

The main objective of the present paper is to push that
investigation further. [8] studies the logic TPAL of ETL-
models generated by protocols consisting of public an-
nouncements. However, public announcements are just one
kind of event model. Thus we might ask what the logic
would be like if we extend the setting of TPAL to the full
class of event models. In Section 2, we apply the basic
methods in TPAL and obtain an axiomatization of the class
of the ETL-models generated from the class of all DEL-
protocols. We call this extended system TDEL.

After axiomatizing TDEL, in Section 4 we will study the
extension of TDEL with the labeled past-operator Pε, where
Pε reads as “the event ε has occurred before which ϕ.” We

call the resulting system TDEL+P. This is a very natural
operator to add to the context of TDEL, where all succes-
sive updates by event models are encoded as tree structures.
A similar operator has been investigated in [12] in the orig-
inal DEL-context; our objective in the present paper can be
characterized as investigating that operator in the TDEL-
context.

The axiomatization of TDEL+P will be based on one
distinctive feature of the DEL-generated ETL-models.
Given a set X of event models, DEL-generated ETL-
models can be transformed into the models that consist only
of the event models in X or event models with trivial pre-
conditions, and this transformation preserves the truth of
formulas whose only event models are those in X . We call
this model transformation normalization. In Section 3, we
will show that DEL-generated ETL-models can be normal-
ized in this sense, and will apply this fact to the axiomatiza-
tion of TDEL+P.

TDEL and its extension TDEL+P suggest further inter-
esting applications in the theory of agency and the theory
of learning. In modeling agency, some systems model in-
tentionality in terms of agents’ goals to bring about certain
states. And, for instance in [7], for an agent to intend to
bring about a state at which ϕ holds, it is not sufficient for
her just to bring about that state. In the history leading up
to that state, she must also have believed that her actions
would lead to a ϕ state (so she does not bring it about by
accident). This seems exactly to call for a way to express
what an agent used to believe, about what was then her fu-
ture. Also, when expressing that an agent learned some-
thing from an event, we want to be able to say something
like, “After ε took place, i knew that ϕ. But before ε, i did
not know ϕ.” Expressing this sentence requires both a future
and a past modality. We will discuss these issues further in
Section 5.

2. TDEL

We start by generating ETL-models from DEL-models,
though a detailed exposition for ETL and DEL is omitted.
Readers who are not familiar with the systems are invited
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to refer to e.g. [2, 6] for ETL and to e.g. [10] for DEL.
Below, we fix a finite set A of agents and a countable set At
of propositional letters.

2.1. DEL-Generated ETL-Models

Definition 2.1 An epistemic model M is a tuple 〈W,∼
, V 〉, where W is a nonempty set, ∼: A → W × W , and
V : At → 2W . The set W represents the set of possible
situations, ∼, the indistinguishability relation over the pos-
sible situations for an agent i, and V , the valuation func-
tion. We denote W , ∼ and V by Dom(M), Rel(M), and
V al(M) respectively. Also, we write ∼i for ∼ (i) by con-
vention. !

Definition 2.2 An event model E is a tuple 〈E,→, pre〉,
where E is a nonempty set, →: A → E × E, and pre :
E → LEL, where LEL is the set of epistemic formulas. E
represents the set of possible events,→i, the indistinguisha-
bility relation over the possible events for an agent i, and pre
assigns the preconditions for the possible events. We denote
the domain E of E by Dom(E), and write →i for → (i) by
convention. !

Let E be the class of pointed event models (E, e). Let E∗

be the class of finite sequences of pointed event models.

Definition 2.3 A DEL-protocol is a set P ⊆ E∗, which is
closed under finite prefix. Let ptcl(E) be the class of DEL-
protocols. Given an epistemic model M, a state-dependent
DEL-protocol is a function p : Dom(M) → ptcl(E). !

Given a sequence σ = ε1 . . . εn ∈ E∗, we write σ(n) for
the initial segment of σ of length n (n ≤ len(σ)), and σn

for the nth component of σ. When n > len(σ) or n = 0, σn

and σ(n) are empty. If σ = (E1, e1)(E2, e2) . . . (En, en) ∈
E∗, we write σL and σR for E1 · · · En and e1 · · · en respec-
tively. Thus, for example, if σ = (E1, e1) . . . (En, en), then
(σL)(3) = E1E2E3 and (σR)3 = e3. Clearly, (·)L, (·)R on
the one hand and (·)n, (·)(n) on the other commute. Thus,
we omit parentheses when there is no danger of ambiguity.

Definition 2.4 (σL-Generated Model) Let M = 〈W,∼
, V 〉 be an epistemic model and p, a state-dependant DEL-
protocol on M. Given a sequence σ ∈ E∗, the σL-
generated model, MσL,p = 〈W σL,p,∼σL,p

i , V σL,p〉, is de-
fined by induction on the initial segment of σL:

• W σL
(0),p := W , for each i ∈ A, ∼σL

(0),p

i :=∼i and
V σL

(0),p := V .

• wτ ∈ W σL
n ,p iff

1. w ∈ W ,

2. σL
(n) = τL,

3. wτ(n−1) ∈ W σL
(n−1),p,

4. τ ∈ p(w), and

5. MσL
(n−1),p, wτ(n−1) |= pre(τR

n )

• For each wτ, vτ ′ ∈ Hn (0 < n < len(σL)), wτ ∼σL
(n)

vτ ′ iff wτ(n−1) ∼
σL
(n−1),p

i vτ ′(n−1) and τR
n →i (τ ′)R

n

in τL
n .

• For each p ∈ At, V n+1,p(p) = {wσ ∈ Wn+1,p | w ∈
V (p)}.

Note that, in the definition of ∼i, τL = (τ ′)L = σL
n , and

thus σL = (σ′)L. !

Definition 2.5 (DEL-Generated ETL-Model) Let M =
〈W,∼, V 〉 be an epistemic model and p a state-dependent
DEL-protocol on M. An ETL-model Forest(M, p) =
〈H,∼, U〉 generated from M by p is defined as follows:

• H := {h | ∃w ∈ W , σ ∈
⋃

w∈W p(w) such that h =
wσ ∈ W σL,p}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ′, h ∼i h′

iff wσ ∼σL,p
i vσ′.

