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Overview
There is a fast-growing interest in logics that deal with in-
telligent interaction in communities of agents. There is also
a fast-growing jungle of formal systems. This workshop is
dedicated to promising recent convergences, trying to fos-
ter a common sense of what is going on. The sessions will
address five core themes in rational agency:

1. Dynamic and temporal logics of rational agency:
Connections between temporal frameworks (inter-
preted systems, epistemic temporal logic) and dynamic
epistemic logics.

2. Merging belief revision and information update:
Connections between AGM-style belief revision the-
ory, inference, and learning theory.

3. Dynamic logics of preference change and aggrega-
tion: Connections between preference logic, dynamic
deontic logic, and multi-agent preference merge.

4. Logics of games, strategies and actions: Connections
between modal approaches to games and strategies,
and proof/category- theoretic approaches.

5. Logics of collective attitudes and social action: Con-
nections between dynamic logics, judgment aggrega-
tion, and social choice, around themes such as collec-
tive agency and deliberation.

History
The workshop is based on several events that have ad-
dressed issues in rational agency and intelligent interac-
tion. Examples include established conferences such as
TARK: Theoretical Aspects of Rationality and Knowledge
and LOFT: Logic and the Foundations of Game and De-
cision Theory. In addition, a number of recent events have
focused on the specific themes of the present ESSLLI work-
shop:

• NIAS Research Group on Games, Action and Social
Software (2006 - 2007)

• Dynamic Logic, Montreal (2007)
• Logic and Rational Interaction (LORI, Beijing 2007)
• Decisions, Games and Logic Workshops (London,

2007; Amsterdam, 2008)

There is also a new European Science Foundation Euro-
cores Program (LogiCCC) devoted to logic in the broad in-
terdisciplinary sense that we are pursuing here. For more
information about this active and growing area of research
see

www.illc.uva.nl/wordpress.

Workshop Format
The workshop will take place August 11 - 15 during the
second week of ESSLLI Hamburg 2008. Each contribu-
tion will be given 15 minutes for a short presentation with
5 minutes for discussion. In addition, there is some sched-
uled time for group discussion about our general themes. A
tentative schedule is given below (the final schedule will be
posted a few weeks before the workshop on the conference
website).

Monday, August 11
11:00 - 11:10 Opening Remarks
11:10 - 11:50 Semantics, Information and Learning
11:50 - 12:30 Inference and Information

Tuesday, August 12
11:00 - 11:40 Dynamic Probabilistic Modal Reasoning
11:40 - 12:20 Logics of Belief Change over Time
12:20 - 12:30 Short Discussion

Wednesday, August 13
11:00 - 11:50 Invited Speaker: R. Ramanujam (Chennai)
11:50 - 12:30 Reasoning about and with Games

Thursday, August 14
11:00 - 12:20 Logics of Action and Intention
12:20 - 12:30 Short Discussion

Friday, August 15
11:00 - 11:50 Knowledge in Changing Environments
11:50 - 12:30 Discussion

Invited Lecture: Professor R. Ramanujam will give an
invited lecture Some Automata Theory for Epistemic Logics.

Abstract. We consider epistemic temporal logics and
dynamic epistemic logics from the viewpoint of automata
theory. Specifically, what can we say about the knowledge
of finite state agents as regular collections of behaviours?
We show that there are interesting notions awaiting study
relating to monadic second order theories and Kleene
type theorems for what we term epistemic languages. We
provide answers for some special epistemic theories.

Proceedings
A special issue of the journal Knowledge, Rationality, and
Action, will be dedicated to this workshop. Presenters at the
workshop will be invited to submit an extended version of
their submission to the editors T. Agotnes, J. van benthem
& E. Pacuit. There will be an independent reviewing pro-
cess. More information (including deadlines) will be pro-
vided during the workshop.
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4 Identification through Inductive Verification: Application to Monotone Quantifiers
Nina Gierasimczuk

Inference and Information

12 Inference and Update
Fernando Valázquez-Quesada

21 Quasi-merging and Pure-arbitration on Information for the Family of Adaptive Logics ADM
Giuseppe Primiero and Joke Meheus

Dynamic Probabilistic Modal Reasoning

31 Extending Probabilistic Dynamic Epistemic Logic
Joshua Sack

41 Diachronic Uncertainty and Equivalence Notions for ETL Models of Extensive Form Games
Alistair Isaac

Logics of Belief Change over Time

46 Multi-agent belief dynamics: bridges between dynamic doxastic and doxastic temporal logics
Johan van Benthem and Cédric Dégremont

58 When all is done but not (yet) said: Dynamic rationality in extensive games
Alexandru Baltag, Sonja Smets and Jonathan Zvesper

Reasoning about and with Games

74 Strategies made explicit in Dynamic Game Logic
Sujata Ghosh

82 Disambiguation Games in Extended and Strategic Form
Sacia Pavan



Contents

Logics of Action and Intention

91 Intentions and transformations of strategic games
Olivier Roy

98 A Logic for Cooperation, Actions and Preferences
Lena Kurzen

107 PDL‖ and its relation to PDL
Fahad Khan

113 Its all up to you: A study of closed-world interaction and its optimal organization
Jan Broersen, Rosja Mastop, John-Jules Ch.Meyer and Paolo Turrini

Knowledge in Changing Environments

122 Verifying time, memory and communication bounds in systems of reasoning agents
Natasha Alechina, Brian Logan, Nguyen Hoang Nga and Abdur Rakib

132 ETL, DEL and Past Operators
Tomohiro Hoshi and Audrey Yap

143 Introspective forgetting
Hans van Ditmarsch, Andreas Herzig, Jérôme Lang and Pierre Marquis



Knowing whether A or B

Maria Aloni
ILLC, Amsterdam
M.D.Aloni@uva.nl

Paul Égré
Institut Jean-Nicod, Paris∗

paulegre@gmail.com

Abstract

Can we say that s knows whether A or B when s is only
able to rule out A, but remains uncertain about B? We dis-
cuss a set of examples put forward by J. Schaffer’s in favour
of a contextualist answer to this problem. We present a
context-sensitive and dynamic semantics for knowledge at-
tributions, in which those can depend on the alternatives
raised by the embedded question, but also on alternatives
raised earlier in the context.

1. Alternative questions in epistemic contexts

The aim of this paper is to discuss the semantics of
knowledge attributions of the form “s knows whether A
or B”, which we may symbolize by Ks?(A ∨a B), where
?(A ∨a B) denotes an alternative disjunctive question, like
“is John in London, or is Mary in London?”. More specif-
ically, our aim is to provide a dynamic account of the
context-sensitivity of such attributions.

It is standard in linguistic theory to distinguish polar
readings and alternative readings of disjunctive questions
(see e.g. Haspelmath 2000, Han and Romero 2003). Under
the polar reading, a question of the form “is John or Mary
in London?” calls for a yes or no answer. The polar read-
ing can be forced in English by asking “is either John or
Mary in London?”. For the alternative reading, by contrast,
the question cannot be answered by yes or no and has to be
answered by a sentence like “John is London”, or “Mary is
not in London”, namely by providing information about the
truth and falsity of the respective disjuncts.

There is still some debate in the literature about the an-
swerhood conditions of alternative questions, and by way
of consequence, about the conditions under which a sub-
ject can be said to know whether A or B. In a recent paper
(Schaffer 2007), J. Schaffer argues that in a context in which
s sees someone on TV, who is actually George Bush, but
such that s is not able to discriminate between George Bush
and Will Ferrell (because Ferrell is such a good imperson-
ator of Bush), and yet is able to see that it is not Janet Jack-

son, (1-a) below should be judged false, but (1-b) should
count as true:

(1) a. s knows whether George Bush or Will Ferrell
is on TV

b. s knows whether George Bush or Janet Jackson
is on TV.

The intuition reason for the truth of (1-b), according to
Schaffer, is that the question “is Bush or Janet Jackson on
TV?” is easier for s to answer than the question “is Bush
or Will Ferrell on TV?”. In our view, however, ordinary
intuitions are less stable: although (1-a) should be incontro-
vertibly false in the scenario, the status of (1-b) is much less
clear. In our opinion, all that s really knows is that Janet
Jackson is not on TV, which need not be sufficient to fully
answer the question “is Bush or Janet Jackson on TV?”.

More formally, assuming the partition theory of ques-
tions of Groenendijk and Stokhof (1984), an answer of the
form “Janet Jackson is not on TV” counts only as a partial
answer to the question “is Bush or Janet Jackson on TV?”.
For s to know the complete answer to the question “is Bush
or Janet Jackson on TV”, s should know more, namely that
Bush is on TV and that Janet Jackson is not on TV. The
partial answer “Janet Jackson is not on TV” would count
as complete if one presupposed that exactly one of the two
disjuncts had to be true. In principle, however, there is no
more reason to think that “s knows whether Bush or Janet
Jackson is on TV” is true than there is to think that “s knows
whether Ferrell or Janet Jackson is on TV” is true. In other
words, s’s ignorance about who exactly is on TV seems to
override s’s partial knowledge about who is not on TV.

Despite this, we agree with Schaffer that there is a sense
in which, if s is allowed to ignore the possibility that Ferrell
might be on TV, then s can be said to know whether Bush
or Janet Jackson is on TV, simply based on s’s knowledge
of that partial answer.

2. Dynamics of knowledge attributions

To implement this idea, we propose a question semantics
for knowledge in which attributions involving questions can
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be made sensitive both to the alternatives raised by the ques-
tion, as well as to alternatives raised earlier in the context.
The semantics is dynamic, in so far as the context can be
incremented with the considerations of new alternatives, in
a way that not simply restricts, but can also increase, the
subject’s uncertainty.

2.1. Question semantics

Questions in the system are represented by formulas of
the form ?p1, ..., pn φ where ? is a query-operator, p1, ..., pn

is a possibly empty sequence of propositional variables, and
φ is a formula of predicate logic with propositional vari-
ables. In the case of alternative questions, a question of the
form “is φ or ψ?” (abbreviated ?(φ∨a ψ)) is represented by
a formula of the form ?p(p∧ (p = φ∨ p = ψ)), which asks
which of the propositions φ and ψ is true.

Questions denotations are then defined as follows, where
#p stands for the sequence p1, ..., pn, and #α for the sequence
α1, ...,αn: [[?#p φ]]M,g = {〈#α, w〉 | w ∈ [[φ]]M,g[!p/!α]}.
The denotation of an alternative question ?p(p ∧ (p =
φ ∨ p = ψ)) is thus the set of pairs 〈p, w〉 such that w
satisfies p and p is either the proposition expressed by φ
or the proposition expressed by ψ. From the denotation
of a question, we can define the partition Part(?#p φ) in-
duced by the question ?#p φ as the set of ordered pairs 〈w, v〉
such that for all proposition #α, 〈#α, w〉 ∈ [[?#p φ]]M,g iff
〈#α, v〉 ∈ [[?#p φ]]M,g . Finally, we define the topics raised
by a question as the set TopM,g(?#p φ) = {#α | ∃w : 〈#α, w〉 ∈
[[?#p φ]]M,g}. For alternative questions, one can check that
Part(?(φ ∨a ψ))={φ ∧ ¬ψ,¬φ ∧ ψ,¬φ ∧ ¬ψ, φ ∧ ψ}, and
Top(?(φ ∨a ψ))={φ, ψ}.

2.2. Knowledge and context updates

A context C is defined as an ordered pair whose first in-
dex sC is an information state (set of worlds), and whose
second index iC is a sequence of question denotations rep-
resenting the issues under discussion in C. A context C can
be updated either by an assertion P , or by the introduction
of a new question Q:

(2) a. C + P = (sC ∩ [[P ]], iC)
b. C + Q = (sC , iC + [[Q]])

We let ANSw(Q) be the true exhaustive answer to Q in w
(the cell containing w in Part(Q), and Top(C) denote the
union of the topics introduced by all the issues in C, i.e. for
C = (sc, [[Q1]], ..., [[Qn]]): Top(C) =

⋃
i∈nTop(Qi) \ {〈〉}.

Define Ks(w) to be the knowledge state of s in w,
namely the set of epistemically accessible worlds to s. We
then define knowledge as follows:

(3) “s knows Q” is true in world w with respect to con-
text C iff
(i) Ks(w) ∩ Top(C) ⊆ ANSw(Q), if Top(C) )=

∅;
(ii) Ks(w) ⊆ ANSw(Q), otherwise.

3. Schaffer’s puzzle

Going back to Schaffer’s example, suppose Ks(w) is a
state compatible with Bush being on TV (B) and with Fer-
rell being on TV (F ), but excluding Janet Jackson being on
TV (J). The following holds:

(4) a. S knows whether it is Bush or Janet Jackson on
TV.

b. true in C+?(B ∨a J), but false in C+?(B ∨a

J)+?(B ∨a F )
(5) a. S knows whether it is Bush or Ferrell on TV.

b. false in C+?(B ∨a F ), and likewise false in
C+?(B ∨a F )+?(B ∨a J).

The semantics predicts that when s’s knowledge state is re-
stricted to the topics raised by “is Janet Jackson or Bush on
TV?”, s will know the answer. But if a further issue comes
up after this question was asked, namely “is Bush or Ferrell
on TV?”, then s may no longer be said to know whether
Bush or Janet Jackson is on TV, because the context is in-
cremented with a third alternative (namely the possibility
that it might be Ferrell).

4. Perspectives

The semantics here presented can be used to deal with
other scenarios involving, in particular, the consideration of
skeptical alternatives, whereby the introduction of a new al-
ternative can impair one’s initial confidence in the particular
answer to a question. We shall explain the extension of the
semantics to other types of questions, and discuss possible
connections with the topic of unawareness. A further issue,
which we elaborate in the paper, concerns the partialization
of the semantics, to deal with presupposition failure. Thus,
in a situation in which s holds a partial answer to the ques-
tion, as in Schaffer’s scenario, the negation of (1-b) may
be judged inappropriate, hence neither true nor false, rather
than true at all. The partiality can be derived from the as-
sumption that s’s uncertainty should always be symmetric
with respect to the alternatives raised by the question.
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Identification through Inductive Verification
Application to Monotone Quantifiers

Nina Gierasimczuk∗
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Abstract

In this paper we are concerned with some general prop-

erties of scientific hypotheses. We investigate the relation-

ship between the situation when the task is to verify a given

hypothesis, and when a scientist has to pick a correct hy-

pothesis from an arbitrary class of alternatives. Both these

procedures are based on induction. We understand hypothe-

ses as generalized quantifiers of types 〈1〉 or 〈1, 1〉. Some
of their formal features, like monotonicity, appear to be of

great relevance. We first focus on monotonicity, extendabil-

ity and persistence of quantifiers. They are investigated in

context of epistemological verifiability of scientific hypothe-

ses. In the second part we show that some of these proper-

ties imply learnability. As a result two strong paradigms

are joined: the paradigm of computational epistemology

(see e.g. [6, 5]), which goes back to the notion of identi-

fication in the limit as formulated in [4], and the paradigm

of investigating natural language determiners in terms of

generalized quantifiers in finite models (see e.g.[10]).

Keywords: identification in the limit, induction, monadic

quantifiers, monotonicity, semantics learning, verification.

1 Introduction

The ‘identification in the limit’ model [4] has found nu-

merous applications in language learning analysis — for

the most part in the acquisition of syntax. In contrast the

model has been unappreciated in the investigations concern-

ing learning of semantics.

On the other hand, in philosophy of science Gold’s

paradigm has been used to account for inductive reasoning

and the process of approaching the correct theory about the

world. In this domain various semantic properties of hy-

potheses are of great importance [6, 1].

∗The author is the receiver of a Foundation for Polish Science Award
for Young Researchers (START Programme 2008).

In the present paper we abstract from the distinction be-

tween learning and scientific inquiry. We hope that with

this generality our results are relevant for both subjects. Our

aim is to analyze semantic properties of inductive verifiabil-

ity [6] and consider its connection with identification. The

first section is devoted to two kinds of verifiability. The in-

troduction of those notions is illustrated with the example

of verifiability of monadic quantifiers in section 2. Next

we present the basics about identification in the limit. In

the culminating chapter 3 we compare the two notions. We

conclude with theorems showing that with some restrictions

certain types of verification imply identification.

2 Verification

The idea of verification, except for its obvious connec-

tions with semantics, is also very important in philosophy

of science, where verifying and falsifying seem to be funda-

mental procedures for establishing an adequate theory and

making predictions about the actual world. The semantic

procedure of verification consists essentially in what fol-

lows:

Verification task Given model M and a sentence ϕ, an-
swer the question whetherM |= ϕ.

Let us start with analyzing restrictions we should make

on the verification task to be able to proceed with our con-

siderations.

First of all, for the sake of generality we consider M to

be infinite. This allows us to talk about infinite procedures

being successful in the limit. It is also very important to

restrict our attention to computably enumerable structures.

The reason is that we are interested in elements of the model

being presented one by one — such an inductive procedure

essentially requires that it is possible to enumerate them. In

connection with this we also require that a presentation of a

given model does not include repetitions. This restriction is

made to simplify the procedure of counting elements with-

out introducing any additional markers. We also have to say

1
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something about ϕ— the sentence involved in the verifica-

tion task. We assume that ϕ has the form of a quantifier

sentence, with a quantifier closed under isomorphism. In

other words, we assume that hypotheses of our framework

are purely about cardinalities or relations between cardinal-

ities, and not about the ‘nature’ of individual objects.

With the above-explained restrictions in mind, let us now

move to define a formal framework of inductive verifiabil-

ity.

Definition 2.1 Let us consider a model M = (U,B),
where U is an infinite, computably enumerable set, and

B ⊆ U is some computable unary predicate. Let us assume

that λ is an enumeration of the elements of U , without rep-
etitions.

By ‘environment of M ’, ε, we mean an infinite binary
sequence such that: if λn = x, then εn = χB(x), where
χB is the characteristic function of B. %

We will use the following notation:

ε|n is the finite initial segment of ε through position n− 1
(i.e.: a sequence ε0, ε1, . . . , εn−1);

SEQ denotes a set of all finite initial segments of all envi-

ronments;

set(ε) is a set of elements that occur in ε;

h will refer to a hypothesis;

C is a correctness relation between hypotheses and

streams of data. C(ε, h) is satisfied iff h is correct with
respect to ε, i.e., h is true in the model represented by
ε;

α is an assessment method — total map from hypothe-

ses and finite data sequences to conjectures, α : H ×
SEQ→ {0, 1, !}.

Conjectures are outputs of α; their meaning is the fol-
lowing:

1 — corresponds to the judgement that the hypoth-

esis is true on the initial “up to now” segment of

data;

0 —means that the hypothesis is judged to be false

on the initial “up to now” segment of data;

! — appears as an announcement that there will be

now mind change about the statement following

in the next step (we also refer to it as the eureka

sign).

2.1 Verification with Certainty

The first type of verification we want to discuss is ver-

ification with certainty. It holds when the process of veri-

fication is finished after a finite number of steps. We mean

‘finished’ in the sense that there is a point in the procedure at

which the assessment method, α, decides that the hypoth-
esis, h, is true and that it can stop computing right there,
because h being false is no longer an option. In such a case
we can informally say that α is ‘sure’ or ‘certain’ about the
answer. This is where the name ‘verification with certainty’

comes from.

Formally, we will require that the step when certainty

comes into the picture is marked with the eureka symbol

‘!’ and the actual content of this certainty — the hypothesis

being true or false — is ‘1’ or ‘0’, respectively, answered in
the next step.

Let us first introduce the general notion of producing an

answer with certainty.

Definition 2.2 We say that α produces b with certainty on
(h, ε) iff there is an n such that:

1. α(h, ε|n) =!, and

2. α(h, ε|n + 1) = b,

3. for eachm < n, α(h, ε|m) %=!, and

4. all values after n + 1 are irrelevant.

%

Verification and falsification with certainty are defined as

an adequate production of 0 or 1with certainty, respectively.

Definition 2.3 We say that α verifies h with certainty on
ε (with respect to C) iff α produces 1 with certainty on
(h, ε) ⇔ C(ε, h). Definition of refutation with certainty
is analogous. %

Definition 2.4 We say that h is verifiable with certainty iff
there is an α, which for each ε verifies h on ε with certainty
iff h is true on ε. %

Verification with certainty satisfies the condition of pos-

itive introspection of knowledge, i.e., as soon as α answers
‘!’ on h, it ‘knows’ the logical value of h. Such a situation
does not occur in verification in the limit, which is defined

below.

2
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2.2 Verification in the Limit

Verification in the limit is much weaker than verification

with certainty. In order to define it we exclude the eureka

sign ‘!’ from the set of possible answers. We restrict the

power of the verification procedure α in such a way that it
can give only two answers:

1 — corresponds to the fact that the hypothesis is judged

to be true on the initial “up to now” segment of data;

0 — the hypothesis is judged to be false on the initial

“up to now” segment of data.

As in the previous case, this type of verification consists

in giving partial answers to finite initial segments of the en-

vironment. This time however the procedure is endless. We

are dealing here with an infinite sequence of answers. We

say that a procedure verifies a hypothesis in the limit if and

only if there is a step in the procedure where the answer is

1 and it stays that way for the rest of the computation.

Definition 2.5 We say that α verifies a hypothesis, h, in the
limit iff:

∃n∀m > n α(h, ε|m) = 1.

