
PDL‖and its relation to PDL

Fahad Khan

University of Nottingham

afk@cs.nott.ac.uk

Abstract

In this report we examine results pertaining to Karl

Abrahamson’s PDL‖, namely PDL with an interleaving op-

erator, ‖, with respect to an agent programming point of
view. We first establish its usefulness in such contexts, be-

fore defining a syntax and semantics for the logic, looking

at its relation to the regular expression shuffle operator and

to PDL itself. We also look at the practical implications of

this relation between PDL andPDL‖and of its PDL‖’s rela-

tion to BPDL another logic defined by Abrahamson over a

quarter of a century ago.

1. Introduction

Interleaved PDL, denoted as PDL‖, was first defined

by Karl Abrahamson in his 1980 PhD thesis, Decidabil-

ity and expressiveness of logics of processes[2], as an ex-

tension of PDL (propositional dynamic logic) with a new

operator, the interleaving operator ‖. In fact, the ‖ opera-
tor makes a useful addition to the regular four PDL opera-

tors1allowing the easy expression of the interleaving of two

or more PDL‖programs – and hence facilitating reasoning

about the effects of such interleavings. We give more de-

tails of the interleaving operator below, but in order to il-

lustrate why reasoning about the interleaving of representa-

tions of programs is of particular importance, at least from

an agent programming point of view, consider the exam-

ple of SimpleAPL, a programming language explored in A

logic of agent programs[3] and used to implement a partic-

ular model of basic agents with beliefs, goals, and plans2.

In SimpleAPL an agent has beliefs, whose role it is to

encode various aspects of its environment, and goals, which

encode representations towards the realisation of which the

agent works by adopting plans which are selected in turn

1Recall that regular PDL programs are built up using nondeterministic

union(∪), concatenation(;), iteration(∗) and query(?) operators.
2Note that SimpleAPL is, as the name suggests, a simplified fragment

of the more extensive agent programming language, 3APL. See [3] for

more details.

via planning goal rules. Both beliefs and goals are repre-

sented by literals; plans on the other hand are composites

built up from a set of basic actions via sequencing, con-

ditional choice and conditional iteration operators. In [3]

Alechina et al. detail two execution strategies for execut-

ing an agent program, the first of which allows either for an

agent with no plan to select a planning goal rule and choose

a single plan, or for an agent with a plan to execute the next

step in the single plan which it carries; in the second an

agent can amass a number of plans at any single juncture,

consequently interleaving the execution of these plans or

selecting another planning goal rule. So for example, with

the first strategy, an agent would have to carry out the plans

‘make coffee’ and ‘make toast’ one after the other – poten-

tially leaving it with a cold cup of coffee or piece of toast

– whereas the second strategy would allow for multitasking

as it were, allowing it to carry out actions associated with

either of these plans in their correct order within the plan,

but otherwise in whatever order was preferred.

Furthermore, Alechina et al., develop a sound and com-

plete variant of PDL with which they are able to reason

about the safety and liveness properties of agent programs

in SimpleAPL. Crucially it turns out that the interleaved

strategy admits of a straightforward formulation through

the use of the ‖ operator – which, as we will show, can
ultimately be eliminated, thereby allowing any formula of

PDL‖to be equivalently formulated in PDL.

It is clear, at least from the foregoing example, that the

usefulness of PDL‖in the context of agent programming

and modelling lies, among other things, in the fact that it

allows for the succint expression of agent program exe-

cution strategies that incorporate the interleaving of agent

plans (incidentally Abrahamson’s own original motivation

for defining PDL‖in [2] related to modelling and formally

verifying claims about the behaviour of concurrent com-

puter programs).

Given this agent based motivation, the purpose of this

report is to collect and elucidate some important relevant

technical results involving PDL‖. To summarise the rest of

the paper, we begin by elaborating on the syntax and seman-

tics of PDL‖as well as on the correspondence between the

107

shuffle regular expression operator and the interleaving op-

erator and how we can use this equivalence to eliminate the

interleaving operator from PDL programs, before describ-

ing how we can improve on the size of the resulting formula

by using BPDL – another logic defined by Abrahamson in

[2]. Finally in the conclusion we briefly consider some of

the possible future directions for research suggested by the

preceeding results.