• For each p ∈ At and h = wσ ∈ H, h ∈ V ′(p) iff h ∈
V σL,p(p).

We define the class Fst(E) to be the class of all ETL-models
of the form Forest(M, p). !

Given X ⊆ E, we denote by Fsd(X) the class of
ETL-models generated from epistemic models M by state-
dependent protocols p consisting only of elements in X , i.e.,
for every w in M, if σ ∈ p(w), σ ⊆ X∗.

Example 2.6 (Public Announcements) We illustrate the
above construction in public announcement logic with each
event model denoting an announcement or observation of
some true formula. Let M be a model that consists of
w, v, u, each of which are indistinguishable (the ∼ rela-
tion in M is an equivalence relation on w, v, u), where
V (p) = {w, v} and V (q) = {v}. This model is represented
by the three points labeled with w, v, u, respectively at the
bottom of Figure 1. Consider the protocol p where p(w) =
{p, pq,¬q}, p = {p, pq,¬q} and p = {¬q,¬q*, p}. The
DEL-generated ETL-model Forest(M, p) can be visualized
as follows:
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Figure 1. A DEL-generated ETL model.

2.2. Axiomatization of TDEL

The language LTDEL of TDEL extends the language
LEL of epistemic logic by the operator 〈ε〉, where ε ∈ E.
The dual of 〈ε〉 is [ε] defined by ¬〈ε〉¬ as usual.

Let H ∈ Fsd(E) with

H = Forest(M, p) = 〈H, {∼i}i∈A, V 〉.

The semantics of the knowledge operator and the event
model operator are defined by:

• H, h |= Kϕ iff for all h′ such that h ∼i h′,H, h′ |= ϕ.

• H, h |= 〈ε〉ϕ iff hε ∈ H and H, hε |= ϕ.

The boolean cases are defined in the standard way.

Example 2.7 (Semantics in TDEL) Let H be the model
Forest(M, p) in Figure 1. For instance, we have H, w |=
〈p〉〈q〉K(p∧q) butH, w '|= 〈p∧q〉K(p∧q). This illustrates
the fact that in TDEL we cannot treat sequences of events
as single events, while in DEL we can. Also the fact that
we have H, w |= (p ∧ q) ∧ ¬〈p ∧ q〉! violates the schema
〈ε〉! ↔ pre(ε), which is valid in DEL. In TDEL, we only
have 〈ε〉! → pre(ε).

Definition 2.8 The axiomatization TDEL of Fsd(E) is
given by the following axiom schemes and inference rules.

Axioms

PC Propositional validities

Ki Ki(ϕ → ψ) → (Kiϕ → Kiψ)

F1 〈ε〉p ↔ 〈ε〉! ∧ p

F2 〈ε〉¬ϕ ↔ 〈ε〉! ∧ ¬〈ε〉ϕ

F3 〈ε〉(ϕ ∧ ψ) ↔ 〈ε〉ϕ ∧ 〈ε〉ψ

F4 〈ε〉Kiϕ ↔ 〈ε〉! ∧∧
{(ε′)R∈Dom(εL)|εR→i(e′)R} Ki(〈ε′〉! → 〈ε′〉ϕ)

A1 〈ε〉(ϕ → ψ) → (〈ε〉ϕ → 〈ε〉ψ)

A2 〈ε〉! → pre(εR)

Inference Rules

MP If * ϕ → ψ and * ϕ, then * ψ.

k-Nec If * ϕ, then * Kiϕ.

e-Nec If * ϕ, then * [ε]ϕ.

$

Readers are invited to verify that these are sound with re-
spect to Fsd(E).

2.3. Completeness Proof

The proof is given by a variant of the Henkin-style con-
struction. The basic construction is the same as the one in
[8] with minor modifications.

Definition 2.9 (Legal Histories) Let W0 be the set of all
TDEL-maximal consistent sets. We define λn and Hn (0 ≤
n ≤ d(Σ)) as follows:

• Define H0 = W0 and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {hε | h ∈ Hn and 〈ε〉! ∈ λn(h)}. For
each h = h′ε ∈ Hn+1, define λn+1(h) = {ϕ | 〈ε〉ϕ ∈
λn(h′)}.

Given h ∈ Hn, we write λ(h) for λn(h). $

The following can be straightforwardly verified by ap-
pealing to the construction and F2.

Lemma 2.10 For each n ≥ 0, for each σ ∈ Hn, λn(σ) is
a maximally consistent set.

Let Hcan
0 = (H0,∼0, V 0), where ∼0 and V 0 are defined

by

• w ∼0
i v iff {ϕ | Kiϕ ∈ w} ⊆ v.

• For each p ∈ At and w ∈ H0, p ∈ V (w) iff p ∈ w.

Definition 2.11 (Canonical Model) The canonical model
Hcan is a triple 〈Hcan, {∼can

i }i∈A, V can〉, where each item
is defined as follows:

• Hcan =def
⋃∞

i=0 Hi.

• For each wσ, w′σ′ ∈ Hcan, wσ ∼can
i w′σ′

iffdef wσ ∼σL

i w′σ′, where ∼σL

is defined by induc-
tion in the following way:
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– ∼σL
(0)

i =∼0
i

– For each wτ, vτ ′ ∈ Hn (0 < n < len(σL)),

wτ ∼σL
(n) vτ ′ iff wτ(n−1) ∼

σL
(n−1)

i vτ ′(n−1) and
τR
n →i (τ ′)R

n in τL
n .

• For every P ∈ At and h = wσ ∈ Hcan, wσ ∈
V can(P ) iff w ∈ V 0(P ).

#

Proposition 2.12 Let wσ ∼can
i vτ with w, v ∈ W 0, σ =

σ1 . . .σn and τ = τ1 . . . τn. If Kiϕ ∈ λ(wσ), then
Ki(〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(. . . (〈τn〉& →
〈τn〉ϕ) . . . ) ∈ λ(w).