#

Definition 2.6 We say that h is verifiable in the limit iff
there is an α, which for each ε verifies h in the limit on ε iff
h is true on ε. #

In the general case of verification in the limit the fact of

verification is not ‘visible’ to α. Whether a hypothesis has
been verified can be judged only from a global perspective.

Limiting verification corresponds to the scientific strategy

of claiming adequacy of some ‘up to now’ correct hypothe-

sis as long as possible. There is no guarantee however that

in the light of future data it will not be rejected. When deal-

ing with verifiability in the limit a scientist has to remain

alert all the time.

3 Application: Verification of Monotone

Quantifiers

The restriction made in the previous section, that hy-

potheses of our framework are purely about cardinalities or

relations between cardinalities, and not about the ‘nature’

of individual objects leads us to treat hypotheses as gener-

alized quantifiers. Informally speaking a given hypothesis

can be identified with the class of models in which it is true.

The same works for quantifiers. Even if intuitively quan-

tifiers are formal counterparts of (natural language) deter-

miners, we have a theory of generalized quantifiers which

instructs us to reduce a quantifier simply to the class of mod-

els in which this quantifier is true. So, running the risk of

being charged with philosophical insensitivity, we will use

the notions of quantifiers and hypotheses interchangeably.

In order to talk about the properties we are interested in

we have to provide the relational definition of generalized

quantifier.

Definition 3.1 A generalized quantifier Q of type t =
(n1, . . . , nk) is a functor assigning to every set M a k-
ary relation QM between relations on M such that if

(R1, . . . , Rk) ∈ QM then Ri is an ni-ary relation on M ,

for i = 1, . . . , k.
#

It is quite prevalent in the philosophical literature to

link notions of verifiability (with certainty) and falsifiability

(with certainty) to the existential and universal quantifier,

respectively. In fact, as we are going to see, this intuitive

correspondence includes a broader class with quantifiers of

some special monotonicity properties. We will discuss this

connection below.

3.1 Quantifiers of Type 〈1〉

Let us now focus on properties of generalized quantifiers

of type 〈1〉. First we define what it means for a quantifier to
be monotone increasing and extendable.

Definition 3.2

(MON↑) We say that a quantifier QM of type 〈1〉 is mono-
tone increasing (MON↑) iff the following holds: if
A ⊆ A′ ⊆ M , then QM(A) implies QM(A′).

(EXT) A quantifier Q of type 〈1〉 satisfies EXT iff for
all models M and M ′: A ⊆ M ⊆ M ′ implies
QM(A) =⇒ QM′(A).

#

In other words, monotonicity guarantees that extending

the predicate does not change the logical value of the quan-

tifier from true to false. On the other hand extension ensures

that adding new elements to the complement of A does not

make a true quantifier false.

Comparison of the notions of verifiability with certainty

and monotonicity allows us to state the following proposi-

tion:

Proposition 3.3 Let Q be a MON↑ and EXT quantifier of
type 〈1〉. There exists a model M = (U,A) with finite A ⊆
U such that QM (A) iff Q is verifiable with certainty for

arbitrary computably enumerable models.

3
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Proof. (⇒) Let us first assume that Q of type 〈1〉 is MON↑
and EXT, and that there exists a model M = (U,A) with
finite A ⊆ U such that QM (A). We use the characteristic
function ofA, χA, to get an infinite sequence, εA, of 0’s and
1’s representingM . εA is an environment ofM . We run the

α procedure on εA andQ(A). Step by step, while being fed,
α constructs a model M ′ = (U ′, A′). This happens in the
following way.

First we take n := 0, U ′ := ∅, A′ := ∅.
α reads εn: if εn = 1, then |A′| := |A′|+1; else |Ā′| :=

|Ā′| + 1. α checks if Q(A′): if it holds, α answers ‘!’ and
1 to the rest of εA; otherwise it answers 0 and moves to
n := n + 1.
The procedure α verifies Q(A) with certainty. This is

because Q(A) is true in M , and from assumptions about

MON ↑ and EXT, we know there is a finite cardinality ofA′

which satisfies Q(A′). As soon as α reaches this cardinality
there is no possibility that Q(A) changes its logical value at
an extension A′, Ā′ inM ′.

(⇐) Let us assume that M |= Q(A), and that there is a
procedure α which verifies with certainty on εA. Therefore,

there is a point, n, at which α answers ! and then 1. Then we
know that Q(A′), where |A′| is equal to the number of 1s in
εA|n and |Ā′| is equal to the number of 0s in εA|n. What
remains of ε is not relevant for the logical value of Q(A′).
This means that if A′ ⊆ A′′ then Q(A′′) and if M ′ ⊆ M ′′

then QM ′′(A′). This is the same as saying that Q is MON↑
and EXT. QED

Having this in mind we can also consider which type

〈1〉 quantifiers correspond to the notion of falsifiability with
certainty. The answer is as follows:

Proposition 3.4 Let Q be a quantifier of type 〈1〉. Q is ver-

ifiable with certainty iff ¬Q is falsifiable with certainty.

Proof. (⇒) First assume that Q is verifiable with certainty.

That is: there is a procedure α such that for every model

M if M |= Q(A), then α verifies Q(A) with certainty. We
now construct a procedure α′ such that it falsifies ¬Q with

certainty.

α′(εA|n) =






1 if α(εA|n) = 0,

0 if α(εA|n) = 1,

! if α(εA|n) = !.

Since ¬Q is a complement of Q, this procedure falsifies
¬Q on A iff ¬Q is false in M . (⇐) The other direction
works the same way. QED

3.2 Quantifiers of Type 〈1, 1〉

In the linguistic context it is common to investigate quan-

tifiers of type 〈1, 1〉. It is often assumed (see e.g. [9]) that

all natural language determiners correspond to so-called

CE-quantifiers. CE-quantifiers satisfy three requirements:

isomorphism closure (ISOM), extension and conservativity

(CONS). (EXT) for quantifiers of type 〈1, 1〉 is a natural
extension of the definition for type 〈1〉. Below we define
(CONS).

Definition 3.5 We call a quantifier Q of type 〈1, 1〉 conser-
vative iff:

(CONS) ∀A,B ⊆ M : QM (A,B) ⇐⇒ QM (A,A ∩B).

$

CE-quantifiers then have the property that their logi-

cal value depends only on the cardinality of the two con-

stituents, A − B and A ∩ B, in the model. The part of
B falling outside of the scope of A does not influence the

logical value of a CE-quantifier. For the rest of the present

section we will restrict ourselves to CE-quantifiers.

We will also need a notion of left-side monotonicity,

which is usually called ‘persistence’.

Definition 3.6 We call a quantifier Q of type 〈1, 1〉 persis-
tent iff:

(PER) If A ⊆ A′ ⊆ M and B ⊆ M , then QM(A,B) ⇒
QM(A′, B).

$

Persistence guarantees that adding new elements to both im-

portant constituentsA andA∩B does not change the logical

value of the quantifier from true to false.

We claim the following:

Proposition 3.7 Let Q be a PER CE-quantifier of type

〈1, 1〉. There exists a modelM = (U,A,B) such thatA∩B
is finite and QM (A,B) iff it is verifiable with certainty.

Proof. The proof is analogous to the proof of Proposition 1.

We simply focus on two constituents of the model: A − B
and A ∩ B, and treat them as Ā and A (respectively) in the

proof of Proposition 1. QED

Proposition 3.8 Let Q be a CE-quantifier of type 〈1, 1〉.
¬Q is falsifiable with certainty iff Q is verifiable with cer-

tainty.

Proof. Analogous to the the proof of Proposition 2. QED

Monotonicity has so far given some explanation for dif-

ferences in the comprehension of quantifiers. The distinc-

tion between verifiability and refutability of quantifiers pro-

vides new thoughts regarding this problem. It gives some

additional psychologically plausible explanation for differ-

ences in the difficulty of natural language quantifiers. It can
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be argued that verification of hypotheses is much easier for

people than refutation. In consequence verifiable quantifiers

can be considered much easier in natural language process-

ing than refutable ones.

4 Identifiability through Verification

Historically speaking, philosophical analysis of the sci-

entific discovery process led to skepticism. It has been

claimed that its creative content cannot be accounted for

by any scientific means, in particular by no mathematical

or algorithmic model [2]. The natural situation of discovery

is indeed so complex and non-uniform that it seems impos-

sible to catch it in an adequate formalism. However, some

approximations, which to a certain extent idealize the pro-

cess, are not only makable, but also already existing and are

ready to use. The framework of identification in the limit

proposed in [4] started a long line of mathematical inves-

tigation of the process of language learning. At first sight

scientific discovery and learning might seem distant from

each other. In the present paper we assume the adequacy of

the identification model for scientific inquiry analysis (for

similar approaches see: [6, 7]).

Intuitively, the verification procedure (discussed in the

previous section) is a part of scientific discovery. The lat-

ter can be seen as a compilation of assuming hypotheses,

checking their logical value on data, and changing them

to another hypothesis, if needed. In the present section

we will introduce the identification formalism and present

some ideas and facts about its correspondence to verifica-

tion.

4.1 Identification

The identification in the limit approach [4] gives a math-

ematical reconstruction of the process of inductive infer-

ence. The task consists in guessing a correct hypothesis on

the basis of an inductively given, infinite sequence of data

about the world.

The framework includes: a class of hypothesesH , an in-
finite sequence of data about the world ε, a learning function
f (a scientist).
We will explain the general idea of identification in the

limit in terms of a simple game between a Scientist and Na-

ture. First, some class of hypotheses, H , is chosen. It is
known by both players. Then Nature chooses a single hy-

pothesis, h, from H , to correctly describe the actual world.
Then Nature starts giving out atomic information about the

world. She does this in an inductive way. Each time the

Scientist gets a piece of information, he guesses a hypoth-

esis from the previously defined class on the basis of the

sequence of data given so far. Identification in the limit is

successful, if the guesses of the Scientist after some finite

time stabilize on the correct answer.

Let us now specify the elements of the framework. By

hypotheses we again mean quantified formulae, with a logi-

cal (closed under isomorphism) quantifier of type 〈1〉 or CE-
quantifier of type 〈1, 1〉 (see e.g. [9]). The reason for this is
the same as in the case of verification— that we want order-

and intension-independent hypotheses, and a clear and rele-

vant binary representation of models. The above-mentioned

encoding of models serves as a basis for environments. The

learning function, also referred to as the ‘scientist’, is de-

fined as f : SEQ → H .

Definition 4.1 [Identification in the limit]

We say that a learning function, f :

1. identifies h ∈ H on ε for M |= h in the limit iff for
cofinitely many n, f(ε|n) = h.

2. identifies h ∈ H in the limit iff it identifies h in the
limit on every ε for everyM , such thatM |= h.

3. identifies H in the limit iff it identifies in the limit ev-

ery h ∈ H .

"

We can analogously define the much stronger notion of

identifiability with certainty. The difference is that in this

case the learning function ‘knows’ when it has identified

the correct hypothesis.

Definition 4.2 [Identification with certainty]

We say that a learning function, f :

1. identifies h ∈ H with certainty on ε forM |= h iff for
some n, f(ε|n) =! and f(ε|n + 1) = h.

2. identifies h ∈ H with certainty iff it identifies h with
certainty on every ε for everyM |= h.

3. identifies H with certainty iff it identifies with cer-

tainty every h ∈ H .

"

4.2 Comparing verification and identifica-
tion

In the present section we will state two theorems. They

show a connection between identifiability and verifiability.

5
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4.2.1 Certainty setting

Let us take a class of hypotheses,H , and the sequence, ε, of
data about the actual world. Assume that H contains only

mutually disjoint hypotheses verifiable with certainty, i.e.,

for every h ∈ H there is a procedure α, which verifies h
with certainty iff it is true in the actual world.

Theorem 4.3 Every such computably enumerable class H
is identifiable with certainty.

Proof. Assume thatH is a computably enumerable class of

mutually disjoint hypotheses verifiable with certainty. We

define a procedure Id-Cert which identifies with certainty

every hypothesis from the class H . An example of a run of
the procedure is presented in Figure 1.

[h1, α1][h2, α2]

0

0

1

0 1

!

0

0

0 0

0

[h3, α3][h4, α4][h5, α5][h6, α6]

1

0

1

0 0

0

0

1

1

ε1

ε2

ε3

ε4

ε5

Figure 1. Identifiability with certainty

Since H is computably enumerable we can assume ex-

istence of a sequence (h)n which enumerates H . Each hn

is associated with its verification with certainty procedure

αn. Id-Cert works in the following way: it first checks

α1(h1, ε1) (the value of the first hypothesis on the first piece
of data), then it proceeds according to the diagonal enumer-

ation of αn(hn, εm) until it meets ‘!’. Then it performs a
check for αn(hn, εm+1). If αn(hn, εm+1) = 1, then Id-
Cert stops and answers hn. Otherwise it moves back to

αn(hn, εm) and continues to perform the diagonal proce-

dure.

By assumption every h ∈ H is verifiable with certainty.

Therefore if hn, for some n, is true on ε, then αn will even-

tually produce ‘!’. And since Id-Cert performs a diagonal
search it does not miss any answer. Hence, Id-Cert iden-

tifies every h ∈ H with certainty, so H is identifiable with

certainty. QED

Let us again take a class of hypotheses, H , and the se-
quence, ε, of data about the actual world. Assume that H
contains only hypotheses verifiable with certainty, but this

time let us drop the assumption ofH being a class of mutu-

ally disjoint hypotheses. Then we can prove what follows.

Theorem 4.4 Every such computably enumerable class H
is identifiable in the limit.

Proof. The proof is very similar to the proof of the previ-

ous theorem. We use the same diagonal method. This time

however identification does not stop on the first ‘!’ it en-
counters. Let us assume that ‘!’ happens for εn. Instead, it

answers the relevant h: the hypothesis which was first rec-
ognized to be verified with certainty; then it goes on with

the diagonal search looking for a hypothesis, h′, which re-
veals ‘!’ for some εm, where m < n. If it meets such an
h′ it keeps answering it as long as no other ‘better fitting’
hypothesis is found. An example of a run of the procedure

is presented in Figure 2.

[h1, α1][h2, α2]

0

0

1

0 1

!

0

0

0 0

0

[h3, α3][h4, α4][h5, α5][h6, α6]

1

0

!

0 1

0

1

1

1

ε1

ε2

ε3

ε4

ε5

Figure 2. Identifiability with certainty

By assumption every h ∈ H is verifiable with certainty.

Therefore if hn, for some n, is true on ε, then αn will even-

tually produce ‘!’. And since this identification performs a
diagonal search it does not miss any answer. Hence every

h ∈ H is identified in the limit, so H is identifiable in the

limit. QED

4.2.2 Limiting setting

Let us again take a computably enumerable class of mutu-

ally disjoint hypotheses,H , and a sequence, ε, of data about
the actual world. But this time let us agree that H consists

of hypotheses that are verifiable in the limit, i.e., for every

h ∈ H there is a procedure α which verifies h in the limit
iff h it is true.

Theorem 4.5 Every such computably enumerable class H
is identifiable in the limit.

Proof. Assume thatH is a computably enumerable class of

mutually disjoint hypotheses that are verifiable in the limit.

This means that for every hn ∈ H there is a procedure αn

which verifies h in the limit if and only if h is true. We are
now going to define a procedure Id-Lim which identifies

6
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every hypothesis from the class H . An example of a run of
the Id-Lim is presented in Figure 3.

[h1 ,α1] [h2 ,α2] [h3 ,α3] [h4 ,α4]

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

1

1

1

1

...

1

0

0

1

1

0

1

1

ε1

ε2

ε3

ε4

ε5

ε6

Figure 3. Id-Lim identifiability

Since H is computably enumerable we can assume the

existence of the sequence (h)n enumerating the hypotheses

from H . Each of them is associated with its verification in
the limit procedure αn.

The algorithm Id-Lim first performs a single check for

{h1}:
If α1(h1, ε|1) = 1, then Id-Lim outputs h1 and moves

to α1(h1, ε|2). The answer is repeated until there is an n
such that α1(h1, ε|n) = 0. In this case it starts the test for
{h1, h2}, i.e., starting from ε|n + 1 it looks for another 0 in
the column (h1,α1) answering h1 as long as α1 answers 1.
When 0 is visited Id-Limmoves to α2(h2, ε1) and performs
a single check for h2. In such manner we try to check {h1},
{h1, h2}, {h1, h2, h3}, . . .
Procedure Id-Lim never stops. It is successful if after

some point its guesses are still the same and correct with

respect to ε.
Why does Id-Lim work? One can easily observe that

Id-Lim runs through every finite sequence of 1s. Visiting
a point in which αn(hn, εm) = 1, it answers hn. If there

is a true hypothesis in H , Id-Lim will eventually enter an

infinite sequence of 1s (in column (hm,αm), say), since
H consists of hypotheses verifiable in the limit. Once it

enters this sequence there is no way out — Id-Lim will

indefinitely answer hm. Therefore Id-Lim identifies every

h ∈ H in the limit, and hence H is identifiable in the limit.

QED

In case Id-Lim identifies some hn the procedure needs to

remember a finite but not predetermined number of points

in ε. We would like to have an algorithm which does not

run back and forth on the environment. The answer to this

is procedure which is introduced below. Let us call it Id-

Lim
∗. For this procedure it is enough to remember only

one point, namely the position in which the procedure finds

itself at each moment.

Id-Lim
∗ uses essentially the same idea of column-ruled

searching for strings of 1s. It also consecutively performs it
for {h1}, {h1, h2}, {h1, h2, h3}, . . . The difference is that
when it eventually leaves one column, starting a test for a

new hypothesis, it does not go back to ε1. Instead, it simply

moves to the value in the next column but in the same row.

[h1 ,α1] [h2 ,α2] [h3 ,α3] [h4 ,α4]

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

1

1

1

1

...

1

0

0

1

1

0

1

1

ε1

ε2

ε3

ε4

ε5

ε6

Figure 4. Id-Lim∗ identifiability

The difference between Id-Lim and Id-Lim∗ is mainly
in the use of ε. With Id-Lim∗ it is enough to run through
ε once without going back. In case of Id-Lim every time

we fail on some hypothesis and enter a new one, previously

not visited, it has to start reading ε from the beginning. Id-
Lim

∗ also identifiesH . It simply leaves out the truth values
of hypotheses on some already visited initial segment of ε.

5 Conclusion

The approach presented in this paper can be seen as an

attempt to find some general semantic correlates of identi-

fication. Inductive verification can be treated as a condition

for and a part of the identification process. This fact con-

tributes to the general problem of semantics learning and to

modeling the process of scientific inquiry.

Some attempts to approach the problem of learning of

semantic constructions are already present in the literature

[8, 3]. What is the connection with this framework? The

present approach has much to do with the more general idea
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of model-theoretic learning [1, 7], but it is also related to

the work of H.-J. Tiede [8]. In his, slightly different, frame-

work he shows that the class of first-order definable per-

sistent quantifiers of type 〈1, 1〉 is identifiable in the limit.
This result is consistent with our considerations. In fact, for

the same class of quantifiers we show that it is verifiable

with certainty, and that each class containing solely verifi-

able with certainty structures is identifiable in the limit.

Intuitively there are at least two main parts of human se-

mantic competence. One of them is responsible for pro-

ducing grammatically correct (syntax domain) or true (se-

mantics domain) hypotheses. The second is a natural cor-

relate of model-checking, i.e., the competence of decid-

ing whether a sentence is true or false in the actual world.

The results presented in this paper show how the latter can

be embedded in the identification (learning or discovering)

process. In this light verification can be seen as a pillar of

learning abilities.
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Abstract

We look at two fundamental logical processes, often in-
tertwined in planning and problem solving: inference and
update. Inference is an internal process with which we draw
new conclusions, uncovering what is implicit in the infor-
mation we already have. Update, on the other hand, is pro-
duced by external communication, usually in the form of
announcements and in general in the form of observations,
giving us information that might have been not available
(even implicitly) to us before. Both processes have received
attention from the logic community, usually separately. In
this work, we develop a logical language that allows us to
describe them together. We present syntax and semantics, as
well as a complete logic for the language; we also discuss
similarities and differences with other approaches, and we
mention some possible ways the work can be extended.

1. Introduction

Consider the following situation, from [19]:

You are in a restaurant with your parents, and
you have ordered three dishes: fish, meat, and
vegetarian. Now a new waiter comes back from
the kitchen with the three dishes. What the new
waiter can do to get to know which dish corre-
sponds to which person ?

The waiter can ask “Who has the fish?”; then, he can ask
once again “Who has the meat?”. Now he does not have to
ask anymore: “two questions plus one inference are all that
is needed” ([19]). His reasoning involves two fundamental
logical processes: inference and update. The main goal of
the present work is to develop a framework in which we can
express how they work together.

Inference is an internal process: the agent revises her
own information in search of what can be derived from it.

∗Acknowledges a scholarship by Consejo Nacional de Ciencia y Tec-
nologı́a (CONACyT) from México. Scholarship holder # 167693.

Update, on the other hand, is produced by external commu-
nication: the agent gets new information via observations.
Both are logical processes, both describe dynamics of infor-
mation, both are used in every day situations, and still, they
have been studied separately.

Inference has been traditionally taken as the main sub-
ject of study of logic, “... drawing new conclusions as a
means of elucidating or ’unpacking’ information that is im-
plicit in the given premises”([20]). Among the most impor-
tant branches, we can mention Hilbert-style proof systems,
natural deduction and tableaux. Recent works, like [7, 8]
and [13, 12] have incorporated modal logics to the field,
representing inference as a non-deterministic step-by-step
process.