2. An Inductive Definition of PDL‖Syntax and

a PDL‖Semantics

The following series of definitions serve to define the

syntax and semantics of PDL‖.

Definition 2.1 Given a fixed set of proposition symbols,

Φ = {p, q, ...}, we can inductively define the set of
PDL‖formulae as follows:

• each proposition symbol p ∈ Φ is a formula,

• if φ and ψ are formulae, then so too are ¬φ, φ ∧ ψ and
〈ρ〉φ where ρ ∈ Ψ is a program.

Assuming a fixed set of basic programs Ψ0 = {a, b, ...}
we inductively construct the set of programs,Ψ, used in the
previous definition, in the following manner:

• each basic program a ∈ Ψ0 is a program,

• if α and β are programs, then so too are α∪β, α; β, α∗

and α ‖ β, where the latter is the interleaving operator,

• if φ is a formula of PDL‖then φ? is a program.

&

We now come to define models for PDL‖:

Definition 2.2 Let M be a structure,M = (W, τ, V), then
M is a model for PDL‖if:

• W is a set of states,

• V (p) ⊆ W is a function that for each p ∈ Φ gives us

the set of states inW at which p holds. We can extend
this in the obvious way so that V (φ) gives us the set
of states where the PDL‖formula φ holds: given the
PDL‖formulaeφ, ψ and the program ρ, V (¬φ) = W−
V (φ), V (φ ∨ ψ) = V (φ) ∪ V (ψ) and V (〈ρ〉φ) equals
the set U ⊆ W consisting of all the states of u ∈ W
such that there exists a computation sequenceσ ∈ τ(ρ)
(we define τ below) where either (u, u1), ..., (un, v)
where v ∈ V (φ) and σ is a legal sequence, or where
σ = ε and u ∈ V (φ). Note that by legal computational
sequences we are referring to sequences ρ such that
whenever (s1, s2)(s3, s4) is a subword of ρ, then s2 =
s3,

• τ(a) ⊆ (W × W) gives us the set of state transi-
tions for a. We can extend this inductively to give us a
set of paths τ(ρ) ⊆ (W × W)∗ corresponding to any
PDL‖program expression ρ inM :

– τ(φ?) = {(u, u) : u ∈ V (φ)},

– τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)},

– τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)},
where ◦ is a concatenation of paths operator,

– τ(ρ∗) is the set of all paths consisting of zero or
finitely many concatenations of paths in τ(ρ),

– τ(ρ1 ‖ ρ2) is the set of all paths obtained by
interleaving atomic actions and tests from τ(ρ1)
and τ(ρ2).

Note that the set of paths τ(ρ) ⊆ (W × W)∗ may
contain non-legal sequences – in fact, to do otherwise

would be to place a severe restriction on our ability to

interleave sets of paths.

&

3. Shuffling and Interleaving

From the foregoing series of definitions it is easy to see

that the program constructors ∪, ;, and ∗ correspond to the

regular expression (RE) operators +,·, and ∗, respectively.

However, given that under our definition of PDL‖basic pro-

grams are indivisible, we are in a position to define another

RE operator, shuffle, which corresponds to our interleaving

operator and which we will also denote using ‖.
Let x, y ∈ Σ∗, where Σ is a finite alphabet, and x, y are

strings overΣ. Then the shuffle of x and y, namely, the set
x ‖ y, is defined (in for example, [5]) as:

• ε ‖ y = {y},

• x ‖ ε = {x},

• xa ‖ yb = (x ‖ yb) · {a} ∪ (xa ‖ y) · {b}.

Furthermorewe define the shuffle of two languagesX, Y
as follows:

X ‖ Y =
⋃

x∈X
y∈Y

x ‖ y.