Proof. By induction on n. When n = 0, σ, τ are empty
and thus the claim clearly holds. For the inductive step,
assume that Kiϕ ∈ λ(σ). Then, by the construction of
Hcan, 〈σn〉Kiϕ ∈ λ(wσn−1). By F4, for all events e in σL

n

such that σR
n →i e:

Ki(〈σL
n , e〉& → 〈σL

n , e〉ϕ) ∈ λ(wσ(n−1)).

Here, by the construction of Hcan, σn →i τn. By applying
the IH, we are done. QED

Lemma 2.13 (Truth Lemma) For every ϕ ∈ LTDEL and
h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

Proof. We show by induction on the structure of ϕ ∈ LTDEL

that for each h ∈ Hcan, ϕ ∈ λ(h) iff Hcan, h |= ϕ. The
base and the boolean cases are straightforward.

For the knowledge modality, let h ∈ Hcan with h =
wσ1 · · ·σn (w ∈ W0) and assume Kiψ ∈ λ(h). Suppose
h′ ∈ Hcan with h ∼can

i h′. By construction of the canonical
model, we know that h′ = vτ1 · · · τn for some v ∈ H0 and
τ1 . . . τn ∈ E∗ with w ∼0

i v. By Proposition 2.12, we have
Ki(〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& →
〈τn〉ψ) · · · )) ∈ λ(w).
Since w ∼0

i v, we have by the construction of Hcan,
〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& →
〈τn〉ψ) · · · ) ∈ λ(v).
Now note that
〈τ1〉& ∈ λ(v), 〈τ2〉& ∈ λ(vτ1), . . . , 〈τn〉& ∈
λ(vτ1...τn−1).
Thus, we have
〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& → 〈τn〉ψ) · · · ) ∈ λ(vτ1)
〈τ3〉& → 〈τ3〉(· · · 〈τn−1〉(〈τn〉& → 〈τn〉ψ) · · · ) ∈
λ(vτ1τ2)
...
〈τn〉ψ ∈ λ(vτ1 · · · τn−1)

Therefore, ψ ∈ λ(vτ1 · · · τn) = λ(h′). By the induction
hypothesis, Hcan, h′ |= ψ. Therefore, Hcan, h |= Kiψ, as
desired.

For the other direction, let h ∈ Hcan and assume Kiψ '∈
λ(h). For simplicity, let h = wσ1 with w ∈ W0 and
σ1 ∈ E. The argument can easily be generalized to deal
with the general case along the lines of the argument above.
Since λ(h) is a maximally consistent set, we have ¬Kiψ ∈
λ(h). Thus, by Definition 2.9, 〈σ1〉¬Kiψ ∈ λ(w). Us-
ing axiom F2, ¬〈σ1〉Kiψ ∈ λ(w); and so, by Axiom
F4, ¬〈σ1〉& ∨ ¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈

λ(w). Since 〈σ1〉& ∈ λ(w) by construction, it follows that
¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈ λ(w).

Now consider the set v0 = {θ | Kiθ ∈
λ(w)} ∪ {¬

∧
{τ |σ1→iτ in σL

1 }
(〈τ〉& → 〈τ〉ψ)}. We

claim that this set is consistent. Suppose not. Then,
there are formulas θ1, . . . , θm such that *

∧m
j=1 θj →∧

{τ |σ1→iτ in σL
1 }

(〈τ〉& → 〈τ〉ψ) and for j = 1, . . . ,m,
Kiθj ∈ λ(w).

By standard modal reasoning, *
∧m

j=1 Kiθj →∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ). This im-

plies that
∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈

λ(w). However, this contradicts the fact that
¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈A〉& → 〈A〉ψ) ∈ λ(w), since

λ(w) is a maximally consistent set.
Now using standard arguments (Lindenbaum’s

lemma), there exists a maximally consistent set v
with v0 ⊆ v. By the construction of v, we must
have w ∼0

i v. Also, since v is an mcs such that
¬

∧
{τ |σ1→iτ in σL

1 }
(〈A〉& → 〈A〉ψ) ∈ λ(v), there is

some τ1 such that ¬(〈τ1〉& → 〈τ1〉ψ ∈ λ(v). Other-
wise, v is inconsistent. Therefore, for such τ1, we have
〈τ1〉& ∈ λ(v),¬〈τ1〉ψ ∈ λ(v). Here, by axiom F2,
〈τ1〉¬ψ ∈ λ(v). Hence ¬ψ ∈ λ(vτ1) and therefore
ψ '∈ λ(vτ). By the induction hypothesis, Hcan, vτ1 '|= ψ.
This implies Hcan, wτ1 '|= Kiψ, as desired.

For the event model operator, assume that 〈ε〉ψ ∈ λ(h).
Since 〈ε〉& ∈ λ(h) (for ¬〈ε〉& ∈ λ(h) makes λ(h) incon-
sistent), ψ ∈ λ(hε). By the induction hypothesis, we have
Hcan, hε |= ψ, which implies Hcan, h |= 〈ε〉ψ.

For the other direction, assume Hcan, h |= 〈ε〉ψ. Then,
Hcan, hε |= ψ. By the inductive hypothesis, we have ψ ∈
λ(hε) and thus 〈ε〉ψ ∈ λ(h). QED

All that remains is to show is that Hcan is in the class of
intended models (i.e., is an element of Fsd(E)).

Lemma 2.14 The canonical modelHcan is in Fsd(E). That
is, there is an epistemic model M and local protocol p on
M such that Hcan = Forest(M, p).

Proof. Let Mcan = (W0, {∼0
i }i∈A, V 0) and define pcan :

W0 → E∗ so that pcan(w) = {σ | wσ ∈ Hcan}. Suppose
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thatHpcan = Forest(Mcan, pcan). We claim thatHcan and
Hpcan are the same model. For this, it suffices to show that
for all w ∈ W0 and σ ∈ E∗ we have wσ ∈ Hcan iff wσ ∈
W σ,pcan . For this implies Hcan = Hpcan , where Hpcan is
the domain of Hpcan . Then, by inspecting the construction
of Forest and Definition 2.11, we see that Hcan and Hpcan

are the same model .
We will show by induction on the length of σ ∈ E∗ that

for any w ∈ W0, wσ ∈ Hcan iff wσ ∈ W σ,pcan . The base
case (len(σ) = 0) is clear. Assume that the claim holds for
all σ with len(σ) = n.