Update, on the other hand, has been a main subject of
what have been called Dynamic Epistemic Logic. Works
like [16] and [10] turned attention to the effect public an-
nouncements have on the knowledge of an agent. Many
works have followed them, including the study of more
complex actions ([3, 2]) and the effect of announcements
over a more wide propositional attitudes (the soft/hard facts
of [17], the knowledge/belief of [4, 5]).

In [20], the author shows how these two phenomena fall
directly within the scope of modern logic. As he emphasize,
“asking a question and giving an answer is just as ’logical’
as drawing a conclusion!”. Here, we propose a merging
of the two traditions. We consider that both processes are
equally important in their own right, but so it is their in-
teraction. In this work, we develop a logical language that
join inference and update in a natural way. We first present
a modal language to describe inference (section 2). After
combining it with epistemic logic (section 3), we give a
complete axiomatization. Then we incorporate updates, and
we give a set of reduction axioms for the operation (section
4). Finally, we compare our work with other approaches
(section 5) and mention some further work we consider in-
teresting (section 6).
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2. Internal process: an inference language

This section presents a logical language to express infer-
ence. The language is based on the work of Jago ([13, 12]),
but contain some changes that make it more suitable for our
purposes. The agent’s information is represented as a set
of formulas of a given internal language, which in our case
is the classical propositional language. Inference steps are
then represented as binary relations over such sets, allowing
us to use a modal language to talk about them.

Definition 2.1 (Facts and rules) Let P be a set of atomic
propositions, and let FP denote the classical propositional
language based on P .

• Formulas of FP are called facts over P .

• A tuple of the form ( {λ1, . . . ,λn}, λ ) (for n ≥ 0),
where each λi and λ are facts in FP , is called a
rule over FP . A rule will be also represented as
λ1, . . . ,λn ⇒ λ, and the set of rules over FP will
be denoted by RFP .

"

While facts describe situations about the world, rules de-
scribe relations between such situations. Intuitively, a rule
ρ = ({λ1, . . . ,λn}, λ) indicates that if every λi is true, so
it is λ. The set of facts prem(ρ) := {λ1, . . . ,λn} is called
the set of premises of ρ, and the fact conc(ρ) := λ is called
the conclusion of ρ.

Definition 2.2 (Internal language) Given a set of atomic
propositions P , the internal language over P , denoted as
IP , is given by the union of facts in FP and rules over FP ,
that is, IP = FP ∪RFP . "

Elements of IP will be called in general formulas of
IP . The subindexes indicating the set of atomic proposi-
tions will be omitted if no confusion arises.

For expressing how the agent’s information evolves
through inference steps, a (modal) inference language is de-
fined.

Definition 2.3 (Language IL) Let A be a set of agents and
P a set of atomic propositions. Formulas ϕ of the inference
language IL are given by

ϕ ::= $ | Ii γ | ¬ϕ | ϕ ∨ ψ | 〈ρ〉i ϕ

with i ∈ A and γ, ρ formulas of the internal language IP
with ρ a rule. Formulas of the form Ii γ express “the agent
i is informed about γ”, while formulas of the form 〈ρ〉i ϕ
express “there is an inference step in which agent i applies
the rule ρ and, after doing it, ϕ is the case”. "

The semantic model of IL is based on a Kripke model:
we have a set of worlds and labeled binary relations between
them. The main idea is that every world represents the infor-
mation of the agents at a given stage, while a relation with
label D(ρ,i) from a world w to a world w′ indicates that the
information of agent i at w allows her to perform an infer-
ence step with rule ρ, and that the information that results
from applying ρ at w is represented by w′. To make formal
this intuitive idea, we first need to define what we will un-
derstand by the phrases “the information of i at w allows
her to perform an inference step with ρ” and “the informa-
tion that results from applying ρ at w is represented by w′”.
The concepts of set-matching rule and rule-extension of a
world will do the job.

We will use the following abbreviation. Given a universe
U , a set A ⊆ U and an element a ∈ U , we denote A ∪ {a}
as A + a.

Definition 2.4 (Set-matching rule) Let ρ be a rule in I
and let Γ be a set of formulas of I. We say that ρ is Γ-
matching (ρ can be applied at Γ) if and only if ρ and all its
premises are in Γ, that is, (prem(ρ) + ρ) ⊆ Γ. "

Definition 2.5 (Extension of set of formulas) Let ρ be a
rule in I, and let Γ,Γ′ be sets of formulas of I. We say
that Γ′ is a ρ-extension of Γ if and only if Γ′ is Γ plus the
conclusion of ρ, that is, Γ′ = Γ + conc(ρ). "

With the notions of Γ-matching rule and ρ-extension of
Γ, we can give a formal definition of the models where for-
mulas of IL are interpreted.

Definition 2.6 (Inference model) Let A be a set of agents
and let P be a set of atomic propositions. An inference
model is a tuple M = (W,D(ρ,i), Yi) where

• W is a non-empty set of worlds.

• Yi : W → ℘(IP) is the information set function for
each agent i ∈ A. It assigns to i a set of formulas of
the internal language in each world w.

• D(ρ,i) ⊆ (W × W ) is the inference relation for each
pair (ρ, i), with ρ a rule in IP and i an agent in A.
The relation represents the application of a rule, so if
D(ρ,i) ww′, then ρ is Yi(w)-matching and Yi(w′) is a
ρ-extension of Yi(w).

"

Note that the definition of D(ρ,i) just states the property
any tuple should satisfy in order to be in the relation. The
relation is not induced by the property, so it is possible to
have two worlds w and w′ such that there is a rule ρ that
is Yi(w)-matching and Yi(w′) is a ρ-extension of Yi(w),
and still do not have the pair (w,w′) in D(ρ,i). One of the
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goals of the work is to make the basic definitions as gen-
eral as possible, and then analyze the different concepts of
inference and information we can get by asking for extra
properties of the inference relation1 and of the information
sets (as we do later for the case of truthful information, that
is, knowledge). This allows us to represent agents that are
not as powerful reasoners as those represented with clas-
sic epistemic logic, and it may play an important role when
studying agents with diverse reasoning abilities (cf. the dis-
cussion in section 6).

The concepts of set-matching rule and rule-extension of
a world have their possible world version. We say that ρ is
w-matching for i if it is Yi(w)-matching, and we say that
w′ is a ρ-extension of w for i if Yi(w′) is a ρ-extension of
Yi(w).

Definition 2.7 Given an inference model M =
(W,D(ρ,i), Yi) and a world w ∈ W , the relation |=
between the pair M,w and " (the always true formula),
negations and disjunctions is given as usual. For the
remaining formulas, we have

M,w |= Ii γ iff γ ∈ Yi(w)
M,w |= 〈ρ〉i ϕ iff there is w′ ∈ W such that

D(ρ,i) ww′ and M,w′ |= ϕ

$

3. The real world: an epistemic inference lan-
guage

We have a language that express the agent’s information
and how it evolves through inferences. Still, we cannot talk
about the real world or about the agent’s uncertainty. In
this section, we extend the current language to express those
notions.

Syntactically, we extend the inference language with
classical epistemic logic. We add basic formulas of the form
p (for p an atomic proposition) and we close it under the
modal operator Pi (for i an agent).

Definition 3.1 (Epistemic inference language) LetA be a
set of agents and let P be a set of atomic propositions. The
formulas of the epistemic inference language EI are given
by

ϕ ::= " | p | Ii γ | ¬ϕ | ϕ ∨ ψ | Pi ϕ | 〈ρ〉iϕ

with i ∈ A, p ∈ P and γ, ρ formulas of the internal lan-
guage IP with ρ a rule. $

1In fact, the definition of D(ρ,i) restricts inferences to deductive ones.
Within the proposed framework, it is possible to represent other inference
processes, as mentioned in section 6.

The propositional connectives ∧, → and ↔ are defined
as usual; the modal operators Ki and [ρ]i are defined as the
dual of Pi and 〈ρ〉i, respectively.

As argued by van Benthem in [18], the operator Ki

should be read as a more implicit notion, describing not
the information the agent actually has, but the maximum
amount of information she can get under her current un-
certainty (i.e., without external interaction). In our frame-
work, explicit information is represented with formulas of
the form Ii γ, indicating that γ is part of the agent’s informa-
tion set; implicit information is represented with formulas
of the form Ki ϕ, indicating what the agent can eventually
get if she has enough explicit information (i.e., enough for-
mulas and rules) and enough time to perform the adequate
inference steps.

Semantically, we combine inference models with clas-
sic Kripke models. Each world has two components: in-
formation sets containing the facts and rules each agent is
informed about, and a valuation indicating the truth value
of atomic propositions. We also have two binary relations:
the inference one indicating how inference steps modify in-
formation sets, and the epistemic one indicating the worlds
each agent considers possible.

Definition 3.2 (Epistemic inference model) Let A be a
set of agents and let P be a set of atomic propositions.
An epistemic inference model is a tuple M = (W,∼i

,D(ρ,i), V, Yi) where:

• W is a non-empty set of worlds.

• V : W → ℘(P) is a valuation function.

• Yi : W → ℘(IP) is the information set function for
agent i.

• D(ρ,i) is the inference relation for each pair (ρ, i), just
as in definition 2.6. It satisfies an extra requirement: if
D(ρ,i) ww′, then V (w) = V (w′).

• ∼i is the epistemic relation for agent i. The re-
lation satisfy the following property: for all worlds
w,w′, u, u′: if w ∼i u and D(ρ,i) ww′,D(ρ,i) uu′ for
some rule ρ, then w′ ∼i u′.

$

We have two new restrictions: one for the inference re-
lation and one relating it with the epistemic relation. It is
worthwhile to justify them.

1. The relation D(ρ,i) describes inference, an agent’s in-
ternal process that changes her information but does
not change the real situation. If an agent can go from
w to w′ by an inference step, w and w′ should satisfy
the same propositional letters.
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2. This property, called no miracles in [21] and related
with the no learning property of [11], reflects the fol-
lowing idea: if two worlds are epistemically indistin-
guishable and the same rule is applied at both of them,
then the resulting worlds should be epistemically in-
distinguishable too.

Definition 3.3 Given an epistemic inference model M =
(W,∼i,D(ρ,i), V, Yi) and a world w ∈ W , the relation |=
between the pair M,w and #, negations and disjunctions is
given as usual. For the remaining formulas, we have:

M,w |= p iff p ∈ V (w)
M,w |= Ii γ iff γ ∈ Yi(w)
M,w |= Pi ϕ iff there is u ∈ W such that

w ∼i u and M,u |= ϕ
M,w |= 〈ρ〉i ϕ iff there is w′ ∈ W such that

D(ρ,i) ww′ and M,w′ |= ϕ

A formula ϕ is valid in a epistemic inference model M
(notation M |= ϕ) if M,w |= ϕ for all worlds w in M .
A formula ϕ is valid in the class of models M (notation
M |= ϕ) if ϕ is valid in M (M |= ϕ) for all M in M. $

As it is currently defined, epistemic inference models
do not impose any restriction to the information sets: any
propositional formula of I can be in any information set
Yi(w). We can have non-veridical information sets (if we
have γ ∈ Yi(w) and M,w &|= γ for some w ∈ W ) describ-
ing situations where the information of the agent is not true,
or even inconsistent ones (if we have γ and ¬γ in Yi(w) for
some w ∈ W ), describing situations where her information
is contradictory.

In the present work we focus on a special class of mod-
els: those in which the information sets of the agents de-
scribe knowledge. We ask for the epistemic relation to be
an equivalence one, and we ask for all formulas of an infor-
mation set to be true at the correspondent world.

Definition 3.4 (Class EIK) The class of epistemic infer-
ence models EIK contains exactly those models in which
each ∼i is an equivalence relation and for every world
w ∈ W , if γ ∈ Yi(w) then M,w |= γ. The following
table summarize the properties of models in this class.

P1 D(ρ,i) ww′ implies ρ is w-matching
and w′ is a ρ-extension of w (for i).

P2 If D(ρ,i) ww′, then w and w′ satisfy
the same propositional letters.

P3 If D(ρ,i) ww′, D(ρ,i) uu′ and w ∼i u
for some rule ρ, then w′ ∼i u′.

P4 ∼i is an equivalence relation.
P5 γ ∈ Yi(w) implies M,w |= γ.

$

Our first result is a syntactic characterization of formulas
of EI that are valid on models of EIK . Non-defined con-
cepts, like a (modal) logic, Λ-consistent / inconsistent set
and maximal Λ-consistent set (for a normal modal logic Λ)
are completely standard, and can be found in chapter 4 of
[6].

Definition 3.5 (Logic EIK) The logic EIK is the smallest
set of formulas of EI that is created from the set of axioms
2 and a set of rules of table 1. $

Axioms
P All propositional tautologies
E-K Ki (ϕ → ψ) → (Ki ϕ → Ki φ)
E-Dual Pi ϕ ↔ ¬Ki ¬ϕ
I-K [ρ]i (ϕ → ψ) → ([ρ]i ϕ → [ρ]i ψ)
I-Dual 〈ρ〉i ϕ ↔ ¬[ρ]i ¬ϕ
T ϕ → Pi ϕ
4 Pi Pi ϕ → Pi ϕ
B ϕ → Ki Pi ϕ
A1 [ρ]i Ii conc(ρ)
A2 〈ρ〉i% → Ii (prem(ρ) + ρ)
A3 Ii γ → [ρ]i Ii γ
A4 〈ρ〉i Ii γ → Ii γ with γ &= conc(ρ).
A5 (p → [ρ]i p) ∧ (¬p → [ρ]i ¬p) with p ∈ P .
A6 (〈ρ〉i ϕ ∧ Pi 〈ρ〉i ψ) → 〈ρ〉i (ϕ ∧ Pi ψ)
A7 Ii γ → γ

Rules
MP Given ϕ and ϕ → ψ, prove ψ
E-Gen Given ϕ, prove Ki ϕ
I-Gen Given ϕ, prove [ρ]i ϕ

Table 1. Axioms and rules for EIK .

Theorem 3.6 (Soundness) The logic EIK is sound with re-
spect to the class EIK .

Proof. For soundness, we just need to prove that axioms of
EIK are valid in EIK , and that its rules preserve validity.
We omit the details here. QED

Strong completeness is equivalent to satisfiability of con-
sistent set of formulas, as mentioned in Proposition 4.12 of
[6].

Theorem 3.7 (Completeness) The logic EIK is strongly
complete with respect to the class EIK .

Proof. We define the canonical model MEIK for the logic
EIK . With the the Lindenbaum’s Lemma, the Existence
Lemma and the Truth Lemma, we show that every EIK-
consistent set of formulas is satisfiable in MEIK . Finally,
we show that MEIK is indeed a model in EIK . See section
A.1 for details. QED

2Formulas of the form Ii Γ are abbreviations of
V

γ∈Γ Ii γ, for a finite
Γ ⊆ I.
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4. External interaction: explicit observations

So far, our language can express the agent’s internal dy-
namics, but it cannot express external ones. We can express
how inference steps modify the explicit information, but we
cannot express how both explicit and implicit one are af-
fected by external observations. Here we add the other fun-
damental source of information; in this section, we extend
the language to express updates. For easiness of reading and
writing, we remove subindexes referring to agents.

Updates are usually represented as operations that mod-
ify the semantic model. In Public Announcement Logic
(PAL), for example, an announcement is defined by an oper-
ation that removes the worlds where the announced formula
does not hold, restricting the epistemic relation to those that
are not deleted.

In our semantic model, we have a finer representation
of the agent’s information. We have explicit information
(her information sets) but we also have implicit one (what
she can add to her information set via inference). Then, we
can extend PAL by defining different kinds of model oper-
ations, affecting explicit and implicit information in differ-
ent forms, and therefore expressing different ways the agent
processes the new information. Here, we present one of the
possible definitions, what we have called explicit observa-
tions.

Definition 4.1 (Explicit observation) Let M = (W,∼
,Dρ, V, Y ) be an epistemic inference model, and let γ be
a formula of the internal language. The epistemic inference
model M+γ! = (W ′,∼′,D ′

ρ, V
′, Y ′) is given by

• W ′ := {w ∈ W | M,w |= γ }
• ∼′:= { (w, u) ∈ W ′ ×W ′ | w ∼ u }
• D ′

ρ := { (w, u) ∈ W ′ ×W ′ | Dρwu }
• V ′(w) := V (w) for w ∈ W ′

• Y ′(w) := Y (w) + γ for w ∈ W ′

"

Our explicit observation operation behave as the stan-
dard public announcement with respect to worlds, valuation
and relations. With respect to the information set functions,
we have chosen a simple definition: once a formula is an-
nounced, it will become part of the agent’s explicit informa-
tion. The choice is also a good one, since the operation is
closed for models in EIK .

Proposition 4.2 If M is a model in EIK , so it is M+γ!.

Proof. See section A.2. QED

The new language EEI extends EI by closing it under
explicit observations. Take a formula γ in the internal lan-
guage; if ϕ is a formula in EEI, so it is [+γ!]ϕ. The seman-

tics for formulas already in EI is defined as before (defini-
tion 3.3). For explicit observation formulas, we have the
following.

Definition 4.3 Let M be a model in EIK , and let w ∈ W
be a world in it. Then:

M,w |= [+γ!]ϕ iff M,w |= γ implies
M+γ!, w |= ϕ

"

Our second result is a syntactic characterization of the
formulas in EEI that are valid in models in EIK . By propo-
sition 4.2, the explicit observation operation is closed for
models in EIK , so we can rely on the logic EIK : all we
have to do is give a set of reduction axioms for formulas of
the form [+γ!]ϕ. The standard reduction axioms for atomic
propositions, negations, disjunctions and epistemic formu-
las work for EEI too; we just have to add axioms indicating
how information set formulas and inference formulas are af-
fected.

Theorem 4.4 The logic EEIK , built from axioms and rules
of EIK (see table 1) plus axioms and rules in table 4.4, is
sound and strongly complete for the class EIK .

Axioms
EO-1 [+γ!] p ↔ (γ → p)
EO-2 [+γ!]¬ϕ ↔ (γ → ¬[+γ!] ϕ)
EO-3 [+γ!] (ϕ ∨ ψ) ↔ ([+γ!] ϕ ∨ [+γ!] ψ)
EO-4 [+γ!] K ϕ ↔ (γ → K [+γ!] ϕ)
EO-5 [+γ!] I γ ↔ $
EO-6 [+γ!] I δ ↔ (γ → I δ) for δ %= γ
EO-7 [+γ!] [ρ] ϕ ↔ (γ → [ρ] [+γ!] ϕ)

Rules
EO-Gen Given ϕ, prove [+γ!] ϕ

Table 2. Axioms and rules for explicit obser-
vations.

Proof. Soundness comes from the validity of the new axioms
and the validity-preserving property of the new rule. Strong
completeness comes from the fact that, by a repetitive appli-
cation of such axioms, any explicit observation formula can
be reduced to a formula in EI, for which EIK is strongly
complete with respect to EIK . QED

The language EEI can express uncertainty (as classic
epistemic logic does), inference (as the modal approaches
of [7, 8, 13, 12]) and update (as PAL). Moreover, it can ex-
press its combinations. With it, we are able to talk about the
merging of internal dynamics, expressing the way the agent
“unpacks” her implicit information, with external ones, ex-
pressing how her interaction with her environment modifies
what she is informed about.
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We have provided semantics for the language; semantics
that reflect the nature of each process. Inferences are repre-
sented as relations between information sets. This reflects
the idea that, with enough initial explicit information, the
agent may get all the implicit information by the adequate
rule applications. Update, on the other hand, is defined as
a model operation. It is a process that not only provides
explicit information, but also modifies implicit one. This
reflects the idea that updates yields information that might
have not been available to the agent before.

Among the semantic models, we distinguish the class
EIK , which contains those where the agent’s information
is in fact knowledge. We give a syntactic characterization
of the valid formulas in EIK by means of the sound and
complete logic EEIK .

5. Comparison with other works

The present work is a combination of three main ideas:
the representation of explicit information as set of formu-
las, relations between such sets to represent inferences and
model operations to represent updates. The first two have
been used in some other works; we present a brief compar-
ison between some of them and our approach.

5.1. Fagin-Halpern’s logics of awareness

Fagin and Halpern presented in [9] what they called logic
of general awareness (LA). Given a set of agents, formulas
of the language are given by a set of atomic propositions P
closed under negation, conjunction and the modal operators
Ai and Li (for an agent i). Formulas of the form Aiϕ are
read as “the agent i is aware of ϕ”, and formulas of the
form Liϕ are read as “the agent i implicitly believes that
ϕ”. The operator Bi, which expresses explicit beliefs, is
defined as Biϕ := Aiϕ ∧ Liϕ.

A Kripke structure for general awareness is defined as a
tuple M = (W,Ai,Li, V ), where W "= ∅ is the set of possi-
ble worlds, Ai : W → ℘(LA) is a function that assigns a set
of formulas of LA to the agent i in each world (her aware-
ness set), the relation Li ⊆ (W ×W ) is a serial, transitive
and Euclidean relation over W for each agent i (LA deals
with beliefs rather than knowledge) and V : P → ℘(W ) is
a valuation function.