Since for any two RE’s α and β, we intend the language
L(α ‖ β) to accept all strings x such that x belongs to
the shuffle of the languages L(α) and L(β) – where L(α)
and L(β) are the languages of α, β respectively – we define
L(α ‖ β) as L(α) ‖ L(β).
As an example, take the shuffle of the two sets {ab}

and {cd}, namely {ab} ‖ {cd}, which gives us the set
{abcd, acbd, acdb, cabd, cadb, cdab} or the shuffle of the

108

two RE’s a∗ and (b; c), a∗ ‖ (b; c), which results in the set of
strings of arbitrary length including the string bc in which
b and c are inserted within a series of one or more repeti-
tions of the character a: in other words the set of strings
satisfying the RE a∗(b)a∗(c)a∗.

Given the correspondence of shuffle with our interleav-

ing operator (indeed we will use the terms ‘shuffle operator’

and ‘interleaving operator’ interchangeably from hereon in)

and the fact, which we will presently demonstrate, that any

instance of the shuffle operator in a given regular expres-

sion can be eliminated, it is clear that we can translate any

PDL‖formula φ into a PDL formula φ′. And we do this

by simply replacing each program ρ that occurs in a subex-
pression 〈ρ〉χ of φ with its equivalent RE which we con-
sequently translate, using the method we summarise below,

from a shuffle RE into a shuffle free RE before translating

it back into a program ρ′ and replacing the subexpression
〈ρ〉χ with its equivalent 〈ρ′〉χ.
In fact, as we now show, we can directly translate any

formula of PDL‖containing no instances of the
∗ operator

into PDL using RE equivalences – the other method which

we detail below and which can be applied to any formula

of PDL‖involves a detour into automata theory. Along with

the usual RE equivalences this direct translation requires the

following regular expression equivalences (the proofs are

trivial and are therefore omitted):

Proposition 3.1 • (i) For all regular expressions α,β,
and γ, we have that α ‖ (β + γ) ≡ (α ‖ β) + (α ‖ γ)
and (α + β) ‖ γ ≡ (α ‖ γ) + (β ‖ γ).

• (ii) For all strings x, y ∈ Σ∗ and a, b ∈ Σ, where
Σ is some alphabet we have that xa ‖ yb ≡ (x ‖
yb)a + (xa ‖ y)b.

Now given a formula χ in ∗-free PDL‖we can use the

following algorithm to remove the instances of shuffle em-

bedded in χ:

• Step 1: list all of the subformulae φ of χ,

• Step 2: let φ′ be a maximal such subformula ofχ, max-
imal in that it does not contain a subformula of the

form λ1 ‖ λ2 and there is no shuffle free subformula

of χ of which it is a proper subformula,

• Step 3: rewrite φ′ in the form φ1 + φ2 + ... + φn,

where each φi is a concatenation of characters. We

can do this through repeated application of the regular

expression equivalences α(β + γ) ≡ αβ + αγ and
(α + β)γ ≡ αγ + βγ. Replace each such maximal
subfomula φ′ with its rewriting,

• Step 4: now we rewrite each subformula ψ of the

form ψ = x ‖ y where x and y are shuffle free

(and which thanks to our previous operations are in

the form we require) in terms of its equivalent of the

form ψ′ = ψ1 + ...ψk where each ψi is of the form

xi ‖ yi where xi, yi contain only concatenations of

symbols via repeated applications of the the equiva-

lences proved in Proposition 3.1 (i). Next we get rid of

shuffle from each ψi by rewriting ψi using the equiva-

lence proved in Proposition 3.1 (ii),

• we end up with a new formula χ′ with which we can

repeat the previous steps until we’ve gotten rid of all

instances of shuffle.

Note that each rewriting of a subformula ψi of size n
using the equivalence proved in Proposition 3.1(ii) in Stage

4 results in a formula ψ′
i of size O(2p(n)) – meaning that

the method we will now detail for the elimination of shuffle

in any formula of PDL‖and which guarantees us a double

exponential bound on the size of the formula resulting from

the translation is preferable in most cases.

In fact this next method (also known as the “brute force”

method) seems to be the most straightforward means of

translating any regular expression, α, containing one or
more instances of the shuffle operator into an equivalent RE

constructed solely in terms of the RE operators ∪,∗ and ;,
and it proceeds in two steps. We begin by translating α
into a nondeterministic finite automaton (NFA) M using a

special cross-product construction, this is the first step; the

second step consists of translatingM back into an RE. Un-

fortunately the combination of these two operations entails,

in the worst case, a double exponential blowup in the size

of the resulting RE. We now describe in greater detail both

of the steps comprising this translation method.