Given any σ ∈ E∗ with len(σ) = n, we first show
by subinduction (on the structure of A) that, for all A ∈
LEL, Hcan, wσ |= A iff Mσ,pcan , wσ |= A. The
base and boolean cases are straightforward. Suppose that
Hcan, wσ |= KiB. We must show Mσ,pcan , wσ |= KiB.
Let vσ ∈ W σ,pcan with wσ ∼σ,p

i vσ. By the main induction
hypothesis, we have both vσ ∈ Hcan and wσ ∈ W σ,pcan .
By construction, since wσ ∼σ,pcan

i vτ , we have w ∼0
i v.

Furthermore, wσ ∼can
i vτ . Hence, Hcan, vσ |= B. By

the subinduction hypothesis,Mσ,pcan , vσ |= B. Therefore,
Mσ,pcan , wσ |= KiB.

Coming back to the main induction, as-
sume wσ(n)σn+1 ∈ Hcan. This implies that
〈σn+1〉% ∈ λ(wσ(n)). By truth lemma, we have
Hcan, wσ(n) |= 〈σn+1〉%. This, together with axiom A2,
implies Hcan, wσ |= pre(σR

n+1). From the above subin-
duction, it follows that Mσ(n),pcan , wσ(n) |= pre(σR

n+1)
(recall that pre(e) ∈ LEL for all events e by def-
inition). Thus, by the construction of pcan, we
have wσ(n)σn+1 ∈ W σ(n),pcan . This shows that if
wσ(n)σn+1 ∈ Hcan then wσ(n)σn+1 ∈ W σ(n)σn+1,pcan .
The other direction is similar. QED

The proof of the completeness theorem follows from
Lemma 2.13 and Lemma 2.14 using a standard argument.

Theorem 2.15 TDEL is sound and complete with respect
to Fsd(E).

2.4. TDEL Restricted to Some Class of Protocols

TDEL axiomatizes the class Fsd(E). However, note that
the completeness proof above does not depend on the fact
that E is the set of all pointed event models, but only the fact
that Fsd(E) contains the ETL-models generated from epis-
temic models M by the protocol p that allows all possible
finite sequences of E at each w in M, i.e p(w) = E∗.

Thus, even if we restrict our attention to some X ⊆ E,
the proof should work as well for the class Fsd(X). How-
ever, here we have to be careful that such an X must at
least contain all the “relevant” pointed event models: if
(E , e) ∈ X , then (E , f) ∈ X for all f such that e → f in

E . Otherwise the knowledge modality case of Lemma 2.13
since we need all the “relevant” histories in the present
sense must be included in the canonical model.

Let X ⊆ E. Call X e-closed if, for all E , if there is
ε ∈ X such that εL = E , then for every event e in E , (εL, e)
is in X . Denote by LTDEL(X) the fragment of LTDEL that
only allows the event model operators 〈ε〉 such that ε ∈ X .
Also, let TDEL(X) be the axiomatization as above except
that the axiom schema and the [ε]-necessitation rule can be
instantiated by the event models in X . The following is a
corollary of our completeness proof.

Corollary 2.16 For all e-closed subsets X of E, TDEL(X)
is complete with respect to Fsd(X).

Thus, by changing the parameter X , we could have ax-
iomatizations for various kinds of logic of protocols. In fact,
the logic of public announcement protocols, as is presented
in [8] is a particular version of TDEL(X). We could also
consider the logics of secret message protocols, etc.

3. Normalization of DEL-Generated ETL-
Models

Before we study the proposed extension, we need to turn
our attention to a distinctive property of DEL-generated
ETL-models. The rough idea is that, given a set X of event
models, DEL-generated ETL-models can be transformed
into the models that consist of the event models in X and
the event models with trivial preconditions in such a way
that the truth of the formulas expressed with event models
in X is preserved. We call this model transformation nor-
malization. To formulate this notion here, we need some
definitions.

Definition 3.1 We say that two event models (E,→, pre)
and (E′,→′, pre′) are isomorphic, if (E,→) and (E′,→′)
are isomorphic. Clearly, such an isomorphic relation parti-
tions the set of event models. Given an event model E , let
[E ] be the class of event models isomorphic to E . We call
[E ] the type of E . Also given a finite e-closed subset X of E,
we denote by PREX the conjunction of the preconditions
of the events that occur in X . %

Definition 3.2 (Normalization Function) Let X be a fi-
nite e-closed subset of E. The normalization function with
respect to X is a function fX : E → E such that, for
every pointed event model (E , e) with E = (E,→, pre),
fX((E , e)) = (E ′, e), where E ′ = (E′,→′, pre′) is defined
by:

• E′ = E

• →′ (i) =→ (i)
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• pre′(e) = pre(e) ∨ ¬pre(e) ∨ PREX .

!

The purpose of having this function is to replace cer-
tain pointed event models ε with isomorphic pointed mod-
els with tautologous preconditions. Therefore, this role of
the normalization function does not turn on the particular
form (pre(e) ∨ ¬pre(e)) of the tautology, as given in the
third clause of the definition. However, having the tautol-
ogy of such a form, we can guarantee that, if ε "= ε′, then
fX(ε) "= fX(ε′). Also the third disjunct in the third clause
guarantees that, for all ε ∈ E, fX(ε) "∈ X .

Definition 3.3 Given a finite e-closed subset X of E, a sub-
stitution function for X is a function σX : E → E such that,
for all ε ∈ E,

σX(ε) =

{
ε if ε ∈ X

fX(ε) otherwise

Given a DEL-generated ETL-model H and a history h =
wε1 . . . εn in H, we denote wσX(ε1) . . .σX(εn) by σX(h).
!