Given a Kripke structure for general awareness M =
(W,Ai,Li, V ), semantics for atomic propositions, nega-
tions and conjunctions are given in the standard way. For
formulas of the form Ai ϕ and Li ϕ, we have

M,w |= Aiϕ iff ϕ ∈ Ai(w)
M,w |= Liϕ iff for all u ∈ W ,

Liwu implies M,u |= ϕ

It follows that M,w |= Biϕ iff ϕ ∈ Ai(w) and, for all
u ∈ W , Liwu implies M,u |= ϕ.

Given the similarities between the functions Ai and Yi

and between the relations Li and∼i, formulas Aiϕ and Liϕ
in LA behaves exactly like Ii ϕ and Ki ϕ in EEI. The dif-
ference in the approaches is in the dynamic part.

For the internal dynamics (inference), the language LA

does not express changes in the agent’s awareness sets.
Later in the same paper, Fagin and Halpern explore the in-
corporation of time to the language by adding a determin-
istic serial binary relation T over W to represent steps in
time. Still, they do not indicate what the process(es) that
change the awareness sets is (are).

In our approach, pairs in the inference relation D(ρ,i)

have a specific interpretation: they indicate steps in the
agent’s reasoning process. Because of this, we have a par-
ticular definition of how they should behave (properties P1,
P2, and P3). Moreover, external dynamics (observations),
which are not considered LA, are represented in a different
way, as model operations.

There is another conceptual difference. In LA, elements
of the awareness sets are just formulas; in EI, elements of
the information sets are not only formulas (what we have
called facts) but also rules. The information of the agent
consists not only on facts, but also on rules that allow her
to infer new facts. It is not that the agent knows that after
a rule application her information set will change; it is that
she knows the process that leads the change. We interpret a
rule as an object that can be part of the agent’s information,
and whose presence is needed for the agent to be able to
apply it.

5.2. Duc’s dynamic epistemic logic

In [7] and [8], Ho Ngoc Duc proposes a dynamic epis-
temic logic to reason about agents that are neither logically
omniscient nor logically ignorant.

The syntax of the language is very similar to the infer-
ence part of our language. There is an internal language,
the classic propositional one (PL), to express agent’s knowl-
edge. There is also another language to talk about how this
knowledge evolves. Formally, At denotes the set of formu-
las of the form Kγ, for γ in PL. The language LBDE con-
tains At and is closed under negation, conjunction and the
modal operator 〈F 〉. Formulas of the form Kγ are read as
“γ is known”; formulas of the form 〈F 〉ϕ are read as “ϕ is
true after some course of thought”.

A model M is a tuple (W,R, Y ), where W "= ∅ is the
set of possible worlds, R ⊆ (W ×W ) is a transitive binary
relation and Y : W → ℘(At) associates a set of formulas
of At to each possible world. A BDE-model is a model M
such that: (1) for all w ∈ W , if Kγ ∈ Y (w) and Rwu, then
Kγ ∈ Y (u); (2) for all w ∈ W , if Kγ and K(γ → δ) are in
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Y (w), then Kδ is in Y (u) for some u such that Rwu; (3) if
γ is a propositional tautology, then for all w ∈ W there is a
world u such that Rwu and Kγ ∈ Y (u). Such restrictions
guarantees that the set of formulas will grow as the agent
reasons, and that her knowledge will be closed under modus
ponens and will contain all tautologies at some point in the
future.

Given a BDE-model, the semantics for negation and
conjunctions are standard. The semantics of atomic and
reasoning-steps formulas are given by:

M,w |= Kγ iff Kγ ∈ Y (w)
M,w |= 〈F 〉ϕ iff there is u ∈ W such that

Rwu and M,u |= ϕ

Note that the language does not indicate what a “course
of though” is; again, our framework is more precise. Also,
it does not consider sentences about the world. Finally, the
language is restricted to express what the agent can infer
through some “course of though”, but it does not express
external dynamics, as explicit observations in EEI do.

6. Further work

In order to give a finer representation of the inference
process, we have chosen to represent information as set of
formulas. This is also a solution for the famous logical om-
niscience problem, since sets of formulas do not need to sat-
isfy a priori any particular property, like being closed under
some consequence relation. Among other approaches for
the problem, there is the non-classical worlds approach for
epistemic logic. The idea is to add worlds in which the usual
rules of logic do not hold. The knowledge of the agents is
affected since non-classical worlds may be considered pos-
sible. It would be interesting to look at this approach as an
alternative for representing the agent’s explicit information,
and see what the differences are.

Our framework do not represent in a completely faithful
way the intuitive idea of the application of a rule. It is pos-
sible to have a world in which a rule can be applied, and
not to have a world that results from its application. We can
focus on models on which, if a rule is applicable, then there
is a world that results from its application. This forces us to
change the defined explicit observation operation since, in
general, the resulting model will not have the required prop-
erty: the added formula can make applicable a rule that was
not applicable before. The immediate solution is to create
all needed worlds, but this iterative process complicates the
operation, and the existence of reduction axioms is not so
clear anymore.

As mentioned in the text, properties P4 and P5 charac-
terize models in which the information the agent has is in
fact knowledge, that is, the epistemic relation is an equiva-
lence one and formulas in all information sets are true at the

correspondent world. It would be interesting to be able to
talk about not only knowledge but also beliefs. Some recent
works ([17, 4, 5] among others) combine these two notions,
giving us a nice way of studying these two propositional
attitudes together.

Property P1 defines not only the situation when a rule
can be applied (whenever a rule a rule and all its premises
are in the agent’s information set), but also what results
from the application (the given information set extended by
the conclusion of the rule). The property indeed restricts
our models to those that use rules in a deductive way, that
is, to those that represent just deductive inference. There
are other interesting inference processes, like abduction or
belief revision; they are not deductive, but they are impor-
tant and widely used, with particular relevance on incom-
plete information situations. Within the proposed frame-
work, we can represent different inference processes, and
we can study how all of them work together.

For the external dynamics, we mentioned that this finer
representation of knowledge allows us to define different
kinds of observations. Since we represent both explicit and
implicit information, we can define different model oper-
ations, allowing us to explore the different ways an agent
process new information.

In the context of agent diversity ([14, 15]), a finer repre-
sentation of the inference process allows us to make a dis-
tinction between agents with different reasoning abilities.
The rules an agent has in her information set may be very
different from those in the information set of another, and
they will not be able to perform the same inference steps.
Moreover, some of them may be able to perform several
inference steps at once instead of a single one. The idea
works also for external dynamics: agents may have differ-
ent observational power. It will be interesting to explore
how agents that differs in their reasoning and observational
abilities interact with each other.
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A. Technical appendix

A.1. Proof of completeness

As mentioned, the key observation is that a logic Λ is
strongly complete with respect to a class of structures if and
only if every Λ-consistent set of formulas is satisfiable on
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some structure of the given class (Proposition 4.12 of [6]).
Using the the canonical model technique, we show that ev-
ery EIK-consistent set of formulas is satisfiable in a model
in EIK . Proofs of Lindenbaum’s Lemma, Existence Lem-
mas and Truth Lemma are standard.

Lemma A.1 (Lindenbaum’s Lemma) For any EIK-
consistent set of formulas Σ, there is a maximal EIK-
consistent set Σ+ such that Σ ⊆ Σ+.

Definition A.2 (Canonical model) The canonical model
of the logic EIK is the epistemic inference model MEIK =
(W EIK ,∼EIK

i ,DEIK
(ρ,i), V

EIK , Y EIK
i ), where:

• W EIK is the set of all maximal EIK-consistent set of
formulas.

• w ∼EIK
i u iff for all ϕ in EI, ϕ ∈ u implies Pi ϕ ∈ w

(equivalently, w ∼EIK
i u iff for all ϕ in EI, Ki ϕ ∈ w

implies ϕ ∈ u).

• wDEIK
(ρ,i)w

′ iff for all ϕ in EI, ϕ ∈ w′ implies 〈ρ〉i ϕ ∈
w (equivalently, wDEIK

(ρ,i)w
′ iff for all ϕ in EI, [ρ]i ϕ ∈

w implies ϕ ∈ w′).

• V EIK (w) := { p ∈ P | p ∈ w }.

• Y EIK
i (w) := { γ ∈ I | Ii γ ∈ w }.

$

Lemma A.3 (Existence Lemmas) For any world w ∈
W EIK , if Pi ϕ ∈ w, then there is a world u ∈ W EIK such
that w ∼EIK

i u and ϕ ∈ u. For any world w ∈ W EIK , if
〈ρ〉i ϕ ∈ w, then there is a world w′ ∈ W EIK such that
DEIK

(ρ,i) ww′ and ϕ ∈ w′.

Lemma A.4 (Truth Lemma) For all w ∈ W EIK , we have
MEIK , w |= ϕ iff ϕ ∈ w.

By the mentioned Proposition of [6], all we have to show
is that every EIK-consistent set of formulas is satisfiable, so
take any such set Σ. By Lindenbaum’s Lemma, we can
extend it to a maximal EIK-consistent set of formulas Σ+;
by the Truth Lemma, we have MEIK ,Σ+ |= Σ, so Σ is
satisfiable in the canonical model of EIK at Σ+. Now we
have to show that the canonical model MEIK is indeed a
model in EIK .

Axioms T, 4 and B are canonical for reflexivity, transi-
tivity and symmetry, respectively, so∼EIK

i is an equivalence
relation and property P4 is fulfilled. It remains to show that
MEIK satisfy P1, P2, P3 and P5. We have removed the
agent’s subindexes for easiness of writing and reading.

Remember that any maximal EIK-consistent set Φ is
closed under modus ponens, that is, if ϕ and ϕ → ψ are
in Φ, so it is ψ.

P1 Suppose DEIK
ρ ww′; we want to show that (prem(ρ) +

ρ) ⊆ Y EIK (w) and that Y EIK (w′) = Y EIK (w) +
conc(ρ).

For the first part, DEIK
ρ ww′ implies MEIK , w |= 〈ρ〉',

so 〈ρ〉' ∈ w. By axiom A2 and modus ponens clo-
sure, we have I (prem(ρ) + ρ) ∈ w. Then, prem(ρ)
and ρ are in Y EIK (w).

For the second part, we will show both inclusions, i.e.,
we will show that Y EIK (w) + conc(ρ) ⊆ Y EIK (w′)
and Y EIK (w′) ⊆ Y EIK (w) + conc(ρ).

• Take any γ ∈ Y EIK (w); then, I γ ∈ w. By axiom
A3 and the modus ponens closure, [ρ] I γ ∈ w.
Since DEIK

ρ ww′, we have I γ ∈ w′ and then γ ∈
Y EIK (w′).
It remains to show that conc(ρ) ∈ Y EIK (w′).
Since axiom A1 is in w and DEIK

ρ ww′, we
have I conc(ρ) ∈ w′ and therefore conc(ρ) ∈
Y EIK (w′).

• Take any γ ∈ (Y EIK (w′) − conc(ρ)); then,
I γ ∈ w′. Since DEIK

ρ ww′, we have 〈ρ〉 I γ ∈ w
and, by axiom A4, we have I γ ∈ w; then,
γ ∈ Y EIK (w). Hence, Y EIK (w′) − conc(ρ) ⊆
Y EIK (w), and therefore Y EIK (w′) ⊆ Y EIK (w)+
conc(ρ).

P2 Suppose DEIK
ρ ww′; we want to show that w and w′ sat-

isfy the same propositional letters. Note that we have
A5 in w, and then both p → [ρ] p and ¬p → [ρ]¬p are
in w since it is a maximal consistent set.

If MEIK , w |= p then, by definition of V EIK , we have
p ∈ w. But (p → [ρ] p) ∈ w and, by the modus
ponens closure, [ρ] p ∈ w. Then, since DEIK

ρ ww′, we
have p ∈ w′, so MEIK , w′ |= p.

If MEIK , w )|= p, then MEIK , w |= ¬p; by definition of
V EIK , we have ¬p ∈ w. But (¬p → [ρ]¬p) ∈ w, so
the modus ponens closure implies [ρ]¬p ∈ w. Then,
since DEIK

ρ ww′, we have ¬p ∈ w′, so MEIK , w′ |=
¬p, i.e., MEIK , w′ )|= p.

P3 Note that axiom A6 is a Sahlqvist formula (a very sim-
ple Sahlqvist formula indeed; see section 3.6 of [6] for
details). Its first-order local correspondent is the for-
mula

(∀w′)(∀u)(∀u′)
(
(Dρ ww′ ∧ w ∼ u ∧Dρ uu′)
→ (Dρ ww′ ∧ u ∼ u′)

)

which is equivalent to our desired property

χ(w) := (∀w′)(∀u)(∀u′)
((Dρ ww′ ∧ w ∼ u ∧Dρ uu′) → u ∼ u′)
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By theorem 4.42 of [6], we know that A6 is canoni-
cal for χ(w), i.e., the canonical frame for any normal
modal logic containing A6 has the property χ(w). In
particular, MEIK has the property.

P5 We want to show that γ ∈ Y EIK (w) implies
MEIK , w |= γ. Suppose γ ∈ Y EIK (w); by definition
of Y EIK (w), we have I γ ∈ w; by axiom A7 and the
modus ponens closure, γ ∈ w; by the Truth Lemma,
MEIK , w |= γ.

A.2. Proof of Proposition 4.2

We will show that M+γ! = (W ′,∼′,D ′
ρ, V

′, Y ′) satisfy
P1-P5.

P1 Suppose D ′
ρ wu; we want to show that (prem(ρ)+ρ) ⊆

Y ′(w) and that Y ′(u) = Y ′(w) + conc(ρ). If D ′
ρwu,

then w, u ∈ W ′ and Dρwu. Since M satisfy P1, we
have (prem(ρ) + ρ) ⊆ Y (w) and Y (u) = Y (w) +
conc(ρ). By definition of Y ′ and the fact that w, u ∈
W ′, we have (prem(ρ) + ρ) ⊆ Y ′(w) and Y ′(u) =
Y ′(w) + conc(ρ).

P2 Suppose D ′
ρwu; we want to show that w, u satisfy the

same propositional letters in M . Since D ′
ρwu, w and

u are in W ′ and Dρwu. By property P2 of M , we
know that w and u satisfy the same propositional let-
ters in M ; by definition of V ′, w and u satisfy the same
propositional letters in M+γ!.

P3 Suppose w1 ∼′ u1 and D ′
ρ w1w2,D ′

ρ u1u2 for some
rule ρ; we want to show that w2 ∼′ u2. By w1 ∼′ u1,
D ′

ρ w1w2 and D ′
ρ u1u2, we have w1 ∼ u1, Dρ w1w2

and Dρ u1u2, with w1, w2, u1, u2 ∈ W ′. By P3 of M ,
w2 ∼ u2; by definition of ∼′, we get w2 ∼′ u2.

P4 It follows from the definition that if∼ is an equivalence
relation, so it is ∼′.

P5 Suppose γ ∈ Y ′(w); we want to show that M ′, w |= γ.
If γ ∈ Y ′(w), then w ∈ W ′ and γ ∈ Y (w). By P5
of M , we get M,w |= γ; then, by definition of V ′,
M ′, w |= γ.
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Abstract

The present paper introduces two new information
merging protocols for the family of adaptive logics ADM,
for which majority merging has been defined in previous
work. The new adaptive operators reflect the negotiation
processes of quasi-merging and pure-arbitration known
from the Integrity Constraints framework. The Adaptive
Variant Counting selection provides results equivalent
to the GMax family of merging operators: it selects a
collective model for a multi-set of belief bases established
on the number of disagreements verified by the various
models. The Adaptive Minimax Counting selection is a
quasi-merging operator which applies a minimax function
and it obtains a larger spectrum of possibilities than
the previous selection: it simulates the behaviour of the
Max family of operators from the Integrity Constraints
framework, but it avoids some of its counterintuitive results.

Keywords: Information Fusion, Negotiation Protocols,
Arbitration, Quasi-Merging, Adaptive Logics.

1. Introduction

The analysis of processes of intelligent interaction in
multi-agent systems has grown constantly in the logical lit-
erature of the last decade, with diversificated approaches
and aims. The applications vary from the formalization of
interactive processes of collective deliberation, especially
relevant with respect to the formulation of judgement ag-
gregation strategies, to information fusion architectures.

∗Research for this paper was supported by subventions from Ghent
University and from the Research Foundation - Flanders (FWO - Vlaan-
deren).

The analysis of contents involved in a decision process
focuses naturally on the agreements among agents, in or-
der to perform the most satisfactory selection of common
goals and judgements in the group. Obviously, such a pro-
cess might not be entirely satisfactory, and the presence of
disagreements expressing a certain degree of internal dis-
satisfaction cannot be completely ruled out by the negotia-
tion and the consequent aggregation protocols. The formal-
ization of selection procedures in view of such inconsistent
data is the aim of the frameworks defining knowledge merg-
ing operators, also known as information fusion operators.

The merging of contents from contradictory sources,
whose study goes back to [5], has applications in distributed
databases and information systems. General properties for
the logical approaches to merging procedures for knowl-
edge bases containing inconsistent information have been
studied in [7], [6], [4], and more recently surveyed in [11]
and [10].

The first definition of an operator for merging informa-
tion has been given in [21] and later considerably reworked
in [14] and [15]. In the latter work, the idea of arbitration
comes from an intuitive modification of the more standard
revision operator from the AGM-paradigm in [1]: it refers
to merging as the revision of an older base with the infor-
mation of a newer base, without any order of priority of the
latter over the former. The process requires instead preser-
vation of information from one base in some cases and from
the other in other cases. This general principle has been
modified by the use of weights on the bases, to indicate the
relative importance of the information rather than strict pri-
ority. Weights have been expressed as priority values (as in
[9]), they have been assigned either to propositional terms
(see e.g. [8]) or to the set of models of formulas (as in [21]),
and finally they have been formulated as possibility values
(see [23]).

A major distinction has been introduced by the defini-
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tion of the majority protocol. In [16] an operator is defined
which avoids the typical restrictions of the majority princi-
ple, formulated taking into account formulae in disjunctive
form within the bases to be merged. This allows to repre-
sent bases that only partially support their contents. The
ground distinction between the arbitration and majority op-
erators - see e.g. [13] - can be reflected in the following
terms: whereas majority merging operators aim at mini-
mizing collective dissatisfaction, arbitration operators aim
at maximizing individual satisfaction. This distinction is of
the greatest importance with respect to the results of col-
lective deliberation procedures and the restrictions due to
results as the one of the judgement aggregation paradox.

These two sub-classes of merging operators are further
defined in the more general and standard framework of in-
formation merging under intergrity constraints in [12]. This
framework allows for defining families of three distinct op-
erators:

1. the !Σ operator satisfies the postulates for majority
merging and it corresponds to the merging operator de-
fined in [16];

2. the!GMax operator satisfies a pure arbitration proce-
dure, and it represents a new merging method;

3. finally, the !Max operator is called a quasi-merging
operator and it represents a pseudo-arbitration operator
corresponding to the one defined in [15].

Moreover, in [13] it is shown that another family of oper-
ators called !n can be defined which belongs simultane-
ously to the two main subclasses.

The standard approach to these protocols uses a defini-
tion of distance between the involved belief bases and the
possible interpretations. The standard one is the Dalal dis-
tance from [8]: the intuitive idea behind this definition is to
measure the number of atoms that have different truh values
among each base and every interpretation, so to find the col-
lective model that retains the most of each base; a variant is
represented by the Satoh distance, defined in [22]. The var-
ious merging protocols apply an ordering on the values re-
sulting from the definition of distance according to different
functions, in order to obtain the desired negotiation process.

A different approach to the resolution of merging pro-
cesses of conflicting belief bases has been introduced in
[17] in view of the dynamic semantics of adaptive logics
(see [2, 3] for a general introduction to the standard for-
mat of Adaptive Logics). The crucial change of perspective
given by this new approach is represented by the focus on
disagreements occurring among the agents involved in the
negotiation process: the explicit derivation of conflicts in
the collective decision process allows for the formulation
of a consequence set that reflects the various aggregation

methods in terms of unavoidable disagreements. The result-
ing framework is the family of logics ADM, for Adaptive
Doxastic Merging.

The first effective result obtained for adaptive merging
is the majority protocol for bases with partial support de-
fined in terms of the logic ADMc, for Adaptive Doxastic
Merging by Counting, formulated in [20]. As it is shown in
[16], the protocol which satisfies all the due postulates for
majority has to take into account the requirements on par-
tially supported contents, and the family ADM makes use
of so called abnormal formulas that are designed precisely
to accomplish this aim. The Counting strategy selects from
the set of models of a given premise set, providing a proto-
col of majority merging corresponding to the generalization
under Integrity Constraints represented by the !Σ opera-
tor. Moreover, the use of fully versus partially supported
contents allows for the mentioned notion of weights to be
reformulated in a new light: weights express the support
each agent gives to contents, in order for his or her beliefs
to be accepted by the group in the fusion procedure. This al-
lows for commutativity to be entirely preserved also among
weighted bases.

The application of the majority protocol to the judgment
aggregation paradox is considered in [18]: it provides a
non-paradoxical though inefficient solution. Effectivity is
obtained by modifying the agenda of interaction, which in
turn amounts to give up the Universal Domain condition.
To this aim the formulation of the logic ADMc is slightly
more simple in view of the fact that all bases in the case of
the paradox express full support to their contents.