For the first step, we proceed inductively starting with an

instance of a regular expression α = α1 ‖ α2 consisting of

a shuffle operator applied to two shuffle free RE’s α1 and

α2, as our base case.

Now, we can convert the two shuffle free RE’s α1 and

α2 into two NFA’s M1 = (Q1, Σ, δ1, s1, F1) and M2 =
(Q2, Σ, δ2, s2, F2), respectively where L(α1) = L(M1)
and L(α2) = L(M2). Note that each of these conversions
gives us an NFA that is linear in the size of our original

RE, since the conversion algorithm we will use – and which

can be found in, for example, Hopcroft and Ullman’s fa-

mous Automata textbook [4], and in Kozen’s textbook on

the subject [5] – will only add 2 states for each subexpres-

sion of our original RE.

The important thing for us now is to be able to show that

the set L(M1) ‖ L(M2)(= L(α1) ‖ L(α2)) can be con-
verted into an NFA M such that L(M) = (M1) ‖ L(M2)
which we will then convert back into an RE. Obviously it

would be simpler – though perhaps not preferable in terms

of the size of the resulting formula – if we had a way of gen-

eratingL(α1) ‖ L(α2) directly via an RE as we did with the

109

translation of the ∗−free fragment of PDL‖, rather than by
taking this circuitous route.

To generate a machine whose language is

L(M1) ‖ L(M2) we use the following cross-product
construction onM1 and M2, the result of which is an NFA

M3 which accepts a string x if and only if x = x1 ‖ x2,

where x1 ∈ L(M1), x2 ∈ L(M2):

M3 = (Q1 × Q2, Σ, δ, (s1, s2), F), where the transition
function δ is defined as δ((q1, q2), a) = (δ1(q1, a) ×
{q2})∪({q1}×δ2(q2, a)), and the set of accepting states F
is defined as F = {(q1, q2) ∈ Q1×Q2 : q1 ∈ F1, q2 ∈ F2}.

A proof of the correctness of the construction can be eas-

ily produced on the template of the proofs given for the

equivalence of NFAs and DFAs in terms of the class of lan-

guages accepted by either, in for example Kozen [5].

Now, given an RE α containing a number of nested ‖ op-
erators, we can iterate through the subexpressions of α until
we reach subexpressionsαi that match our base case, build-

ing up a series of NFA’s which we can combine either using

our cross product constructor or via the rules for building

NFA’s inductively from RE’s – again as set out in for exam-

ple [4] in the algorithm for converting an RE into an NFA.

The upshot is that we have defined an NFA M3 such that

L(M3) = L(M1) ‖ L(M2) = L(α1) ‖ L(α2) = L(α1 ‖
α2).
Sadly in the worst case this means our NFA M is ex-

ponential in the size of our original RE α, i.e., the size of
M3 is 2(O|r|) where r = |α|. To understand why this is so
consider that each basic program constituent, a of α can be
translated into an NFA of size 2 and given r = |α| where by
necessity r > 3, we may potentially need to use the cross
product construction kr times, where 1 ≤ k ≤ r

2 . (Meyer

and Stockmeyer use this fact to prove an upper bound for

the complexity of PDL‖’s satisfiability problem [6]).

Worse is to come. It seems that the best known algo-

rithms we have for translating an n state NFA into an RE
entail, in the worst case, an exponential blow up in the size

of the resulting RE, e.g., the algorithm given in [4] gives us

an RE of size O(n34n). This means that after having trans-
lated our original RE α of size r into an NFA of size O(2r)
we then end up with an RE of size O(22r

).

4. BPDL

Abrahamson, who first defined PDL‖in his PhD thesis

[2], writes in the self same that “[a]ny axiom system for

PDL‖which ultimately relies on reducing away concurrency

by expressing it in terms of ∪,;, or ∗... is misguided.” He

suggests introducing auxiliary variables into PDL in order

to improve on the double exponential size of the formula

that results from the brute force method. In fact, it is rela-

tively simple to see how we can do this in relation to BPDL,

an extension of normal PDL that incorporates boolean vari-

ables and which is also defined by Abrahamson in his PhD

thesis.