Definition 3.4 (Normalization) Let X be an e-closed sub-
set of E. The normalization HσX of a DEL-generated
ETL-model H = (H,∼, V ) with respect to X is a tuple
(H ′,∼′, V ′). σX that satisfies the following conditions:

H′ := {σ(h) | h ∈ H}

σ(h) ∼′
i σ(g) iff h ∼i g.

V ′(p) := {σ(h) | h ∈ V (p)}

!

Example 3.5 (Normalization) We can now illustrate the
manner in which a model can be normalized, and how that
process depends on the set of event models we are interested
in. The process uniformly replaces any event not in the set
with an event that has tautological preconditions. Let our
initial model be the one from Figure 1. If we normalized
this model with respect to the set {p, q,¬q,&}, the model
would not change, since this is the set of all events in the
model. For the other extreme case, if we normalized with
respect to the set ∅, indicating tautologous preconditions by
indexed &’s, we would obtain the following:

On the other hand, if we normalized with respect to some
subset of the expressions in the model, we would replace
some events and keep others.

Proposition 3.6 Let H be a DEL-generated ETL-model.
Then HσX is a DEL-generated ETL-model.

&1

&2

&1 &2 &3

&4

Figure 2. Normalizing Figure 1 with respect to
∅.

p

q

p &1 &1

&2

Figure 3. Normalizing Figure 1 with respect to
{p, q}.

Proof. Let H = Forest(M, p) = (H,∼, V ) and HσX =
(H ′,∼′, V ′)). Let pN

0 be such that for all w inM, p0(w) =
{σ | wσ ∈ H ′}. Then HσX = Forest(M, p0). The rest
of the proof goes by an argument similar to the proof of
Lemma 2.14. QED

Now it is straightforward to show that the normalization
with respect to a given X preserves the truth of the formulas
in which only the event operators from X occur.

Proposition 3.7 (Normalization) Let X be an e-closed
subset of E. Then, for every DEL-generated model H and
every formula ϕ in LDEL(X) (the fragment of LDEL+P

that only allows the event models in X),

H, h |= ϕ iff HσX ,σX(h) |= ϕ.

Proof. We proceed by induction on ϕ. The base and
boolean cases are clear. For the knowledge modality case,
assume H, h |= Kiψ. Then, for all h ∼ h′, H, h′ |= ψ.
By IH, HσX ,σX(h′) |= ψ. By Definition 3.4, we have
HσX ,σX(h) |= Kiϕ. The other direction is similar.

For the event modality, assume that H, h |= 〈ε〉ψ, where
ε ∈ X . Then H, hε |= ψ. By the IH, HσX ,σX(hε) |= ψ.
However, since ε ∈ X , we have HσX ,σ(h)ε |= ψ. This
gives HσX ,σX(h) |= 〈ε〉ψ, as desired. The other direction
is similar. QED

Note that, if we also replaced the pointed event models
in X that occur in the given model, the truth of the formulas
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might not be preserved, since the truth definitions of the
event model operator explicitly refer to given event models.
To see this, suppose H, hε |= 〈ε〉ϕ. If we replaced ε in the
model with the pointed event model ε′ of the same type, but
distinct from ε, 〈ε〉ϕ cannot be true by definition, simply
because ε #= ε′.

4. Extending TDEL with the Past Modality

One fact about TDEL is that it only has forward-looking
operators 〈ε〉. However, given that, in TDEL, we have the
forest structres that encodes all successive stages of update
by event models, we can naturally think about the operator
that states what was the case prior to a given temporal point.
In this section, we extend TDEL with a past-looking modal-
ity Pε with ε ∈ E. This extension will be called TDEL+P.
Also, given an e-closed subset X of E, we denote the cor-
responding fragment of TDEL+P by TDEL+P(X).

Let H = (H,∼, V ) be an ETL-model generated from
an epistemic model and a state-dependent protocol. The
semantics of the operator Pε is defined as follows:

H, h |= Pεϕ iff ∃h′ such that h = h′ε and H, h′ |= ϕ.

The dual of Pε is denoted by P̂ε. The reading of Pε is “the
event ε has happened, before which ϕ”. The dual P̂ε reads
as “Before the event ε, ϕ”.

Let tPAL be the type of event models consisting of single
reflexive events. Below we show that, given an e-closed
subset X of E such that X is a union of a finite number of
types including tPAL, TDEL+P(X) is axiomatizable. For
this, we first observe that the normalization results hold for
TDEL+P(X).

Proposition 4.1 Let Y be an e-closed subset of E. Then,
for every DEL-generated model H and every formula ϕ in
TDEL+P(X),

H, h |= ϕ iff HσY ,σY (h) |= ϕ.

Proof. We proceed by induction on ϕ. The cases other than
Pε are as in Lemma 3.7. Thus, assume H, h |= Pεψ. Then
there must be some h′ such that h′ε and H, h′ |= ψ. By the
IH, HσY ,σY (h′) |= ψ. Since ε ∈ Y , σY (h′ε) = σ(h′)ε.
Thus, HσY ,σY (h′ε) |= Pεψ. The other direction is similar.
QED

To present the axiomatization of TDEL+P, we need
some definitions.

Definition 4.2 Given a formula ϕ, the past depth d(ϕ) of
the formula ϕ is defined as follows:

• d(p) = 0 for p propositional.

• d(¬ϕ) = d(ϕ)

• d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

• d(Kiϕ) = d(ϕ)

• d(〈ε〉ϕ) = d(ϕ)− 1

• d(Pεϕ) = max(d(ϕ), 0) + 1

%

The intuition behind this definition is that if a formula
has a depth n, we would have to go n-steps into the past
from the current point of the ETL-tree in order to verify it.
Thus, the final clause reflects the intended meaning. Had the
definition instead been d(Pεϕ) = d(ϕ) + 1, this would not
have worked for, P(E1,e1)〈E2, e2〉〈E3, e3〉P . That definition
would mistakenly have set the past depth as -1 instead of 1.

Let X be a union of a finite number of types such that
tPAL ⊆ X , so X is a class of event models.