The next step in this resarch is represented by the for-
mulation of an arbitration protocol for the family of logics
ADM, mimicking the results of the!GMax operator. This
result is first presented in [19], where the logic ADMc+

for Adaptive Doxastic Merging by Variant Counting is in-
troduced. The semantic selection defined for this adap-
tive logic in standard format shows a basic correspondance
between a pre-order on satisfied disagreements among the
agents and a lexicographic order of Dalal’s distances. The
formulation of the arbitration protocol is considered in the
light of the problem of fusion of information from heteroge-
neous databases: the fusion architecture based on this pro-
tocol shows its potential in applications where the treatment
of incomplete or only partially verified data might be crucial
to an effective fusion procedure.

In the present paper we shall recover the basics of the
logic ADMc+ and of its selection procedure. Starting from
its basis, it will be possible to define a third selection proce-
dure on the models of a premise set, derived from the mini-
max rule for decision theory, and thus performing the same
results as the!Max quasi-merging operator. This selection
procedure shall be introduced as the logic ADMc−mm, for
Adaptive Doxastic Merging by Minimax Counting. With
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this last result the family of logics ADM is shown to be
a general framework to define all the various negotiation
processes modelled by the standard merging operators, in
particular those of the general Integrity Constraints frame-
work.

The structure of this paper is as follows. In section 2
we will consider briefly the quasi-merging and arbitration
Integrity Constraints operators. In section 3 we will intro-
duce the preliminaries needed for the adaptive logics of the
family ADM, and in section 4 and 5 we will respectively
define the semantic selection procedures that give rise to
the logics ADMc+ and ADMc−mm. Section 6 presents a
standard example where both strategies are applied. In the
final section further steps for the research on the adaptive
procedures of merging are surveyed.

2. Integrity Constraints Merging

In this section we introduce the Integrity Constraints (IC)
merging protocols from [12] that are going to be mimicked
by different strategies in the ADM family of adaptive log-
ics. In the following of this paper L will refer to the stan-
dard language of classical propositional logic (henceforth
CL) that is formed from a finite set of atoms P in the usual
way. The set of literals P± contains atoms and their nega-
tions. Letters from the greek alphabet ϕ, ψ, . . . are used as
metavariables for sentences of L. As is common, the abbre-
viation

∨
(∆) will stand for the disjunction of the members

of ∆, where ∆ is a set of formulas. A belief base T is a fi-
nite set of sentences of L. Integrity constraints µ are a finite
set of sentences, i.e. a belief base with respect to which the
final merged state must be consistent. By Γ one refers to
a multi-set consisting of n belief bases, Γ = {T1, . . . , Tn}.
The formula

∧
Γ denotes the conjunction of the belief bases

of Γ, i.e.
∧

Γ =
∧
{T1, . . . , Tn}. A CL-model is a func-

tion P → {0, 1}. We shall use M to denote the set of all
CL-models. A model M is a model of T iff all the mem-
bers of T are true in it. Mod(Γ) will be the set of models
of the multi-set Γ and Cn(Γ) will denote the consequence
set of Γ. The result of a merging procedure on a multi-set Γ
under constraints µ shall be denoted as "µ(Γ). The union
of multi-sets will be denoted by #.

2.1 IC Pure-Arbitration

The IC framework defines selection methods of the col-
lective models of various belief bases by operators satisfy-
ing the following postulates:

IC0 "µ(Γ) $ µ;

IC1 If µ is consistent, then"µ(Γ) is consistent;

IC2 If
∧

Γ is consistent with µ, then"µ(Γ) =
∧

Γ ∧ µ;

IC3 If Γ1 ↔ Γ2 and µ1 ↔ µ2, then"µ1(Γ1)↔"µ2(Γ2);

IC4 If T $ µ and T ′ $ µ, then"µ(T #T ′)∧T ! µ implies
that"µ(T # T ′) ∧ T ′ ! µ;

IC5 "µ(Γ1) ∧"µ(Γ2) $ "µ(Γ1 # Γ2);

IC6 "µ(Γ1) ∧"µ(Γ2) is consistent, then"µ(Γ1 # Γ2) $
"µ(Γ1) ∧"µ(Γ2);

IC7 "µ1(Γ) ∧ µ2 $ "µ1∧µ2(Γ);

IC8 If "µ1(Γ) ∧ µ2 is consistent, then "µ1∧µ2(Γ) $
"µ1(Γ) ∧ µ2.

On the basis of these postulates, the consistency on
merging and the irrelevance of syntax are principles of
the greatest importance to define quasi-merging and pure-
arbitration. The former is given in the following informal
definition:

Definition 2.1 [Principle of Consistency on Merging] If
two subgroups agree on at least one alternative, the result
of global merging will be exactly those alternatives the two
groups agree on. #

and it is formally obtained by the combination of postulates
IC5 and IC6. The principle of syntax irrelevance says in-
formally:

Definition 2.2 [Principle of Syntax Irrelevance on Merg-
ing] If two bases are syntactically equivalent and so are their
integrity constraints, then the merging of one base under one
set of integrity constraints shall be equivalent to the merging
of the other base under the other set of constraints. #

and it is formally given by postulate IC3.
For the introduction and explanation of the pure-

arbitration and quasi-merging protocols we will refer to a
preorder on the set of models of a premise set. A pre-
order over the set of CL-models is a reflexive and transi-
tive relation on M. Where ≤ is a preorder, < is defined as:
M < M ′ iff M ≤ M ′ and M ′ (≤ M . Where M is a subset
of M, a model M is said minimal in M with respect to ≤
iff M ∈ M and there is no M ′ ∈ M such that M ′ < M .
Min(M,≤) shall denote the set of models that are minimal
in M with respect to ≤.

Given two models M1,M2 and a belief base T , a pre-
order M1 ≤ M2 holds if and only if dist(M1, T ) ≤
dist(M2, T ). The value of dist(M1,M2) between two
models M1 and M2 according to the Dalal distance refers
to the number of atoms whose valuation differs in the two
models. Given the set Mod(T ) of possible models of the
base T , the distance between a CL-model M and T is given
as follows:
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dist(M,T ) = min(dist(M,M ′)) for each M ′ ∈Mod(T ).
(1)

The selection of collective models Mod("GMax
µ (Γ))

performed according to the IC arbitration operator using
this notion of distance works in the following way. Consider
belief bases T1, T2 whose alternatives are preferred respec-
tively under Integrity Contraints µ1, µ2; assume that each of
the set of alternatives is equally preferred under the union of
the bases T1 #T2; the subset of preferred alternatives under
the disjunction of the integrity constraints coincides with
the preferred alternatives of each base. Model-theoretically
this means that there is a total preorder on the plausibility
of the models with respect to the belief bases. Plausibility
is obtained as an ordering by a notion of distance as Dalal’s
one and an aggregation function ⊕. Such an ordering says
that if M1 is more plausible than M2 for T1 and more plau-
sible than M3 for T2, and M2 and M3 are equally plausible
for the union of bases T1 # T2, than M1 has to be more
plausible than both M2 and M3 for T1 # T2. The result of
the merging procedure is the belief base whose models are
the most plausible ones for the given set of individual bases,
according to given rationality criteria.

In [12], it is shown that the aggregation function⊕ satis-
fying the arbitration protocol is the leximax function. Con-
sider the multi-set Γ = {T1, . . . , Tn}; for each model M
consider the list D = (distM1 , . . . , distMn ) of distances be-
tween M and the n belief bases in Γ, i.e. the list of distances
distMi = dist(M,Ti). Let LM

Γ be the list obtained from D
by sorting its members in descending order. Denote now by
≤lex the lexicographic order among sequences of integers
of the same length. For any two models M1 and M2, a to-
tal preorder M1 ≤Γ M2 holds in view of Γ if and only if
LM1

Γ ≤lex LM2
Γ . Given a multi-set Γ holding under con-

traints µ, the"GMax
µ operator is then defined as follows:

Mod("GMax
µ (Γ)) = Min(Mod(µ),≤Γ). (2)

This operator satisfies the typical postulate for arbitration:

"µ1(T1)↔"µ2(T2)
"µ1↔¬µ2(T1 # T2)↔ (µ1 ↔ ¬µ2)

µ1 ! µ2

µ2 ! µ1






⇒"µ1∨µ2

(T1 # T2 ↔
"µ1(T1))

(3)
which says that if a set of alternatives preferred among one
set of integrity constraints µ1 for a belief base T1 corre-
sponds to the set of alternatives preferred among another
set of integrity constraints µ2 for base T2, and if the al-
ternatives that belong to a set of integrity constraints but
not to the other are equally preferred for the whole group
(T1 # T2), then the subset of preferred alternatives among
the disjunction of integrity constraints coincides with the

preferred alternatives of each base among their respective
integrity constraints (see [12], p.778).

2.2 IC Quasi-Merging

The second family of merging operators considered is a
less fine-grained one and it is defined by the so-called quasi-
merging"Max operator in terms of the minimax function.
Let Γ = {T1, . . . , Tn} be the usual belief set, M a model
and d the standard Dalal’s distance value. The Max oper-
ator considers first the maximal distance between an inter-
pretation and a belief base

dMax(M,Γ) = MaxT∈Γdist(M,T ); (4)

then a preorder on the set of interpretations M is defined:

M1 ≤Max
Γ M2 iff dMax(M1,Γ) ≤ dMax(M2,Γ) (5)

which says that a model M1 comes before in the preorder
than a model M2 if and only if the maximal distance be-
tween the former and the multi-set Γ is lower than the same
distance between the latter and Γ. The resulting "Max

µ (Γ)
operator is obtained as the one with lower position (minimal
value) in the obtained pre-order:

Mod("Max
µ (Γ)) = Min(Mod(µ),≤Max

Γ ). (6)

In the following sections we shall introduce the Adaptive
Logic ADM with two adaptive strategies, namely Variant
Counting and Minimax Counting: their role is to formulate
adaptive merging procedures whose results are comparable
to those of the"GMax and"Max operators.

3. The Adaptive Logic for Merging

The formulation of the logics belonging to the family
ADM is based on the langugae LB , which enables one to
represent a set of belief bases by a single set of premises.
It also enables one to consider (modal) models that validate
all the premises, rather than having to consider models for
each of the belief bases separately. Where I = {0, 1, . . .}
is a set of indexes, the multi-modal language LB is L ex-
tended with a belief operator bi, for any i ∈ I. Each differ-
ent base is given an index bi with i ∈ I \ 0. The operator b0

is used exclusively for the beliefs selected for the merging
state, or for the constraints holding in such state. Intuitively,
biϕ (for i > 0) will express that agent i believes or sup-
ports ϕ; the formula b0ϕ means that all agents agree on ϕ or
that their decision is constrained by the holding of ϕ. The
premise set Γ refers to a multi-set of indexed belief bases
Γ = {T1, . . . , Tn}. When the two adaptive strategies are in-
troduced, the operator"c+ (eventually"c+

µ when some set
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of constraints µ is given) is used for the result of the Variant
Counting strategy and Mod(!c+(Γ)) to refer to the subset
of Mod(Γ) correspondingly selected; the operator !c−mm

(!c−mm
µ respectively) is used for the result obtained by the

Minimax Counting Strategy, Mod(!c−mm(Γ)) referring
to the subset of Mod(Γ) selected by that strategy.

Let us consider as an example a set of belief bases

T1 = {p ∨ q}
T2 = {¬p}
T3 = {¬q}.

These belief bases are given a modal translation in any of
the logics belonging to the family ADM as the premise
set Γ = {b1(p ∨ q), b2¬p, b3¬q}. This means that for any
Ti |= φ, in a DM premise set there is a doxastic formula
biφ holding in LB . A literal ϕ is fully supported by some
belief base T if T ! ϕ. A literal ϕ is partially supported
by a belief base T if there is a set of literals ∆ such that
ϕ ∈ ∆, T ! ∨

(∆), $! ∨
(∆), and there is no ∆′ ⊂ ∆ such

that T ! ∨
(∆′). As usual

∨
(∆) stands for the disjunction

of the members of the set of literals ∆. So, for the previous
premise set where T1 = {p∨q}, T1 partially supports p and
q; whereas T2 fully supports ¬p and T3 fully supports ¬q.

All the logics belonging to the family ADM are adap-
tive logics in standard format. This format is extensively
discussed in [3]. They all share the same first element
needed for their definition, i.e. the lower limit logic (LLL);
they all share the same second element in the definition, i.e.
the set of abnormal formulas; and they all differ for the last
element, i.e. the adaptive strategy which selects the abnor-
mal models holding for a given premise set.

The basis of the adaptive logics of the ADM family is
the so-called lower limit logic DM: this is a multi-modal
version of the modal logic D. In addition to all CL-axioms,
the logic DM validates

• Necessitation Rule: if &CL ϕ then &DM biϕ;

• Distribution: bi(ϕ ⊃ ψ) ⊃ (biϕ ⊃ biψ);

• Consistency: biϕ ⊃ ¬bi¬ϕ.

Semantically, the models of each logic (ADMc,
ADMc+, ADMc−mm) of a given premise set Γ are ob-
tained by making a selection of the DM-models of Γ. This
selection will establish the valid models, and the contents
of the corresponding consequence sets are the result of the
negotiation procedure.

The semantics of the lower limit logic DM is a standard
possible world semantics, with multiple accessibility rela-
tions. A DM-model is a quadruple 〈W, wo,R, v〉 where W
is a set of possible worlds, wo ∈ W is the actual world, R
is a set of serial accessibility relations Ri (i ∈ I) over W ,
and v : P ×W → {0, 1} is an assignment function.

The valuation function defined by a model M is charac-
terized as follows:

C1 where A ∈ P , vM (A,w) = v(A,w);

C2 vM (¬A,w) = 1 iff vM (A,w) = 0;

C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) =
1;

C4 vM (A∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) =
1;

C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) =
1;

C6 vM (biϕ, w) = 1 iff vM (ϕ, w′) = 1 for all w′ such that
Riww′.

The standard semantic notions are defined as usual: a
model M verifies A iff vM (A,w0) = 1, Γ |=DM A iff
all DM-models of Γ verify A, and |=DM A iff all DM-
models verify A.

In order to establish which contents of the premise set
are finally merged, the adaptive machinery formulates all
the disagreements that occurr in view of each agent’s belief
base. These are formalised in terms of a special class of
formulas, called abnormalities, that are eventually verified
by some models of the given premise set in the lower limit
logic. In the case of the previously introduced premise set
Γ = {b1(p ∨ q), b2¬p, b3¬q}, and in view of the fact that
one tries to merge as much as possible of its content, some
of the DM-models of Γ verify the formula b3¬q ⊃ b0¬q,
whereas others falsify it; or, what comes to the same, verify
b3¬q∧¬b0¬q. An abnormality is precisely a formula of the
form

biϕ ∧ ¬b0ϕ (7)

i.e. a formula expressing a (full) support by some agent i
for a literal ϕ which is not merged in view of someone’s
disagreement. In all DM-models of Γ, at least one instance
of such an abnormality is verified. In a simple example,
where Γ = {b1p, b2p, b3¬p}, there will be two types of
DM-models: those that verify b0p and those that verify
¬b0p. Models that verify b0p, necessarily verify the ab-
normality b3¬p ∧ ¬b0p; those that verify b0¬p necessarily
verify b1p ∧ ¬b0p and b2p ∧ ¬b0p. The selection tells us
which type of models should be chosen.

As one is considering arbitration on bases that express
also partial support, among the DM-models of Γ there are
models verifying a different kind of abnormalities. As far
as an abnormality with respect to T1 from the previous ex-
ample is concerned, one has to account for the rejection of
a partially supported content. An abnormality involving a
base expressing partial support might be due to conflicts
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arising with respect to each partially supported literal. This
is formulated in the following form:

bi(ϕ1 ∨ . . . ∨ ϕn) ∧ (¬biϕ1 ∧ . . . ∧ ¬biϕn)∧
¬b0(ϕ1 ∨ . . . ∨ ϕn) (8)

where all ϕi are literals. The union of sets of disagreements
for fully and partially supported literals will form our set of
abnormalities:

Definition 3.1 [Set of Abnormalities] Ω = {biϕ ∧ ¬b0ϕ |
i ∈ I \ 0,ϕ ∈ P±} ∪ {bi(ϕ1 ∨ . . . ∨ ϕn) ∧ (¬biϕ1 ∧ . . . ∧
¬biϕn) ∧ ¬b0(ϕ1 ∨ . . . ∨ ϕn) | i ∈ I \ 0,ϕ1, . . . ,ϕn ∈
P±, n > 1}. "

In each adaptive logic obtained by the lower limit logic
DM, a disjunction of abnormalities may be DM-derivable
without any of its disjuncts being DM-derivable. Consider
again Γ = {b1(p ∨ q), b2¬p, b3¬q}. From this, neither
b1p ∧ ¬b0p nor b2¬p ∧ ¬b0¬p is DM-derivable, but the
disjunction (b1p ∧ ¬b0p) ∨ (b2¬p ∧ ¬b0¬p) is. Disjunc-
tions of abnormalities will be called Dab-formulas, and the
abbreviation Dab(∆) is used to refer to them:

Definition 3.2 [Disjunctions of Abnormalities] Dab(∆)
stands for

∨
(∆) where ∆ ⊆ Ω. "

If ∆ is a singleton, Dab(∆) is a single abnormality; if ∆ =
∅, any disjunction A ∨ Dab(∆) corresponds to A. A Dab-
formula that is DM-derivable from Γ will be called a Dab-
consequence of Γ:

Definition 3.3 [Dab-Consequence] Dab(∆) is a Dab-
consequence of a premise set Γ iff Γ |=DM Dab(∆). "

If Dab(∆) is a Dab-consequence of a set Γ, then so is
any Dab(∆′) such that ∆′ ⊃ ∆. This is why a further
definition is needed:

Definition 3.4 [Minimal Dab-Consequence] A disjunction
of abnormalities Dab(∆) is a minimal Dab-consequence of
Γ iff Γ |=DM Dab(∆) and there is no ∆′ ⊂ ∆ such that
Γ |=DM Dab(∆′). "

It is in view of the derivability of Dab-formulas from a
premise set that the adaptive strategy is needed. Intuitively,
the adaptive strategy specifies what it means, in the case
of disjunctions of abnormalities, that the abnormalities are
false unless and until proven otherwise. Given the same
lower limit logic and the same set of abnormalities, there are
different ways to interpret a set of premises as normally as
possible: the precise interpretation of this ambiguous phrase
is determined by the adaptive strategy. In the present case,
one will distinguish between the interpretation of a premise

set as normally as possible in view of the Variant Counting
Strategy in ADMc+, and the interpretation in view of the
Minimax Counting Strategy in ADMc−mm.

4. Variant Counting for Arbitration

The selection by variant Counting is applied to the con-
sequence set of the lower limit logic DM and it gives rise to
the adaptive logic ADMc+. It considers the various Dab-
consequences of a premise set Γ in view of the number of
disagreements involving each agent. This corresponds to a
selection of the formulas verified in any given model on the
basis of the number of contents held true by each agent and
involving a disagreement with another agent.

Consider first all the formulas A ∈ Dab(∆) such that
Γ |=DM Dab(∆) and the b-operator indexed 1 occurs in
A: typically, this will be the set of all the abnormalities
derivable from a premise set Γ that are of the form b1φ ∧
¬b0φ or of the form b1(φ1 ∨ . . . ∨ φn) ∧ (¬b1φ1 ∧ . . . ∧
¬b1φn)∧¬b0(φ1∨. . .∨φn). Call this set Ω1. Then consider
the set of all formulas of the same kind occurring with b-
operator indexed 2 and call this set Ω2, and so on up to
index n. The set Ω is in turn the union of all the various Ωi

sets:

Definition 4.1 [The set of indexed abnormalities]

Ω =
n⋃

i=1

Ωi. (9)

"

It is obvious that one can consider now the set of abnormal-
ities with a given index as a proper subset of Ω.

For each model of a given premise set, consider now the
abnormal formulas of a certain Ωi verified by that model:

Definition 4.2 [The abnormal part of a model with index i]
Abi(M) = {A | A ∈ Ωi and M |= A}. "

For any model Mj of a given premise set, let Ci
Mj

=
|Abi(Mj)| denote the cardinality of its abnormal part with
respect to Ωi:

Definition 4.3 [Abnormal cardinality of a model] Given
a model Mj of a premise set Γ and its abnormal part
Abi(Mj), its abnormal cardinality Ci

Mj
is the number of ab-

normal formulas A ∈ Ωi verified in the model Mj . "

The abnormal cardinality Ci
Mj

expresses the number of dis-
agreements that agent i faces with respect to the literals ver-
ified by the model Mj . For each model M , we construct the
list (C1

M , . . . , Cn
M ), where n is the number of elements of I.

Let LM
Γ be the list obtained by (C1

M , . . . , Cn
M ) by sorting its
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elements in descending order. Let now ≤lex be the lexi-
cographic order between sequences of integers of the same
length. On the basis of the ordering ≤lex, a total preorder
≤C

Γ holds among the various models M1, . . . ,Mn of Γ in
the following way:

Definition 4.4 [Preorder by Minimal Abnormal Cardinal-
ity] A total preorder≤C

Γ holds between models of a premise
set Γ according to the following definition

Mi ≤C
Γ Mj iff LMi

Γ ≤lex L
Mj

Γ . (10)

!