BPDL structures feature an additional set, Q, of boolean
variables, which we refer to when defining the set of well-

defined BPDL formulae – and note that these boolean vari-

ables are treated completely separately from the proposi-

tional symbols. The definition of the syntax of BPDL is

similar to that for PDL‖.

Definition 4.1 Given a fixed set of proposition symbols,

Ψ0 = {p, q, ...} and a fixed set of boolean variables Q =
{x, y, ...}, we can construct the set of BPDL programs as
follows:

• each basic program a ∈ Ψ0 is a program,

• for each variable x ∈ Q, ↑ x and ↓ x are programs,

• if α and β are programs, then so too are α ∪ β, α; β,
and α∗,

• if φ is a formula of BPDL then φ? is a program.

%

The set of formulae of BPDL are defined as for PDL‖,

again with reference to a set Φ of propositional variables.

We can now define models for BPDL.

Definition 4.2 Let M be a structure such that M =
(W, VB , τB, Q), thenM is a model for BPDL if

• W is a set of states,

• Q is a set of boolean variables,

• VB(p) ⊆ ℘(W × ℘(Q)), where ℘(Q) denotes the
power set of Q, is a function that gives us, for each
p ∈ Φ, the cross product with the power set of Q of

the set of states in W at which p holds, namely, the
set V (p) as defined in Definition 2.2, i.e., VB(p) =
V (p)×℘(Q). Additionally, for each x ∈ Q, VB(x) =
W × {S ⊆ Q : x ∈ S}.

We extend this function to all formulae of BPDL in-

ductively: given the formulae φ, ψ and the program

ρ with VB(φ), VB(ψ) ⊆ W × ℘(Q) and τB(ρ) ⊆
(W × ℘(Q))2 (we will define τB below), the defini-

tion runs as follows:

– VB(¬φ) = (W × ℘(Q)) − VB(φ),

– VB(φ ∨ ψ) = VB(φ) ∪ VB(ψ),

– VB(〈ρ〉)φ = {(u, S) ∈ (W × ℘(Q)) : there ex-
ists v ∈ W, T ⊆ Q such that ((u, S), (w, T)) ∈
τB(ρ) and (w, T) ∈ VB(φ)}

110

• τB(a) ⊆ ℘((W ×℘(Q))2), is a function that gives us,
for each a ∈ Ψ0, the set {((u, S), (w, S)) : (u, w) ∈
τ(a), S ⊆ W} where τ(a) ⊆ (W × W)∗, the set of
state transitions of a is defined similarly to the function
τ of Definition 2.2.

Additionally, for each x ∈ Q we have that τB(↑ x) =
{(u, S), (u, S′) ∈ (W × ℘(Q))2 : S′ = S ∪ {x}}
and τB(↓ x) = {(u, S), (u, S′) ∈ (W × ℘(Q))2 :
S′ = S − {x}}. For programs α and β we define

α∪ β, α; β and α∗ as in Definition 2.2. For any BPDL

formula φ we define τB(φ?) as {((u, S), (u, S)) ∈
(W × ℘(Q))2 : (u, S) ∈ VB(φ)}.

&

It turns out that adding Boolean variables to PDL gives

a strong boost to the expressiveness of the resulting lan-

guage. For example, we can represent any integer in the

range 0, ..., 2(n−1) using just n Boolean variables. It is also
routine to write programs of length O(n) that add, subtract
or compare two such “n-bit” integers. However for our pur-
poses the most important consequence of adding Boolean

variables to PDL is that we are able to drastically improve

on the double exponential overhead incurred by the shuffle

translation method given above.

To see how this is possible note that any NFA M con-

sisting of n nodes can be converted to a BPDL program of
lengthO(n log n+ c)where c is the combined length of the
tests on the outgoing edges of each node inM 3. Obviously,

in many cases, this allows us to improve on the exponential

size of the PDL program resulting from the usual method of

translating NFA’s to RE’s. The translation proceeds by as-

signing a numbering to the states of the NFA and construct-

ing a program of the form S; (
⋃

i T)∗; F? where the sub-
program S sets a counter to the number of the initial state;
Ti performs the action associated with state numbered i if
the counter is in the state numbered i; and finally F? checks
whether the counter is in an accepting state.