Definition 4.3 Given a finite set Σ of expressions in
LTDEL+P and a type t, define E(Σ) :=

⋃
ϕ∈Σ E(ϕ). Also

denote by PREΣ the conjunction of the preconditions of
the events in E(Σ). %

Definition 4.4 Given a type t ⊆ X , let Et
Σ be a distin-

guished event of the type t in which the precondition of each
event is the tautologous formula of the form PreΣ∨¬PreΣ.
The role of Et

Σ is to pick up one event model of the type t,
whose precondition is tautologous and whose pointed event
model is not in Σ. The form of the precondition is to pre-
vent the pointed event model formed by Et

Σ from being in
Σ. %

Definition 4.5 Further, define the set NX(Σ) by:

NX(Σ) := {(Et, e) | t ⊆ X is a type and e in Et
Σ}.

%

Here, given the definition of Et
Σ, there are infinitely many

event models that can be specified as Et
Σ, since there are

infinitely many event models of the type t in which the
preconditions of events are PreΣ ∨ ¬PreΣ. By defini-
tion, isomorphic event models are distinct when they con-
sist of distinct events. Therefore, clearly, there are infinitely
many pair-wise disjoint sets defined to be NX(Σ) as de-
fined above, depending on which event model will be taken
as Et

Σ.
Let A1, A2, . . . be an infinite sequence of such sets, i.e.

(1) Ai is of the form defined by NX(Σ) and (2) Ai, Aj

are disjoint for every i, j. Define Nn
X(Σ) be the union of

A1, . . . , An. Clearly, Nn
X(Σ) is finite, since Ai is finite for

all i and Nn
X(Σ) is a finite union of such sets.
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Definition 4.6 Also, given a finite set Σ of expressions and
a formula ϕ, define ε!Σ to be an pointed event model in
tPAL in which the precondition of the event in the model
is PREΣ ∨ PREΣ. Given the form of the precondition in
the definition, ε!Σ does not occur in Σ. #

Definition 4.7 The axiomatization of TDEL+P extends
that of epistemic logic with necessitation for [ε] and P̂ε and
the following axioms and inference rules:

F5 〈ε〉Pε′ϕ → ⊥ if ε &= ε′

F6 〈ε〉Pεϕ ↔ 〈ε〉( ∧ ϕ

A3 Pε(ϕ → ψ) → (Pεϕ → Pεψ)

R(X) If * [ε1] . . . [εd(ϕ)]ϕ for all ε1 . . . εd(ϕ) such that, for
all k (1 ≤ k ≤ d(ϕ)), εk ∈ E(ϕ) ∪ Nd(ϕ)

X (E(ϕ) ∪
{ε!E(ϕ)}, then * ϕ.

#

Note that E(ϕ) ∪ Nn
X(E(ϕ)) ∪ {ε!E(ϕ)} is finite. Also, to

show the soundness of R(X), it suffices to show the follow-
ing:

Lemma 4.8 If ϕ is satisfiable, then 〈ε1〉 . . . 〈εd(ϕ)〉ϕ is sat-
isfiable for some sequence ε1 . . . εd(ϕ) of the specified form
in R(X).

To show this lemma, we need some definitions. Let p be
a state-dependent protocol on M.

Definition 4.9 Given n ∈ N, we define a local pro-
tocol pn< on Mn,p so that pn<(wσ1 . . .σn) = {τ |
wσ1 . . .σnτ ∈ p(w) where w ∈ Dom(M)}. #

Given an ETL-model Forest(M, p), the model
Forest(Mn,p, pn<) can be seen as a submodel of
Forest(M, p) that describes what happens in Forest(M, p)
after the n+1-th stage, with the histories up to the n+1-th
stage taken as the elements of the base epistemic model.

Now we prove Lemma 4.8. The idea behind the proof is
as follows. Assuming H, h |= ϕ, we first apply the normal-
ization method based on Proposition 4.1. Then, if ϕ is sat-
isfied in the model at a sufficiently long history (i.e. strictly
longer than d(ϕ)), then we can satisfy 〈ε1〉 . . . 〈εd(ϕ)〉ϕ by
tracing the history using the truth definition of the future
operator. If any εi in the sequence is not of the form spec-
ified in R(X), then in the model H we can replace it with
an event model of the same type with tautologous precon-
ditions. Such a replacement does not affect the structure
of the model, and 〈ε1〉 . . . 〈εd(ϕ)〉ϕ will be satisfied at the
corresponding node in the resulted model.

However, if the history is not long enough, then we con-
struct a new model from the original, by lifting the roots of

the trees with a sequence of single reflexive event models
ε!E(ϕ) with the tautologous precondition. The new model
preserves the structures above the sequence of such events
and there is a sufficiently long history at which ϕ is sat-
isfied. The preservation result follows because iteratively
performing single reflexive events with tautologous precon-
ditions (uniformly at every world) keeps the structure of the
original model unchanged.

To illustrate this, consider the evaluation of the formula
ϕ = Pσ¬Pτ(, with past depth 2, in Figure 4. Notice that
we can satisfy this formula at world wσ in Figure 4, even
though len(wσ) = 2. To obtain a length of 3 for the history
at which the formula in question is satisfied, we add a public
announcement with a tautologous precondition, ε!ϕ . This is
represented in Figure 5. We now proceed to the proof.

w

wσ
σ

wτ
τ

Figure 4. A formula with depth 2 can be satis-
fied at wσ. This is a case in which we need to
extend the history.

σ τ

εϕ

Figure 5. Extending the history with εϕ.

Proof. Let H, h |= ϕ. Apply Proposition 4.1 by setting
Y := E(ϕ). Then we obtain HσY ,σY (h) |= ϕ.