According to this definition, the pre-order on the models of
a premiset set Γ is obtained by ordering models according
to their abnormal cardinalities. Where MΓ stands for the set
of DM-models of Γ, the Variant Counting strategy"c+(Γ)
will select among those models the minimal ones with re-
spect to the ordering obtained by ≤C

Γ:

Definition 4.5 [Selection of Models by ADMc+]

Mod("c+(Γ)) = Min(MΓ,≤C
Γ). (11)

!

The definition of the merging operator "c+ reflects a
selection of abnormal models of the premise set that corre-
sponds to the models satisfying the median possible choices
that are preferred. In terms of the fair syncretic assignment
presented in [13], the arbitration protocol satisfies the fol-
lowing conditions: the models of the premise set are the
more plausible interpretations for the pre-order associated
to that set; two equivalent knowledge sets have the same as-
sociated pre-orders. In the case of the adaptive selection this
means that the abnormal models of a premise set selected by
"c+ are those with lower position in the pre-order given by
abnormal cardinalities and that two equivalent premise sets
have the same pre-orders of abnormal cardinalities for their
models.

The main condition of arbitration as fair syncretic as-
signment is satisfied as follows: if the ordering of abnormal
cardinalities of Mi for base T1 is lower than that of Mj for
the same base (i.e. Mi <C

T1
Mj) and the same holds for Mi

with respect to Mk for T2 (i.e. Mi <C
T2

Mk), and if Mj and
Mk are equally abnormal for T1#T2 (i.e. Mj $C

T1!T2
Mk),

then Mi is less abnormal than Mj and Mk for T1 # T2 (i.e.
Mi <C

T1!T2
Mj,k). Correspondingly, the following princi-

ple is formulated:

Definition 4.6 [Arbitration by Ordering on Abnormal
Cardinalities] If for models Mi,Mj ,Mk holds that
|Abi(Mi)| < |Abi(Mj)| and |Abi(Mi)| < |Abi(Mk)|;

and if |Abi(Mj)| = |Abi(Mk)|; then (Mi) <C
Γ Mj,k and

M("c+(Γ)) = Mi.

|Abi(Mi)| <T1∈Γ |Abi(Mj)|
|Abi(Mi)| <T2∈Γ |Abi(Mk)|

|Abi(Mj)| $T1!T2∈Γ |Abi(Mk)|




⇒Mi <C
Γ Mj,k.

!

5. Minimax Counting for Quasi-Merging

The pseudo-arbitration operator from [15] has the main
property of being constrained to only two bases and to re-
quire consistency to be obtained without the principle of av-
erage on bases to be preserved. This means that the negoti-
ation procedure is performed among the belief bases rather
than among the propositional letters having different truth
values. If the operator is applied to two bases that support
only respectively inconsistent literals, it will provide their
disjunction without taking into account any combination of
consistent contents. The"Max operator from [12] is meant
to model the very same procedure of arbitration, without
the restriction imposed on the number of belief bases in-
volved in the negotiation process. This operator is a less
fine-grained one than the "GMax, because it provides a
larger spectrum of possible results, and therefore it is called
a quasi-merging operator.

In the present section a new adaptive semantic selection
for ADM is introduced: it is called Minimax Counting, it
gives rise to the adaptive logic ADMc−mm and it aims at
providing the same kind of negotiation process that is re-
flected by the result of the "Max operator. The resulting
"c−mm operator for the Minimax Adaptive Counting ap-
plies the minimax rule to the selection of DM-models of
a premise set in view of their abnormal cardinality. The
Minimax Counting selection presents an important differ-
ence with the standard "Max operator: the latter, as any
IC merging operator, does not satisfy the Majority Indepen-
dence postulate (see [12], p.779). This postulate states that
the result of merging is fully independent of the popularity
of the views and it simply takes into account each different
view:

∀n"µ (Γ # Γ′1, . . . ,Γ
′
n)↔"µ(Γ # Γ′). (12)

From this follows that the "Max operator does not sat-
isfy the IC6 postulate, which togheter with its counter-
part the IC5 postulate allows the merging to satisfy always
the alternatives for which there is no disagreement (consis-
tency). The selection performed according to "Max pro-
vides therefore a range of alternatives that contains also
some of the choices for which none of the agents has ex-
pressed explicit preference. On the other hand, "c−mm is
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based on the formulation of disagreements and their selec-
tion: anything which is not involved in any disagreement
is obviously merged. This restricts slightly the range of
results offered by the previous pseudo-arbitration operator
(because it avoids some counter-intuitive results), but it still
provides a larger spectrum of possibilities than the!c+ op-
erator by using the minimax function.

The selection still makes use of the notion of abnor-
mal cardinality Ci

Mj
as given in Definition 4.3; it moreover

refers for each model M to the list LM
Γ obtained by ordering

in descending order the list (C1
M , . . . , Cn

M ), where n is the
number of elements of I. A new maximal distance Max is
defined as the first element in each list LM

Γ for each model
M :

Definition 5.1 [Maximal Abnormal Distance]
Max(M,Γ) = Ci

M and there is no index k such that
|Abk(M)| > |Abi(M)|. !

i.e. the highest of the values Ci for each model M and the
first element of each LM

Γ list. The Maximal Abnormal Dis-
tance expresses the highest number of disagrements possi-
ble in each abnormal model for any given agent. On its basis
one derives a new total pre-order for the abnormal models
in the following way:

Definition 5.2 [Preorder by Maximal Abnormal Distance]
A total preorder ≤Max

Γ holds between models of a premise
set Γ according to the following definition

Mi ≤Max
Γ Mj iff Max(Mi,Γ) ≤ Max(Mj ,Γ). (13)

!

Where MΓ stands for the set of DM-models of Γ, the Mini-
max Counting strategy of ADMc−mm will select the mini-
mal models with respect to the ordering obtained by≤Max

Γ :

Definition 5.3 [Selection of Models by ADMc−mm]

Mod(!c−mm(Γ)) = Min(MΓ,≤Max
Γ ). (14)

!

The result of this selection is therefore obtained by re-
stricting the DM-models to their highest abnormal part and
then selecting those that verify the minimal number of dis-
agreements. In this way the result expresses a negotiation
procedure that accounts for all the possible consistent com-
binations of contents, in view of full agreements and con-
straints.

6. An Example

The application of the various IC operators is shown in
[12] in terms of an example which will now be considered
for the operators!c+ and!c−mm. The formulation of the
example is the following:

At a meeting of a block of flat co-owners, the
chairman proposes for the coming year the con-
struction of a swimming pool, of a tennis court
and a private car park. But if two of these three
items are built, the rent will increase significantly
([12], p.787).

In the following, the letters p, q, r stand respectively for
the construction of the swimming pool, the tennis court and
the private car park. The rent increase will be denoted by s,
which is implied by each conjunction of two out of the three
items: µ = ((p∧q)∨(p∧r)∨(q∧r)) → s. The set of chioces
of the co-owners is represented by Γ = {T1&T2&T3&T4}.
The first two of the co-owners want to build the three items
and do not care about the rent (i.e. (s∨¬s) holds in T1 and
T2); the third does not want the rent increase nor anything
built; the fourth wants the last two items (i.e. (p∨¬p) holds
in T4), though he does not want the rent to increase:

T1 = {p ∧ q ∧ r}
T2 = {p ∧ q ∧ r}
T3 = {¬p ∧ ¬q ∧ ¬r ∧ ¬s}
T4 = {q ∧ r ∧ ¬s}.

Our premise set in DM is of the form Γ = {b1(p ∧ q ∧
r), b2(p∧q∧r), b3(¬p∧¬q∧¬r∧¬s), b4(q∧r∧¬s)}. The
adaptive procedure requires in the first instance the formu-
lation of the disagreements in terms of Dab-consequences
of Γ:

Dab(∆1) = (b1p ∧ ¬b0p) ∨ (b3¬p ∧ ¬b0¬p)
Dab(∆2) = (b1q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆3) = (b1r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)
Dab(∆4) = (b2p ∧ ¬b0p) ∨ (b3¬p ∧ ¬b0¬p)
Dab(∆5) = (b2q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆6) = (b2r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)
Dab(∆7) = (b4q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆8) = (b4r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)

These provide the following Ωi sets of indexed abnormali-
ties (where !biϕ will abbreviate biϕ ∧ ¬b0ϕ provided ϕ ∈
P± and !bi(ϕ1 ∨ . . . ∨ ϕn) will abbreviate bi(ϕ1 ∨ . . . ∨
ϕn)∧ (¬biϕ1∧ . . .∧¬biϕn)∧¬b0(ϕ1∨ . . .∨ϕn) provided
each ϕi ∈ P± and n > 1):

Ω1 = {!b1p, !b1q, !b1r}
Ω2 = {!b2p, !b2q, !b2r}
Ω3 = {!b3¬p, !b3¬q, !b3¬r}
Ω4 = {!b4q, !b4r}.
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Let us now consider our models, with respect to which
abnormal cardinalities shall be calculated:

M1 = b0p, b0q, b0r, b0s
M2 = b0p, b0q, b0r, b0¬s
M3 = b0p, b0q, b0¬r, b0s
M4 = b0p, b0q, b0¬r, b0¬s
M5 = b0p, b0¬q, b0r, b0s
M6 = b0p, b0¬q, b0r, b0¬s
M7 = b0p, b0¬q, b0¬r, b0s
M8 = b0p, b0¬q, b0¬r, b0¬s
M9 = b0¬p, b0q, b0r, b0s
M10 = b0¬p, b0q, b0r, b0¬s
M11 = b0¬p, b0q, b0¬r, b0s
M12 = b0¬p, b0q, b0¬r, b0¬s
M13 = b0¬p, b0¬q, b0r, b0s
M14 = b0¬p, b0¬q, b0r, b0¬s
M15 = b0¬p, b0¬q, b0¬r, b0s
M16 = b0¬p, b0¬q, b0¬r, b0¬s

In view of µ the models M2,M4,M6,M10 are rejected, i.e.
any model satisfying ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) ∧ ¬s
is ignored. The initial assumption that s ∨ ¬s holds for T1

and T2, i.e. that though these agents express preference for
the construction of all the three items, they still would ap-
prove if the three items might be built without increasing
the rent (¬s), means that with respect to ¬s there is no dis-
agreement, and none can be explicitely formulated within
Γ. This in turn means that Γ |=DM b0¬s holds, and the re-
sult of the selection shall be consistent with it. Hence, from
the previous list all the models that still verify b0s shall be
removed as well. This leaves the following list:

M8 = b0p, b0¬q, b0¬r, b0¬s
M12 = b0¬p, b0q, b0¬r, b0¬s
M14 = b0¬p, b0¬q, b0r, b0¬s
M16 = b0¬p, b0¬q, b0¬r, b0¬s.

6.1. Arbitration

For each of the remaining models one calculates the ab-
normal cardinality with respect to the indexed sets of ab-
normalities. For each model Mj and any indexed set of
abnormalities Ωi there will be a value to Ci

Mj
. These values

are listed in the following table, where at the intersection of
each Mj and Ωi one has the value of Ci

Mj
, and in the last

column each list L
Mj

Γ obtained by sorting the elements of
(C1

Mj
, . . . , Cn

Mj
) in descending oder:

Ω1 Ω2 Ω3 Ω4 L
Mj

Γ

M8 2 2 1 2 (2, 2, 2, 1)
M12 2 2 1 1 (2, 2, 1, 1)
M14 2 2 1 1 (2, 2, 1, 1)
M16 3 3 0 2 (3, 3, 2, 0)

The lexicographic order ≤C
Γ among the sequences of each

L
Mj

Γ gives the total preorder among the various models:

M12,14 ≤C
Γ M8 ≤C

Γ M16. (15)

The result of merging according to Min(MΓ,≤C
Γ) is:

$c+
µ (Γ) = b0((¬p ∧ q ∧ ¬r ∧ ¬s)∨

(¬p ∧ ¬q ∧ r ∧ ¬s)). (16)

The preferred choice by the group of co-owners is therefore
to build either the tennis court or the private car park with-
out increasing the rent. This is also the result of the pure
arbitration$GMax operator from [12].

6.2. Quasi-merging

By the same example it will be shown now how the
$c−mm operator for Minimax Adaptive Counting works.
From the very same premise set Γ = {b1(p∧ q ∧ r), b2(p∧
q ∧ r), b3(¬p ∧ ¬q ∧ ¬r ∧ ¬s), b4(q ∧ r ∧ ¬s)}, the same
derivable disjunctions of abnormalities and list of Ωi sets,
one derives the same list of values for abnormal cardinalities
in each of the possible models, and the same lexicographic
order of these values.

The models that allow the combination b0((p∧ q)∨ (p∧
r) ∨ (q ∧ r) ∧ s) are obviously still rejected in view of the
constraint µ; and it still holds in the merging state b0¬s in
view of the absence of disagreements with respect to this
literal. The rejection of any other model in which s holds
– which leaves only models M8,M12,M14,M16 – is of the
greatest importance in order to show the result of our mini-
max selection.

By the original $Max operator from [12], one cannot
avoid that some of the models are selected in which at least
two between p, q, r are negated (i.e. only one of the item is
allowed to be built by the group of co-owners), and nonethe-
less s is satisfied (i.e. the rent is increased). This result
is counterintuitive in view of the required constraint, but it
is also undesirable in view of intelligent interaction by our
agents. Our$c−mm operator avoids this undesirable result.

According to Definition 5.1, one selects the Maximal
Abnormal Distance for each of the allowed models out of
the lexicographic order of abnormal cardinalities:

Ω1 Ω2 Ω3 Ω4 Max(Mj ,Γ)
M8 2 2 1 2 2
M12 2 2 1 1 2
M14 2 2 1 1 2
M16 3 3 0 2 3

from which the following preorder based on ≤Max
Γ is ob-

tained:

M8,12,14 ≤Max
Γ M16. (17)
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The selection of models M8,M12,M14 with the minimal
values provides the following alternatives:

!c−mm
µ (Γ) = b0((p ∧ ¬q ∧ ¬r ∧ ¬s)∨

(¬p ∧ q ∧ ¬r ∧ s)∨
(¬p ∧ ¬q ∧ r ∧ ¬s)).

(18)

The preferred choice by the group of co-owners is there-
fore to build one of the three items without increasing the
rent. This results avoids the other alternatives allowed by
the !Max operator according to which one among the ten-
nis court or the private park is built and the rent is increased
(the latter condition being not necessary in view of the con-
straints).

7. Conclusion

The formulation of the family of adaptive logics ADM,
started with the definition of a Majority merging selection
in [20], has been in this paper further developed by the
definition of selection procedures corresponding to pure-
arbitration and quasi-merging protocols. A next obvious
step of this research is represented by the formulation of
a selection procedure for ADM that reflects the!n opera-
tors from [13], a set of operators that belong simultaneously
to the two main sub-families, majority and arbitration.

A number of application contexts, such as those pre-
sented in [19] for heterogenous databases and in [18] for
judgment aggregation procedures, provide the settings for
testing the computational limits and effectiveness of the
procedures. With respect to these open questions, a num-
ber of positive and negative results can be formulated, in
line with those valid for other general merging protocols.
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ing. In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), pages 488–498, 1998.

[12] S. Konieczny and R. Pino-Pérez. Merging information un-
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Abstract

This paper aims to extend in two directions the proba-
bilistic dynamic epistemic logic provided in Kooi’s paper
[8]. Kooi’s probabilistic dynamic epistemic logic adds to
probabilistic epistemic logic sentences that express conse-
quences of public announcements. The first extension of-
fered in this paper is to add a previous time operator to a
probabilistic dynamic epistemic logic similar to Kooi’s. The
other is to involve action models and update products in a
probabilistic dynamic epistemic logic setting. This would
allow for more kinds of actions, such as private announce-
ments.

1 Introduction

Probabilistic epistemic logic has been developed to ex-
press interaction between both qualitative and quantitative
beliefs. This logic lets us formally express statements such
as “Bob believes the probability of ϕ to be at least 1/2” or
“Ann considers the probability of ψ to be 1/4”. As we are
often concerned about how beliefs and probabilities change
over time, there have been papers written that mix probabil-
ity, belief, and time. Examples include, [7] and [3], which
use probabilistic systems of runs, and [8], which combines
probability with public announcement logic. The proba-
bilistic systems of runs provides a natural way to view time,
both past and future, but conditions need to be imposed in
order to ensure that agents’ probability measures change in
a realistic way. Public announcement logic, and more gen-
erally dynamic epistemic logic (DEL), provides a mechan-
ical procedure for changes in belief upon receipt of public
information, and [8] extends this mechanical procedure to
show how a probability measure may change given public
information. But DEL has limitations in its ability to ex-
press features of the past and future. By adding temporal
logic to DEL in a non-probabilistic setting, the paper [13]
captures both some of the temporal flexibility of the system
of runs as well as the mechanical method offered by DEL
of going from one stage in time to the next. One goal of this
paper is to involve probability in the combination of tempo-

ral logic and DEL, focusing on the inclusion of a previous-
time operator and exploring the possibility of completeness.

Another goal is to go beyond public announcements.
There are other forms of information exchange that are
of interest, such as semi-private announcements, where
the fact that a message was sent to someone is not a se-
cret, and completely-private announcements, where non-
recipients of the message are completely unaware of the fact
that there is a message at all. An illuminating example in-
volving semi-private announcements is given in [3]. The
sequence of events provides a context motivating why there
are stages in time in which an agent’s sample space should
differ from the set of states the agent considers possible. A
non-probabilistic mechanical method for changing beliefs
according to semi-private announcements was given in [2]
and [1]. There, semi-private announcements are encoded in
action models, and a product is defined between a model
and an action model to produce an updated model that en-
codes the updated beliefs. This goal then is to involve action
models in probabilistic dynamic epistemic logic.

2 Probabilistic Public Announcement Logic
with a Previous Time Operator

As the underlying structure for public announcement
logic is the epistemic model, the underlying structure for
probabilistic public announcement logic is the probabilistic
epistemic model, which adds probability spaces to an epis-
temic model.

Definition 2.1 [Probabilistic Epistemic Model] Let Φ be
a set of proposition letters, and I be a set of agents. A
probabilistic epistemic model is a tuple M = (X, { i−→
}i∈I, ‖ ·‖ , {Pi,x}), where

• X is a set of “states” or “possible worlds”

• i−→⊆ X2 is an epistemic relation for each agent i ∈ I,
that is x

i−→ y if i considers y possible from x

• ‖ ·‖ is a function assigning to each proposition letter p
the set of states where it is true.
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• Pi,x is a probability space for each agent i and state x,
that is Pi,x = (Si,x,Ai,x, µi,x), where

– Si,x ⊆ X is set called the sample space

– Ai,x is a σ-algebra over Si,x (that is, a collection
of subsets of Si,x that is closed under comple-
ments and countable unions). We the sets in the
σ-algebra “measurable sets”.

– µi,x : Ai,x → [0, 1] is a probability measure
over Si,x (that is, µi,x(Si,x) = 1 and for each
countable collection A1, A2, . . . of pairwise dis-
joint sets in A, µ(

⋃∞
k=1 Ak) =

∑∞
k=1 µ(Ak)).

"

For the rest of this section, we restrict the set X to be finite
and the set Ai,x to be the power set P(Si,x). Thus we need
not specify the σ-algebra Ai,x until the next section. It is
recommended that Si,x ⊆ {z : x

i−→ z}, as every outcome
in the sample space is a state the agent considers possible.
For technical convenience in definition 2.2, we will not im-
pose such a restriction. One might assume that the con-
verse of the recommendation should hold too, thus making
i’s sample space Si,x equal to the set {z : x

i−→ z} of states i
considers possible, but the example in the beginning of the
next section motivates why we prefer not to make this re-
striction either. The example presents a situation in which
an agent does not know enough to assign a probability to
everything she considers possible, and although there are
different ways of handling the uncertainty about the prob-
ability, omitting some states from the sample space is an
attractive solution. As sample spaces are defined for each
state, the agent may still be uncertain about which sample
space is correct.

Public announcement logic is concerned with how an
agent revises his/her beliefs given new information, know-
ing that this information is received by all other agents. Of
greatest interest is new information that is consistent with
the agent’s beliefs, and PAL provides an enlightening me-
chanical procedure called an update for producing a new
epistemic model from an old one given the new information.
But although the updates provide a reasonable method of re-
vising beliefs upon consistent information, they do not upon
inconsistent information. The goal of probabilistic public
announcement logic is to provide an update procedure that
shows how to produce a new probabilistic epistemic model
from an old one given information that is not only consistent
with the agents’ beliefs, but is also given positive probabil-
ity. The case where the probability of the new information
is 0 poses difficulties, and the goal of the definition of such
a case is more to provide technical convenience than to offer
a realistic result.