The easiest way to see how this works is by recourse to

an example, here the NFAM illustrated below as Figure 1.

We can easily model the action of M via the following

program:

I := 1;

((I = 1)?; (a?; I := 2) ∪ (b?; I := 3);

(I = 2)?; (a?; I := 4) ∪ (b?; I := 2);

(I = 3)?; (a?; I := 3) ∪ (d?; I := 5);

(I = 4)?; (c?; I := 6))∗;

(I = 5)? ∪ (I = 6)?

3Note that we can exploit the nondeterminism of PDL (and hence

BPDL) to model the nondeterminism ofM .

1

2

3

4

5

6

b

a

a

d

a

b

c

M

Figure 1. The NFA M

So given a program α, effectively an RE, of length n
containing one or more instances of the ‖ operator we can
generate, as detailed above, an NFA M whose size is ex-

ponential in n such that L(M) = L(α). If we’re willing
to translate M into BPDL instead of PDL we end up with

a formula of size O(n2n + d), where d is the length of all
the tests inM . Usually this will offer a substantial improve-

ment on the double exponential size of the formula resulting

from the translation ofM into PDL. Sadly we can’t improve

on our previous translation of PDL‖formulae into PDL for-

mulae by inserting an intermediate stage in which we trans-

late our cross product NFA into a BPDL formula before fur-

ther translating this into a PDL formula: Abrahamson de-

termined in [1] that the translation of a formula from BPDL

into PDL has an double exponential lower bound.

4.1. Conclusion

So in summary, we have surveyed a number of the main

results concerning PDL‖, most notably the fact that the ad-

dition of the ‖ operator to PDL affords no increase in the
expressiveness of the resulting language – however it does

seem to give important, and indeed dramatic benefits in

terms of the succintness of the formulae we can devise to

describe the interleaving of two or more programs. We have

looked at a conceptually straightforward method of translat-

ing the ∗ free fragment of PDL‖into PDL – straightforward

in that it only makes use of regular expression equivalences

– the original contribution of this report; and we have de-

tailed the aptly named “brute force” method. However the

double exponential size of the formulae resulting from the

brute force method presents a substantial practical obstacle

to the application of the interleaving operator in, for exam-

ple, an agent programming context as described in the intro-

duction. Abrahamson’s BPDL – PDL enriched with binary

variables – seems to provide one solution to this blow up in

complexity, and indeed a further direction for investigation

here is the possible use and development of BPDL tools for

111

the verification of agent programs.

In fact we could go further and keep the interleaving op-

erator as a primitive: future work could investigate the ef-

fects of different axiomatisations of PDL‖, or the creation of

efficient PDL‖tools for verification purposes. An investiga-

tion into the kinds of regular expression featuring instances

of the interleaving operator that admit of a more compact

translation into a shuffle free regular expression would also

yield useful practical results (it would be also interesting to

see if there were other means of translating PDL‖into PDL

than those we have described) . Of course further investi-

gations could also centre on other kinds of agent execution

strategies and the various logics which could be developed

to describe them, including other extensions of PDL.

References

[1] K. R. Abrahamson. Boolean variables in regular expressions

and finite automata. Technical report, Department of Com-

puter Science, University of Washington, 1980.

[2] K. R. Abrahamson. Decidability and expressiveness of logics

of processes. PhD thesis, Department of Computer Science,

University of Washington, 1980.

[3] N. Alechina, M. Dastani, B. Logan, and J.-J. C. Meyer. A

logic of agent programs. In AAAI, pages 795–800, 2007.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley, 1979.

[5] D. Kozen. Automata and Computability. Springer-Verlag,

New York, 1997.

[6] A. J. Mayer and L. J. Stockmeyer. The complexity of

PDL with interleaving. Theoretical Computer Science,

161(1&2):109–122, 1996.

112