Assume len(h) > d(ϕ). Then for some g, ε1, . . . εd(ϕ),
h = gε1 . . . εd(ϕ). In HσY , for every σY (εi) &∈ Y
(1 ≤ i ≤ d(ϕ)), replace σY (εi) with an isomorphic event
model ε ∈ NX(E(ϕ)). Given that the preconditions of
the event models are tautologous, such a model transfor-
mation does not affect the truth value of ϕ. That is, denot-
ing by H′ and h′ the model and the history (correspond-
ing to h) that are obtained by the replacements, we have
H′, h′ |= ϕ. By len(h) = len(h′) > d(ϕ) and the con-
struction of h′, we have some g′ and ε′1, . . . , ε

′
n such that

H′, g′ |=〉ε′1〉 . . . 〈ε′d(ϕ)〉ϕ, where ε′1, . . . , ε
′
d(ϕ) are of the

specified form in R(X).
Thus, assume that len(h) ≤ d(ϕ). Let k := d(ϕ) −

len(h) + 1 (the length that we want to add to the history).
Let ε0 be ε!E(ϕ). Also denote by εk

0 the sequence of k ε0’s.
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Now let M = (W,∼, V ). Construct a local protocol p+ on
M so that p+(w) is the set obtained by taking the closure
under finite prefix on {εk

0σ | σ ∈ p(w)}. Then, by these
constructions, it is the case that for all σ (possibly empty):
Forest(Mk, p+

ek
0<

), (wεk
0)σ |= ϕ iff

Forest(M, p), wσ |= ϕ
where w is in M. Thus, if we have, for all σ,
Forest(Mk, p+

ek
0<

), (wεk
0)σ |= ϕ iff

Forest(M, p+), wεk
0σ |= ϕ.

The desired claim follows. For we can proceed as in the
case of len(h) > d(ϕ), given that
len(wθτ) = len(w) + [d(ϕ) − len(wτ) + 1] + len(τ) =
d(ϕ) + 1 where h = wτ .

We prove this by showing that, for all σ and formulas ψ,
Forest(Mk, p+

ek
0<

), wεk
0σ |= ψ iff

Forest(M, p+), wεk
0σ |= ψ.

The proof is by a straightforward induction. We will only
do the past-modality case. The left-to-right direction fol-
lows immediately by the IH. So assume the RHS. If h is
non-empty, then by the IH we are done. If h is empty, then
since σ $= εϕ by definition, we have a contradiction with
the RHS. This completes the proof. QED

The completeness proof can be given based on the
Henkin-style construction given for TDEL above. LetHcan

be the ETL-model constructed from the set of TDEL+P
maximally consistent sets in the same way as in TDEL.
The lemma for the canonical model that corresponds to
Lemma 2.10 can be shown in the same way. Now, we show
the truth lemma stated as follows:

Lemma 4.10 (Truth Lemma) For every formula ϕ and
h ∈ Hcan such that len(h) > d(ϕ),

ϕ ∈ λ(h) iff Hcan, h |= ϕ

Proof. The boolean and knowledge modality cases are
given in the same way as Lemma 2.13 above, so we will
only consider the past modality case. Let h = h′σ for some
len(h) ≥ d(ϕ) + 1, where σ ∈ E. Let ϕ be Pτψ.

Assume then that Pτψ ∈ λ(h). By the definition of
canonical model, 〈σ〉Pτψ ∈ λ(h′). If σ $= τ , then by
F5, ⊥ ∈ λ(h′), which contradicts the consistency of λ(h′).
Thus, assume σ = τ . Then, by F6, we have ψ ∈ λ(h′).
By the IH, Hcan, h′ |= ψ (note len(h′) ≥ d(ψ) + 1). Since
h′σ ∈ Hcan and σ = τ , the truth definition implies that
Hcan, h |= Pτψ.

For the other direction, assume that Hcan, h |= Pτψ. By
the truth definition, we have σ = τ , and also H, h′ |= ψ.
By the IH, we have ψ ∈ λ(h′). And by the construction of
the canonical model, we have 〈σ〉) ∈ λ(h′). Thus, by F6,
we have 〈σ〉Pσψ ∈ λ(h′), which by construction implies
that Pσψ ∈ λ(h). QED

We can also prove the lemma corresponding to
Lemma 2.14 in the same way. Now, to conclude our proof
of the completeness result, we need to prove the following
theorem.

Theorem 4.11 TDEL+P is complete with respect to
Fsd(E).

Proof. Let ϕ be consistent. Then 〈σ1〉 . . . 〈σd(ϕ)〉ϕ is con-
sistent for some σ1 . . .σd(ϕ) ∈ E∗. For suppose otherwise.
Then for every σ1 . . .σd(ϕ) ∈ E∗, 〈σ1〉 . . . 〈σd(ϕ)〉 is incon-
sistent and thus * [σ1] . . . [σd(ϕ)]¬ϕ. By R, * ¬ϕ. This
contradicts the consistency of ϕ. Thus 〈σ1〉 . . . 〈σd(ϕ)〉ϕ is
consistent for some σ1 . . .σd(ϕ). Let θ = 〈τ1〉 . . . 〈τd(ϕ)〉ϕ
be one of those formulas. Since θ is consistent, by Linden-
baum’s Lemma, we have a maximally consistent set con-
taining it. Note that d(θ) = 0. Thus, by the truth lemma,
there is some history h of length 1 such that Hcan, h |= θ.
This gives us the result that Hcan, hτ1 . . . τd(ϕ) |= ϕ. QED

The reason that we cannot conclude the result immedi-
ately from the truth lemma and the analogue of Lemma 2.14
is that we are not sure that, given a formula of depth n, we
have a maximal consistent set that contains ϕ, which is as-
signed to a history long enough to apply truth lemma. This
fact is guaranteed by R, as is seen in the above argument.

5. Philosophical Connections and Applications

Although the addition of a past operator to the temporal
framework may seem trivial, it turns out that the resulting
increase in expressive power might have several significant
applications. The interaction between past and future in an
epistemic context can be found in thinking about agency—
more specifically, in trying to formulate a definition of an
agent’s intention—as well as in learning.