Definition 2.2 [updates] Given a probabilistic epistemic
model M = (X, { i−→}, ‖ · ‖, {Pi,x}) and a subset Y of X ,
the update of M given Y is written M⊗Y and is the model
(X ′, { i−→}′, ‖ ·‖ ′, {P′

i,x}), where

• X ′ = X ∩ Y

• x
i−→
′
y iff x, y ∈ Y and x

i−→ y

• ‖p‖′ = ‖p‖ ∩ Y

• If µi,x(Y ) = 0, then let P′
i,x be the only probability

space definable on the singleton x. Otherwise, let P′
i,x

be defined by

– S′i,x = Si,x ∩ Y

– For each subset Z ⊆ Y , µ′i,x(Z) =
µi,x(Z)/µi,x(Y )

"

This definition differs from the one in [8] in that here updat-
ing removes states while in [8] it removes relational connec-
tions but not states. Probability is updated in the same way
as long as the set Y has positive probability. The reason for
these differences is to aid in proving completeness for the
language that adds a previous time operator to probabilis-
tic public announcement logic. Although completeness is
still under construction (and the semantics in [8] may later
demonstrate itself to be easier), the following discussions
about the previous time operator may provide some intu-
ition for why this new semantics may help, particularly for
the conditions in definition 2.4.1

A natural choice for semantics that includes a previous
time operator for this language is to involve structures that
consist of a list of all past and present models. This is what
was done in [13]

Definition 2.3 [History] A history H is a list of models
(M0,M1, . . . ,Mn), where for each k, Mk = (Xk, { i−→k

}, ‖ ·‖ k, {Pki,x}), and Mk+1 = Mk ⊗Xk+1. "

Given a history H = (M0,M1, . . . ,Mn), let P̂ (H) =
(M0,M1, . . .Mn−1) be the previous history, M̂(H) =
Mn be the last (most recent) model in the list, and let
X̂(H) = Xn. We may write x ∈ H for x ∈ X̂(H).

1Definition 2.4 makes use of sets An consisting of all states corre-
sponding to time n. It is helpful that this set is equal to the set Bn con-
sisting of all of the more recent versions of states that satisfied the formula
that induced the update. Finding an appropriate characterization of Bn so
far appears more difficult using the semantics of [8].
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Language

Let Φ be a set of proposition letters and I be a set of agents.
We define by mutual recursion a multi-sorted language L
with sentences and terms for each agent. The sentences
(also called formulas) are given by

ϕ ::= true | p | ¬ϕ |ϕ1 ∧ ϕ2 |!iϕ | [ϕ1]ϕ2 | ti ≥ q |Y ϕ

where t is a term, p ∈ Φ, and i ∈ I.
The terms for agent i are given by

ti ::= qPi(ϕ) | ti + ui

where q ∈ Q is a rational number, ti and ui are terms for
agent i, and ϕ is a sentence.

The semantics is defined by a function [[·]] from formulas
to functions f that map each history H to a subset of X̂(H),
the carrier set of the most recent model in H . Then

• [[ true]] is the function that maps each H to the whole
set X̂(H),

• [[¬ϕ]](H) = X̂(H)− [[ϕ]](H)

• [[ϕ ∧ ψ]](H) = [[ϕ]](H) ∩ [[ψ]](H).

• x ∈ [[!iϕ]](H) if and only y ∈ [[!iϕ]](H) for every y

in which x
i−→ y, where i−→ is i’s epistemic relation in

M̂(H) (the most recent model in H).

• x ∈ [[[ϕ1]ϕ2]](H) if and only if either x '∈ [[ϕ1]](H) or
x ∈ [[ϕ2]](H ⊗ [[ϕ1]](H)).

• x ∈ [[q1Pi(ϕ1) + · · ·+ qnPi(ϕn) ≥ q]](H) if and only
if q1µi,x([[ϕ1]](H)) + · · · + qnµi,x[[ϕn]](H)) ≥ q).

• x ∈ [[Y ϕ]](H) if and only if H = (M) has just one
model or x ∈ [[ϕ]](P̂ (H)).

We have the usual modal abbreviations, such as "Aϕ ≡
¬!A¬ϕ and 〈ψ〉ϕ ≡ ¬[ψ]¬ϕ, and we let Ŷ ϕ ≡ ¬Y ¬ϕ,
which asserts that there is a previous time and ϕ is true then.
Here are some abbreviations in the language that express a
variety of inequalities and equality.

• t ≤ q ≡ −t ≥ −q

• t < q ≡ ¬(t ≥ q)

• t > q ≡ ¬(t ≤ q)

• t = q ≡ t ≤ q ∧ t ≥ q.

• t ≥ s ≡ t− s ≥ 0

• t = s ≡ t− s ≥ 0 ∧ s− t ≥ 0

Proof system

Include axioms of proposition logic together with the fol-
lowing:

!i-normality
!i(ϕ → ψ) → (!iϕ → !iψ)

[ϕ] -normality
[ϕ](ψ1 → ψ2) → ([ϕ]ψ1 → [ϕ]ψ2)

Y -normality
Y (ϕ → ψ) → (Y ϕ → Y ψ)

Update partial functionality [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
Y -partial functionality Ŷ ψ ↔ (Ŷ true → Y ψ)
Future atomic permanence (ϕ → p) ↔ [ϕ]p
Past atomic permanence Y p ↔ (Ŷ true → p)
Update yesterday [ϕ]Y ψ ↔ (ϕ → !i[ϕ]ψ)
Probability yesterday 0

Ŷ (
∑n

k=1 qkPi(ϕk) = 0) → (
∑n

k=1 qkPi(Ŷ ϕk) = 0)
Probability yesterday 1

Ŷ (
∑n

k=1 qkPi(ϕk) =
∑n

k=1 qkPi( true))
→ (

∑n
k=1 qkPi(Ŷ ϕk) =

∑n
k=1 qkPi( true))

Epistemic-yesterday mix Y !iϕ → !iY ϕ
Epistemic update [ϕ]!iψ ↔ (ϕ → !iψ)
Probability update

Pi(ϕ) > 0 → ([ϕ]
∑n

k=1 qkPi(ϕk) ≥ q
↔ (ϕ →

∑n
k=1 qkPi(ϕ ∧ [ϕ]ϕk) ≥ qPi(ϕ)))

Probability 0 update
Pi(ϕ) = 0 → ([ϕ](

∑n
k=1 qkPi(ϕk)) ≥ q

↔ (ϕ →
∑n

k=1 qkPi( true) ≥ q)
Non-initial time

Ŷ true → !iŶ true ∧ Pi(Ŷ true) = 1
Initial time

Y false → !iY false ∧ Pi(Y false) = 1
0 terms ∑n

k=1 qkPi(ϕk) ≥ q
↔ (

∑n
k=1 qkPi(ϕk)) + 0Pi(ϕk+1) ≥ q

Permutation∑n
k=1 qkPi(ϕk) ≥ q →

∑n
k=1 qjkPi(ϕjk) ≥ q

wherej1, . . . , jn is a permutation of 1, . . . , n
Addition ∑n

k=1 qkPi(ϕk) ≥ q ∧
∑n

k=1 q′
kPi(ϕk) ≥ q′

→
∑n

k=1(qk + q′
k)Pi(ϕk) ≥ (q + q′)

Multiplication
(
∑n

k=1 qkPi(ϕk) ≥ q)
↔ (

∑n
k=1 dqkPi(ϕk) ≥ dq) where d > 0

Dichotomy (t ≥ q) ∨ (t ≤ q)
Monotonicity

(t ≥ q) → (t > q′) where q > q′

Nonnegativity Pi(ϕ) ≥ 0
Probability of truth Pi( true) = 1
Additivity

Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ) = Pi(ϕ)
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Include axioms of proposition logic together with the fol-
lowing:

!i-necessitation From ! ϕ infer ! !iϕ
[ϕ] -necessitation From ! ϕ infer ! [ϕ]ϕ
Y -necessitation From ! ϕ infer ! Y ϕ
Equivalence

From ! ϕ ↔ ψ, infer ! Pi(ϕ) = Pi(ψ)

Approach to completeness

A general strategy for proving weak completeness is to start
with a consistent formula and then prove that it is satisfi-
able. Modal logic and probabilistic epistemic logic provide
techniques for finding filtrations that may satisfy either the
formula or a formula provably equivalent to the first. But
such filtrations are single models, not lists of models. There
is a similar difficulty for DEL to use filtrations, because the
semantics of DEL involves the construction of a new model.
But it turns out that in DEL, a semantics for a subset of for-
mulas, each called normal form formulas, can be defined
in which no new model needs to be constructed in order to
determine whether a formula is true. In addition, each for-
mula is provably equivalent to a normal form formula, and
the two semantics relate to each other in a natural and con-
venient way: a formula is true given one semantics if and
only if it is true given the other.

To employ a strategy similar to this, we need an alter-
native set of models and an alternative semantics. Let us
define a non-standard model as a probabilistic epistemic
model together with a binary relation Y . Ideally xY z can
be read as “x is one stage later than z”, but this interpre-
tation may be difficult to achieve unless there are some re-
strictions placed on this new non-standard model. We thus
provide the following definition:

Definition 2.4 [non-standard history] Let

M = (X, { i−→}i∈I, ‖ ·‖ , {Pi,x}, Y )

be a non-standard model. Define

A0 = {x : there is no z such that xY z},

and for each n > 0,

An = {x :there is a z such that xY nz

and there is no z such that xY n+1z}

Define for each set A and binary relation R,

R(A) = {z : there is a x ∈ A such that xRz}

Then M is a non-standard history if the following condi-
tions hold:

1. Partial functionality of Y : if xY z and xY z′, then z =
z′.

2. Bounded age: There exists N such that for all x there
is no z for which xY Nz.

3. Epistemic synchronicity: if x
i−→ z, then for each n,

xY nx′ for some x′ iff zY nz′ for some z′.

4. Probabilistic synchronicity: if x, z, w ∈ X and x, z ∈
Si,w, then for each n, xY nx′ for some x′ iff zY nz′ for
some z′.

5. Update product relation condition a: if x
i−→ z and

zY z′ then there exists x′ such that xY x′ and x′ i−→ z′.

6. Update product relation condition b: if xY x′, x′ i−→ z′,
and zY z′, then x

i−→ z.

7. Update product sample space condition a: for each
n ≥ 1, i ∈ I, x ∈ An, and z such that xY z, if
µi,z(Y (An)) > 0, then Y (Si,x) = Y (An) ∩ Si,z .

8. Update product sample space condition b: for each
n ≥ 1, i ∈ I, x ∈ An, and z such that xY z, if
µi,z(Y (An)) = 0, then Si,x = {x}.

9. Update product probability condition a: for each
n ≥ 1, i ∈ I, x ∈ An, and z such that xY z, if
µi,z(Y (An)) > 0, then for each A ⊆ Si,x,

µi,x(A) =
µi,z(Y (A))
µi,z(Y (An))

10. Update product probability condition b: for each
n ≥ 1, i ∈ I, x ∈ An, and z such that xY z, if
µi,z(Y (An)) = 0, then µi,x({x}) = 1.

11. Update product valuation condition: if xY z then x ∈
‖p‖ iff z ∈ ‖p‖

#

Semantics can be defined for formulas that do not include
public announcement operators [ϕ]. These formulas consti-
tute a language which we call normal form. The operator
Y is treated as the box modality for the relation Y . The
semantics for the other operators remain the same.

To show that every formula is provably equivalent to one
in normal form, we employ a term rewriting system similar
to one used in [1]. Our term rewriting system will make use
of the following algebraic semantics.

Definition 2.5 [Signature] We define ∆ to be the following
signature. It is multi-sorted, with one sort for sentence terms
s and another for weight terms ti for each agent i ∈ I. Here
are the symbols in the signature:
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1. Each p ∈ Φ and true is a constant symbol of sort s.

2. ¬,!A,!∗
B, Y are function symbols of type s → s

3. ∧, →, and [ ] are binary function symbols of type s ×
s → s

4. Pi is a function of type Q× s → ti

5. +i is a function of type ti × ti → ti

6. ≥i is a function of type ti ×Q → s

7. trivi is a function of type ti → ti

8. bayi is a function of type s× ti → ti

!

We will in general write [s]s for [ ](s, s), and we choose to
write +i and ≥i in infix notation too. In addition, we of-
ten drop the subscripts when it is understood from context.
The functions bay and triv are just tools for reducing for-
mulas of the form [x](t ≥i q) in the next definition. The
choice of symbol bay is supposed to indicate a relationship
to Bayesian updating, and the choice of the symbol triv is to
indicate that the probabilities are trivialized (that is, we will
take the probability of true).

Let L+ be the algebraic language defined by this signa-
ture, and let L+(X) be the language L augmented with a
set of variables X . Syntactically, occurrences of a variable
must agree on the sort, that is, x +i x implies that x is a
weight term for i, and x ≥i x is not allowed, since the first
occurrence of x would have to be a weight term and the
second a sentence term.

A term rewriting system is a collection of rewrite rules,
written ϕ ! ψ, where ϕ, ψ ∈ L+(X). Executing a rewrite
rule on a formula χ would identify a substitution instance
of ϕ in χ and replace it with a substitution instance of ψ
(using the same assignment of variables to terms). For our
purposes, we use the following rewrite system.

Definition 2.6 [Rewriting system R] Here is a rewriting
system of use to us

(r1) x → y ! ¬(x ∧ ¬y)
(r2) [x] true ! true
(r3) [x]p ! x → p
(r4) [x]¬y ! x → ¬[x]y
(r5) [x](y ∧ z) ! [x]y ∧ [x]z
(r6) [x]!Ay ! x → !A[x]y
(r7) [x]Y z ! x → z
(r8) triv(Pi(q, x)) ! Pi(q, true)
(r9) triv(t1 + t2) ! triv(t1) + triv(t2)
(r10) bay(x, Pi(q, z)) ! Pi(q, x ∧ [x]z)
(r11) bay(x, t1 + t2) !

bay(x, t1) + bay(x, t2)
(r12) [x](t ≥i q) !

(Pi(−1, x) ≥ 0 ∧ (x → (triv(t) ≥ q)))∨
(¬(Pi(−1, x) ≥ 0)∧

(x → (bay(x, t) +i Pi(−q, x) ≥ 0)))

!

These rules correspond to either biconditional axioms
schema or provable biconditiionals, which is the core reason
why a rewritten formula is provably equivalent to the first.
Note that there is a natural translation between our original
language L and the algebraic language L+. The rewriting
is done in L+ and the provable equivalence is determined
between corresponding formulas in L.

But it is also important that we can apply rules finitely
many times in order to obtain a term corresponding to a
formula in normal form. We first observe that no rule can
be applied to terms if and only if the terms correspond to
formulas in in normal form. But we must also show that
only finitely many applications of the rules can be applied,
something that we may doubt, given that rule (r12) appears
to produce a much more complicated term. But the follow-
ing interpretation of symbols in the signature can help us
show that the rewriting system terminates.

Definition 2.7 [Interpretation of Signature] Let us overload
the symbol [[·]] to indicate interpretation. Our signature has
a carrier N≥3 for sentences, and a carrier N≥3 for actions.
The function symbols are then interpreted as the following
arithmetic functions on these numbers:

[[ true]] = 3
[[p]] = 3
[[¬]](a) = a + 1
[[∧]](a, b) = a + b
[[→]](a, b) = a + b + 3
[[!A]](a) = a + 2
[[+i]](a, b) = a + b

[[bay]](a, b) = ab

[[triv]](b) = 3b

[[Y!]](a) = a + 1
[[[ ]]](a, b) = ab+4

[[Pi]](q, a) = a + 5
[[≥i]](a, q) = a

We recursively extend this interpretation to all terms and
sentences. !

It turns out that every application of a term rewriting rule
results in a term with a strictly smaller interpretation. Thus
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the interpretation of the term is an upper bound to the num-
ber of times rules can be applied before terminating.

To show completeness, we start with a consistent for-
mula in L, translate it into L+, and then apply rewrite rules
until we obtain a term in which no more rules can be ap-
plied. The result of translating this term back into L is a
normal form formula provably equivalent to the original for-
mula. We then show for every non-standard history H and
state x in the non-standard history, there is an actual his-
tory H and a state in that history that agrees with x on the
truth of every normal form formula. We then form a filtra-
tion for the non-standard semantics. A number of model
transformations will likely be needed to turn the filtration
into a history. One transformation that might be useful is
an unravelling (or partial unravelling) about a point in the
canonical model that satisfies the consistent formula. This
was done in [12]. But producing a discrete probability after
unravelling is not always straightforward or possible. Thus
it would be helpful to get a better grasp of issues regarding
updating probabilistic epistemic models that have unmea-
surable sets (sets not in the σ-algebra). This is the great-
est challenge discussed in the next section concerning a dy-
namic probabilistic epistemic logic.

3 Involving Action Models

The example in [3] is as follows. There are two agents:
i and k. Agent k receives a bit: 0 or 1. Agent i is aware
that k learns what the bit is, but i does not know what the
bit is. Then agent k flips a fair coin, and observes the result.
Again i is aware that k learns the result of the flip, but does
not learn the result. Viewing heads as 1 and tails as 0, agent
k performs action s if the coin agrees with the bit, and d if
it does not.

Fagin and Halpern viewed this experiment through a sys-
tem of runs. There are 4 possible runs of this example
based on the outcome of the bit together with the outcome
of the coin. The action d or s is determined from the first
two outcomes. Let us consider 4 states, one for each run:
(1, H), (1, T ), (0, H), (0, T ). Before agent k performs ac-
tion s or d, agent i considers all four possible. But what
should agent i’s probability space be at each state? Three
possibilities are discussed in [3] and are depicted below.
The solid box depicts what i would consider to be the sam-
ple spaces from each state within its borders, and the dotted
lines depict the smallest non-empty sets in the σ-algebra
for i from each element in the sample space. Note that i’s
probability spaces from one state to another need not always
differ.

(1, H) (1, T )

(0, H) (0, T )

M1 s

(1, H) (1, T )

(0, H) (0, T )

M2 s

(1, H) (1, T )

(0, H) (0, T )

M3

The diagram on the left depicts the situation where the sam-
ple space should consist of all 4 states, thus making the sam-
ple space the same as the set of states considered possible.
Notice that the set {(1, H), (1, T )} is not measurable (that
is, is not in the σ-algebra). Unlike a fair coin, we do not
know enough about how the bit is to be assigned to give it
a probability. But even without knowing the probability of
the bits 1 and 0, we can determine that s (represented by
{(1, H), (0, T )}) has probability 1/2, and similarly for d.
So the second diagram provides model where i can give a
probability to s, but still does not give a probability to bits
1 or 0. The set of states i considers possible is still all four
states, but now the sample spaces are different from that.
Thus i can also be uncertain about whether the bit turned
out to be 0 or 1, but can still determine that the probability
of s is 1/2 in each case, thus concluding that the probability
is 1/2. In the third diagram, agent i believes the probability
of any outcome is either 1 or 0, but does not know which.
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It is suggested that these three diagrams may be viewed
as three different stages of the example. The first diagram
would correspond to the time before the bit is given. The
second diagram would correspond to the time after the bit
is given but before the coin is flipped. The third diagram
would correspond to the time after the coin is flipped. The
transition from one stage to the next might make more sense
if we view the probabilities as objective. Indeed, these di-
agrams would just as appropriately represent k’s probabili-
ties at the three stages. But one consequence of using these
objective probabilities is that i’s degree of certainty about
the probabilities changes as a result of learning that k was
informed of something. From the first diagram to the sec-
ond, i becomes more certain about the probability of events
s and d, but in both steps, i becomes less certain about the
probability space. Being more sensitive to probabilities as
subjective, we may prefer that there is more information re-
vealed to i between stages, to help the change in the degree
of certainty. Suppose that at first i is not aware of any plan
for k to perform either action s or d, and hence does not
wonder about the probabilities of these two events. The se-
quence of actions may be as follows:

1. k receives the bit.

2. k informs i of his plan to perform action s if the result
of the coin matches the bit and d if it does not match.

3. k observes the outcome of the coin.

4. k offers i a bet that the result was heads.

The first diagram would correspond to i’s probabilities be-
fore any of these actions have taken place. The second dia-
gram would correspond to i’s probabilities after the second
action, but before the third. The third diagram would cor-
respond to i’s probabilities after all four actions have taken
place. Perhaps action two, where k informs i of the plan to
perform either s or d prompts i to rework his probabilities
so that s and d are assigned probabilities. The contribution
of the fourth action, where k offers i a bet, may be more
convincing. Now i considers it highly unlikely that k would
have offered the bet knowing that he would lose, yet i could
not have a quantitive grasp of this likelihood, and thus could
not assign a probability.

Now in terms of probabilistic epistemic logic, the first
model poses a difficulty; if there is any formula for the bit 1,
the bit 0, the action s, or the action d, then the set of states
making that formula true is not measurable. A temporary
fix is proposed in [3], which is to use the inner measure
function. If (S,A, µ) is a probability space, then the inner
measure of µ is µ∗ defined by

µ∗(T ) = sup{µ(A) : A ∈ A, A ⊆ T}

for each T ⊆ S. We could alternatively use the outer mea-
sure:

µ∗(T ) = inf{µ(A) : A ∈ A, T ⊆ A}

for each T ⊆ S. Inner and outer measures are related ac-
cording to µ∗(T ) = 1 − µ∗(T ), where T is the comple-
ment of T in S. Thus either the inner or outer measure
can be taken as primitive in the language, and the other can
be defined according to the other. Either the inner or outer
measure lets us define the semantics of formulas such as
Pi(ϕ) ≥ 1/2 even when the set of states making ϕ true
is unmeasurable. But as the inner measure and the outer
measure need not be a measures themselves, the probabil-
ity axioms would fail. One suggestion given in [3] is that
we explicitly require that the σ-algebra be large enough to
contain all sets corresponding to each formula. But non-
measurable cases have been considered with a more relaxed
set axioms

In defining an update product between a probabilistic
epistemic model and an action model, we shall first consider
the general case, where sets of states that make the formulas
true need not be measurable. In particular, the formulas in-
ducing the update might not correspond to measurable sets
(the elements of the σ-algebra). We thus define an “outer
(or inner) probability dynamic epistemic logic”. To make
this task manageable, we restrict the models to be finite.