Both of these seem at first glance to be forward look-
ing ideas. For instance, intending seems to refer only to
something we plan to do in the future. And learning seems
to have to do with an update of our state of knowledge. But
notice that if we intend to bring something about, it can’t al-
ready have been the case (since we can’t intend to do some-
thing that’s already been done). And if we want to learn
something, we can’t already know it. Thus, expressing both
of these ideas requires talking about a change in our epis-
temic states. It is not too difficult to come up with a sentence
using only the future modality and the static language stat-
ing that I am about to learn that ϕ, or that I do not now know
ϕ, but will after it is announced:

〈!ϕ〉Kiϕ ∧ ¬Kiϕ

Alternately, we can use this formalism to capture our in-
tuitions about what is learned by a public announcement of
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a formula ϕ. For what we learn is not necessarily that ϕ is
now the case, but rather than ϕ was the case before the an-
nouncement. So our general formulation of what an agent
learns by a public announcement can be expressed by the
formula

[!ϕ]KiP!ϕϕ.

So in order to say that I have in fact learned ϕ, I need to
refer back to the past. Otherwise, all I will be able to say is
that I now know ϕ. But the fact that I now know ϕ tells me
nothing about whether or not I knew it in the past. Thus, in
order to claim that I have learned ϕ, because of some event
ε I really need to say that I now know ϕ, but did not know it
before ε took place:

Pε¬Kiϕ ∧Kiϕ.

The fact that a past modality is required to express that
a state of affairs has changed means that it is also related to
the idea of a successful update [11]. We can call a public
announcement successful when the formula announced is
true after the update, and unsuccessful when the formula an-
nounced becomes false. For instance, in the familiar Muddy
Children example, the announcement by all the children that
they do not know their state becomes false afterwards.

Another example of announcements which result in un-
successful updates are Moore sentences, such as p ∧ ¬Kip,
or “p is the case, but i doesn’t know it.” For after that is
announced, i will know that p is the case, and the original
formula will become false. So as above, all we know is that
p∧¬Kip was true before it was announced. So even though
the formula Ki(p∧¬Kip) remains inconsistent in epistemic
logic, the formula

KiP!(p∧¬Kip)(p ∧ ¬Kip)

is satisfiable in dynamic epistemic logic, for instance, in a
model like the one given in Figure 6.

p ¬p

i

!(p ∧ ¬Kip)

Figure 6. The public announcement of a
Moore sentence. At the updated world, it is
the case that KiP!(p∧¬Kip)(p ∧ ¬Kip).

So although an agent can never know that p is the case,
but she herself does not know it, she can know that it once
was true that p was the case and she then did not know it.

Now, we might think that the opposite of learning is for-
getting, and wonder if this too is something that can be

formalized by our models. After all, if we can express
that an agent learned that ϕ after ε took place by saying
Pε¬Kiϕ ∧ Kiϕ, perhaps we could express that after ε, an
agent forgot that ϕ by moving the negation:

PεKiϕ ∧ ¬Kiϕ.

But even though this sentence is expressible, the logic
itself does not yet allow for a general way to model agents
who can forget. For in the current models, such a sentence
would only be satisfiable for a limited class of ϕ. For in-
stance, it could never be true for a proposition letter. Since
we have persistence for proposition letters across updates,
once an agent knows that p, he can never forget it after an
event. The reason for this is the fact that updates only ever
erase uncertainties between worlds, or maintain existing un-
certainties. In order to model forgetting, we would require
an update mechanism that allowed for adding uncertainties
between worlds which were not previously present. There
are several different options for implementing such a mech-
anism, which are beyond the scope of this paper to discuss.
However, this avenue seems like another fruitful path to in-
vestigate in terms of dynamic epistemic systems with tem-
poral operators.

6. Conclusion

We have shown that, even if we extend the setting of
TPAL presented in [8] to the full class of event models, the
completeness proof can be given based on the proof given
for TPAL in [8]. Also the extension TDEL+P can be axiom-
atized by the method of normalization for DEL-generated
ETL-models.

But these are not the only extensions which suggest
themselves for investigation. For instance, in TDEL+P, we
only have labeled past and future operators. So natural fur-
ther steps would be to add in an un-indexed past operator,
expressing “yesterday”, and an un-indexed future operator,
expressing “tomorrow”. We can look at these operators as
quantifying over event models. It turns out that a system
TADEL with the “tomorrow” operator can be axiomatized
without too many problems, as it can be seen as a gener-
alization of the system TAPAL studied in [4], which has
an operator quantifying over public announcements. These
results will be presented in forthcoming work by Hoshi,
which will demonstrate the way in which the normalization
method can be applied to axiomatize TADEL.

Perhaps surprisingly, though, the addition of a “yester-
day” operator is not as straightforward, since the normal-
ization method would not work as given. In particular, the
method whereby we extend the history with εϕ as illustrated
in Figure 5 would not necessarily work for formulas in a
language with a “yesterday” operator. For where we can sat-
isfy Pσ¬Pτ" in a world with length 2, the formula P¬P"
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can only be satisfied in a world with length 1. So the history
could not be lengthened in a world in which the latter was
satisfied without changing its truth value.

Other natural extensions include iterated past modality
P ∗, where the ∗ is the Kleene star operator. In the case of
the iterated future modality of the kind, say ♦∗, “There is
some sequence of events after which...”, the result in [5]
suggests that such an operator results in incompleteness
when combined with the common knowledge operator. It
is interesting to see if this is also the case for the case of the
iterated past-modality P ∗.

There are distinct motivations also for considering an
extension of TDEL+P together with a common knowl-
edge operator. The considerations raised about learning in
the previous section apply just as well to agents’ common
knowledge after an announcement, since we can also ex-
press what becomes common knowledge by the following
formula:

[!ϕ]CGP!ϕϕ.

Further, the relativized common knowledge operator
from [9] CG(ϕ, ψ), which expresses that every G-path
which consists exclusively of ϕ worlds ends in a ψ world,
also has a very natural interpretation in past language. One
way to paraphrase this operator in natural language is “If
ϕ were announced, it would be common knowledge among
G that ψ was the case before the announcement.” This is
expressible in the past language.

CG(ϕ, ψ) ≡ [!ϕ]CGP!ϕψ

Thus, there are many potentially fruitful extensions of
the system considered here, which will certainly be the sub-
ject of future investigation.
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