Definition 3.1 [action model] An action model (Σ, { i−→
}, {Pi,σ}, pre) is a probabilistic epistemic model with the
valuation function ‖ ·‖ replaced by a function pre which
assigns to each σ ∈ Σ a function that assigns to each prob-
abilistic epistemic model a subset of the carrier set of that
model. Each element σ ∈ Σ is called an action type. #

We define the update product between a probabilistic epis-
temic model and an action model in two stages. We first
define the product between the original probabilistic epis-
temic model and an action signature (which is just a proba-
bilistic epistemic frame (no valuation, and without the pre
function)), and then relativize the result according to the pre
function. The first product is called the unrestricted product.
The second is called the relativization.

Definition 3.2 [unrestricted product] The unrestricted
product between a probabilistic epistemic model M and an
action model Σ is M⊗U Σ with the following components:

1. X⊗ = X × Σ

2. (x, σ) i−→ (z, τ) iff x
i−→ z and σ

i−→ t

3. ‖p‖⊗ = ‖p‖ × Σ

4. We define Pi,(x,σ) as follows:
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(a) The sample space is the Cartesian product
Si,(x,σ) = Si,x × Si,σ

(b) The σ-algebra Ai,(x,σ) is the smallest σ-algebra
containing

{A×B : A ∈ Ai,x, B ∈ Ai,σ}

(c) The probability measure is defined as

µi,(x,σ)(A) =
n∑

k=1

µi,x(Bk)µi,σ(Ck)

where Bk ∈ Ai,x, Ck ∈ Ai,σ , and A =⊎n
i=1 Bk × Ck

"

This product is a probabilistic epistemic model. The usual
definition for product measures (for finite spaces) is given
to our new probability measure. Product measures need
not be restricted to finite spaces, and hence this unrestricted
product can be defined between any probabilistic epistemic
model and action model of infinite size.

But the relativization of our probabilistic epistemic
model requires some restriction be placed on the probabilis-
tic epistemic model. Requiring the carrier set of the prob-
abilistic epistemic model to be finite is sufficient and still
allows us to explore a wealth of examples.

Definition 3.3 [relativization] The relativization of a prob-
abilistic epistemic model M to Y ⊆ X is given by M⊗R Y
with the following components:

1. XY = Y

2. x
i−→Y z iff x

i−→ z and x, z ∈ Y

3. ‖p‖Y = ‖p‖ ∩ Y

4. For x ∈ Y , if µ∗i,x(Y ) = 0, then define Pi,x to be the
trivial probability space on the singleton x. Otherwise

(a) SY i,x = Si,x ∩ Y

(b) AY i,x is the σ-algebra generated by {A ∩ Y :
A ∈ Ai,x}

(c) The probability measure is defined by

µY i,x(A) =
µ∗i,x(B)
µ∗i,x(Y )

"

The choice to update using outer measures rather than inner
measures is mostly arbitrary. The outer measure, however
is less likely to be zero. When the σ-algebra A of a space

(S,A, µ) is finite, the outer measure of µ applied to a set
T ⊆ S becomes

µ∗(T ) =
⋂
{µ(A) : A ∈ A, T ⊆ A}

= µ(
⋂
{A : A ∈ A, T ⊆ A})

Thus the outer measure of a (not necessarily measurable) set
is equal to the measure of an appropriate measurable set.
This is not guaranteed in the infinite case. But this prop-
erty helps us guarantee that the updated function is indeed a
measure. The most difficult case is the additivity condition.
If A1, . . . , An is a set of pairwise disjoint sets measurable in
the relativized model, let Âi =

⋂
{B : Ai ⊆ B, B ∈ Ai,x},

where Ai,x is the σ-algebra for the original model. Unlike
the Ai, the Âi are necessarily measurable in the first space.
Also Â1, . . . , Ân is pairwise disjoint, for if Y is the set with
which we relativized, then B = Âj ∩ Âk ⊆ Y (otherwise
Aj and Ak would not be disjoint). But Aj ⊆ Âj − B and
Âj − B ∈ Ai,x, thus Âj = Âj − B, and so we conclude
that B = ∅. Also observe that

⋃̂
Ai =

⋃
Âi. We can then

make use of this and the fact that µ∗(C) = µ(Ĉ) for any
set C in order to establish the additivity property of the new
measure.

Definition 3.4 [update product] Let Σ = (Σ, { i−→
}i∈I, {Pi,x}, pre) be an action model and M = (X, { i−→
}, ‖ · ‖, {Pi,x}). Let Y = {(x, σ) : x ∈ pre(σ)(M)}. The
update product between M and Σ is written M⊗Σ and is
defined as (M⊗U Σ)⊗R Y . "

Returning to the example above, the action of revealing
the bit to k in such a way that i knows k learned something
is a semi-private announcement. Similarly, k’s learning the
result of the flip in such a way that i knows k learned some-
thing is also a semi-private announcement. The relational
part of the action signature for semi-private announcements
may be depicted by the following diagram:

σ τ

R1

i
i, j i, j

From each of the two action types, i’s probability space is
the only probability space where the sample space is that
single action type. This action signature may be used for
the action models of both stages. For the first stage, the
precondition of σ is 1, and the precondition of τ is 0. For
the second action signature, the precondition of σ could be
H , while the precondition for τ could be T .

But what should be the probability spaces of the action
model? Let us assume that one action model will capture
both the semi-private announcement of the bit to k and an-
nouncement that k plans to do either s or d. Then both i and
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k’s probability spaces in the action model could be i and k’s
probability spaces:

σ τ

P1

From each of the action types, the probability space is the
only space that can be defined over a sample space with one
element. Dotted ovals are therefore not needed. That i and
k share the same probability spaces agrees with the view
that probabilities should be objective.

But let us consider what happens if we break down the
transition from M1 to M2 into two steps (giving us an in-
termediate model) and similarly break down the transition
from M2 to M3 into two steps. The action where k is in-
formed of the bit will still be considered a semi-private an-
nouncement, and the relational structure will be the same.
The only difference shall be i’s probability space, which we
change to the following structure:

σ τ

P2

The action where i is informed that k plans to do either
action s or d will serve the purpose of splitting i’s probabil-
ity space into two. This can be done by using the probability
structure P1. We will also use P1 for k’s probability struc-
ture. As k’s probability spaces are already split, using P1

for k as well will not affect k’s probability structure in the
update model. For the relational structure we use

σ τ

R2

i, k
i, k i, k

As the precondition of σ is the bit 1 and the precondition of
τ is the bit 0, the updated model will have the same rela-
tional structure as it did right before updating.

We use the same relational and probabilistic structures in
the actions model from M2 to M3, but we use different pre-
conditions. We may let the precondition for σ be H rather
than 1, and we may let the precondition for τ be T rather
than 0.

When we consider the language and semantics, we may
wish that every formula correspond to a measurable set. But
even this might not guarantee that the set Y in definition
3.3 is itself measurable. Consider an action signature for
which k’s probability space is given by diagram P2, that
is, there are only two measurable sets: the whole set and
the empty set. Suppose a probabilistic epistemic model M

has two states: x and y, and k’s probability sample space is
{x, y} and all subsets are measurable. Then in the product
measure, the measurable sets are

{∅, {(x, σ), (y, σ)}, {(x, τ), (y, τ)},
{(x, σ), (y, σ), (x, τ), (y, τ)}}.

Suppose there were a formula ϕ for which only x is true,
and another formula for which y is true. Then these for-
mulas correspond to measurable sets. Let the function pre
reflect these two formulas, by defining pre(σ)(M) = x
and pre(τ)(M) = y. Then when taking the full update
product, we would be relativizing with respect to the set
Y = {(x, σ), (y, τ)}, which is not measurable. In gen-
eral, if an action signature has only discrete probability
spaces (probability spaces where the σ-algebras are power
sets of the sample spaces), then the measurability of the sets
pre(σ)(M) for each σ ∈ Σ, does guarantee that the set Y
in definition 3.3 is measurable. It remains to be seen that
in an updated model, every formula still corresponds to a
measurable set.

4 Conclusion

This paper is a synthesis of two related projects. One is
to add a previous time operator to a probabilistic dynamic
epistemic logic similar to the one given in [8], and the other
is to involve action models and update products in a prob-
abilistic dynamic epistemic logic. Although it appears that
these projects are independent, the second project may help
support the first. We have so far approached the first project
with the initial goal of maintaining simplicity in hope that
technical results will be easier to achieve. But sometimes
extra structure makes it easier to prove certain results, and
we have yet to see if the involvement of unmeasurable sets
will facilitate the completeness proof of a probabilistic dy-
namic epistemic logic with a previous time operator.

The second project explores the possibility and moti-
vation of non-discrete probability measures and updating
based on non-measurable sets. We have seen one way to
update finite probabilistic epistemic models that are not nec-
essarily discrete upon finite action models that are not nec-
essarily discrete in order to yield a new finite probabilis-
tic epistemic model. Although this updating can guarantee
that the updated model is indeed a probabilistic epistemic
model, it does not guarantee that in the updated model, all
the formulas correspond to measurable sets; we have yet to
see which conditions would ensure the updated model does
have that property. This is only a concern if we wish to en-
force additivity axioms of probability. Otherwise we may
have the machinery for a nice inner (or outer) probability
dynamic epistemic logic.

As this update product is quite flexible, with non-
measurable sets in both probabilistic dynamic epistemic
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models and action models, questions open up as to how to
interpret particular instances of updating. We have looked
at an example in [3] to help us with this. While doing so, we
distinguished between subjective and objective probabilities
and considered breaking down each action into two. The
second action for each only affects the probability spaces
being updated, and does not affect the structure of the epis-
temic relations. There so far is no language for this prob-
abilistic dynamic epistemic logic with action models and
update products, and in coming up with a language, we
should determine what fundamentally is driving this change
in probability spaces. May the source of information play
an important role, as suggested by the phrasing of the action
“k offers i a bet that the result was heads”? What is the es-
sential component of the action phrased “k informs i of his
plan to perform action s if the result of the coin matches the
bit and d it does not match”? I suggest that in future work,
finding more examples will help reveal underlying patterns
that will enable us to adequately answer these questions.
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Abstract

Diachronic uncertainty, uncertainty about where an
agent falls in time, poses interesting conceptual difficul-
ties. Although the agent is uncertain about where she falls
in time, nevertheless, she can only be uncertain at a par-
ticular moment in time. This conceptual paradox can be
resolved by providing an equivalence notion between mod-
els with diachronic uncertainty and models with synchronic
uncertainty. The former are interpreted as capturing the
causal structure of a situation, while the latter are inter-
preted as capturing its epistemic structure. We consider
some of the properties of models for epistemic temporal
logic which make them a suitable formalism for investigat-
ing such equivalence notions. We conclude with a simple
example.

1. Introduction

Philosophers and Game Theorists have become increas-
ingly interested in problems of diachronic uncertainty. In
particular, if the agent knows at one state in a decision prob-
lem that at a later state she will forget or otherwise lose
awareness of where she is in time, how should the agent
compute appropriate actions and / or beliefs? In the game
theory literature, the paradigmatic case of such forgetful-
ness is the Absent-Minded Driver ([Pi97]); in the philo-
sophical literature, much discussion has centered around
Sleeping Beauty ([El00]). Conceptually, however, agents
can only be uncertain at a point in time; in other words, all
uncertainty is synchronic. Any realistic model of a deci-
sion making agent should describe the succession of epis-
temic states through which the agent passes. Each one of
these states will be synchronic, in the sense that it occurs
at a distinct point in time, although these synchronic uncer-
tainties may be uncertainties about where the agent falls in
time. Given a specification of a decision problem involving
diachronic uncertainty, we may ask: (i) How can we con-
vert this into a problem involving only synchronic uncer-
tainties? (ii) How should probabilities be assigned within

the new information partitions? This document will focus
on the properties of extensive form games when interpreted
as ETL models as considerations towards an answer to (i).

2. Interpreting ETL Models

In order to make these questions more precise, we must
work within a unified framework. In the game theory lit-
erature, all modeling of such problems uses the formalism
of extensive form games. In the philosophical literature,
although a vanilla Bayesianism lurks in the background of
the debate, no one formalism dominates discussion; a cru-
cial ingredient to the points of contention, however, is the
use of propositions which can change truth value through
time (in particular, “self-locating” propositions, which re-
fer indexically to the agent’s position in the temporal struc-
ture of the world). Epistemic temporal logics lie at a happy
meeting ground between these two approaches. Syntacti-
cally, epistemic temporal languages are powerful enough to
express uncertainty about where the agent falls in the tem-
poral order. Semantically, the models of epistemic temporal
logics are rich enough to include extensive form games as a
special case. Furthermore, epistemic temporal logics have
natural probabilistic extensions. In this section, we charac-
terize pertinent subsets of the space of epistemic temporal
models.

Epistemic temporal models are forests partitioned into
equivalence classes for each agent. The interpretation of
these partitions is that the agent is unable to distinguish be-
tween worlds in a partition. We refer to these as uncertainty
partitions or information sets. Given a set of events Σ, Σ∗

is the set of strings over Σ. Elements of Σ∗ are called his-
tories, states, or worlds. A set Π ⊆ Σ∗ is a protocol if it is
closed under finite prefixes. So, a protocol Π is just a forest,
and if Π contains the empty set, it is a tree. Call the set of
agents A. With each agent i ∈ A, we identify an equiva-
lence relation ∼i. These equivalence relations partition the
nodes of Π into sets of worlds which are indistinguishable
for agent i.
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DEFINITION 1: An ETL frame is a tuple〈
Σ,Π, {∼i}i∈A

〉
where Σ is a set of events, Π is a

protocol, and for each i ∈ A,∼i is an equivalence
relation on Π.

DEFINITION 2: An ETL model is a tuple〈
Σ,Π, {∼i}i∈A , V

〉
where Σ, Π, and {∼i}i∈A

are an ETL frame and V is a valuation function
from the set of atomic formulae At into the power
set of Π, V : At −→ 2Π.

Conceptually, we can think of an ETL model as a specifi-
cation of the causal structure of the world (the ordering of
possible events), which is then decorated with epistemic re-
lations. We are interested, however, in what will happen
if we prioritize epistemic structure rather than causal struc-
ture. What happens if we insist that models characterize the
sequence of the agent’s epistemic states, even when this se-
quence conflicts with the sequence of events? This is the
case with diachronic uncertainty. If an agent i is uncertain
at t2 whether the time is t1 or t2, then some events which
the agent considers possible will not in fact be possible
(namely, those events which can only immediately follow
t1). Our goal is to consider this conceptual transformation
within the framework of epistemic temporal models by con-
sidering equivalence classes of ETL models with respect to
intuitively motivated notions of situation equivalence.

The space of ETL models is quite rich, and characteris-
tics of its fine structure have been charted in [vB08] and
[vB06]. [vB08] characterizes the subset of ETL models
which are equivalent to models for dynamic epistemic logic
(DEL). From [vB06] we know that this fragment of ETL
preserves some nice computational properties (in particu-
lar, so long as we limit ourselves to a future modality which
can only see ahead one step in time (this is the essence of
DEL), we preserve decidability). [vB08] distinguishes two
types of DEL-generated protocols: uniform protocols and
state-dependent protocols. These notions are of interest for
our purposes in the constraints they place on permissable
uncertainty partitions ∼i. In order to emphasize this aspect
of the situation, we define four classes of ETL models.

DEFINITION 3: An ETL model〈
Σ,Π, {∼i}i∈A , V

〉
is

(i) state-dependent iff there is no general re-
striction on the events that can occur after any his-
tory

(ii) agent-dependent iff for any agent i, event
e, and histories h, h′, if h ∼i h′ and he ∈ Π, then
h′e ∈ Π

(iii) cardinality-dependent iff for
any agent i and histories h, h′, if
h ∼i h′, then |{h′′ ∈ Π|∃e (h′′ = he)}| =
|{h′′ ∈ Π|∃e (h′′ = h′e)}|

(iv) uniform iff if p ∈ At is a precondition of
event e and h ∈ V (p), then he ∈ Π

In standard DEL models, the events possible at a world are
characterized by a function E : At −→ Σ. If E (p) = e,
then the proposition p represents a precondition of the event
e, and e is possible at any world h ∈ V (p). We write
pre (e) for E−1 (e), i.e. the set of preconditions of e. The
notion of a state-dependent DEL protocol generalizes this
idea by replacing the function from atomic formulae into
the space of events with a function from histories h into the
space of events (i.e. from Π into Σ). This is the appropri-
ate interpretation of a state-dependent ETL model: it is a
model in which the events following a given history are not
constrained in any systematic way by other features of the
model. Agent-dependent, cardinality-dependent, and uni-
form models are all special cases of state-dependent models
where the function from histories into events is somehow
constrained. These notions will help us distinguish various
definitions of extensive form games in the following sec-
tion. Before embarking on that discussion, let us expand
our repertoire with some further notions from [vB08].

DEFINITION 4: An ETL model〈
Σ,Π, {∼i}i∈A , V

〉
satisfies

(i) strong synchronicity iff for all histories h,
h′, if for some agent i, h ∼i h′, then len (h) =
len (h′), where len (h) is just the number of
events in h

(ii) weak synchronicity iff for all histories h,
h′, if for some agent i, h ∼i h′, then h is not a
proper prefix of h′1

(iii) perfect recall iff for all histories h, h′

and events e, e′, if he ∼i h′e′, then h ∼i h′

(iv) local no miracles iff for all histories h,
h′, h′′, h′′′, agents i, and events e, e′, if he ∼i

h′e′, h′ ∼∗ h′′, and h′′ ∼i h′′′, then h′′e ∼i

h′′′e′, where ∼∗ is the reflexive transitive closure
of the ∼i relations

[vB08] shows that the class of ETL models generated from
uniform DEL protocols is just that which satisfies strong
synchronicity, perfect recall, local no miracles, and local
epistemic bisimulation invariance, and the class of ETL
models generated from state-dependent DEL protocols is
just that which satisfies propositional stability, strong syn-

1“Weak synchronicity” does not appear in [vB08], but it will be helpful
in our discussion of games below. Strong synchronicity implies weak syn-
chronicity, but not vice versa. In some situations, we can transform a model
satisfying weak synchronicity into one satisfying strong synchronicity by
simply introducing dummy nodes which bring asynchronous uncertainty
partitions into sync (c.f. the introduction of “’dummy’ chance moves with
one alternative” in [Ku53], 51). For an example of a game which cannot
be brought into synchrony using this method, see [Pi97], example 6.
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chronicity, perfect recall, and local no miracles.2 Tomohiro
Hoshi (this conference) has investigated these distinctions
in more detail for the subset of DEL known as public an-
nouncement logic (PAL).

3. Uncertainty in Extensive Form Games

Much of the game theory literature on uncertainty has
focused on uncertainty about other players’ moves. Since
one usually assumes that players alternate turns in extensive
form games, this uncertainty can be modeled via weakly
synchronic equivalence relations for each agent. Further-
more, modeling choices have been constrained by con-
ceptual analysis of the notion of indistinguishability itself:
what constraint appropriately captures the idea that the
agent cannot distinguish between two states?

[Th52]and [Ku53] define information partitions in exten-
sive form games such that two constraints are met. First,
no two worlds in the information partition may lie on the
same branch. Second, at each world in the partition, the
cardinality of the set of potentially occurring events must
be the same. [Pi97] drops the first constraint, in order to al-
low for forgetfulness, yet strengthens the second constraint
by stipulating not just that the cardinality of the set of pos-
sible events be the same for each world in an information
set, but that the set of possible events be identical for each
world. Thus, [Th52]and [Ku53] define models which are
cardinality-dependent and satisfy weak synchronicity, while
[Pi97] defines models which are agent-dependent.

These constraints are motivated by the idea that an in-
formation set models a situation in which an agent must
act, although she does not know the current state of the
world. Actions are just distinguished events, events caused
by some particular agent. If different (or different numbers
of) actions are available to an agent at two nodes in the game
tree, then the agent can use her knowledge of which actions
are available to her to distinguish these histories from each
other. Thus, if two states of the world are indistinguishable
to an agent, then the agent must have the same actions avail-
able to her at each one. Agent-dependency and cardinality-
dependency are attempts to capture this intuition.

As noted above, if an agent is uncertain between two
worlds at different points in time t1 and t2, then it must be
the case that different events are possible at the two worlds.
However, it may nevertheless be the case that the agent has
the same set of available actions. In the Absent Minded
Driver example, a man has left a bar drunk and forgets
while driving home whether he has already made his turn
or not. The problem is usually modeled with an informa-
tion set including two indistinguishable intersections. The
driver must pass through these intersections in sequence, so

2We have omitted definitions of local epistemic bisimulation invariance
and propositional stability as they are not discussed in the sequel.

he will encounter them at different times. Thus, there must
be some events possible at one which are not possible at the
other. However, in terms of actions, the driver only has two
options: turn or go straight. So, if our model only includes
the actions available to the agent, excluding other events, it
will satsify agent-dependence.

The constraints on modeling in the game theory literature
are motivated by extrinsic considerations. In thinking about
agents performing actions in a game, and what it might
mean for an agent to be uncertain between possible states of
play, concept analysis dictates that either agent-dependency
or cardinality-dependency constrain permissable models. In
state-dependent ETL models, however, we have as model-
ing tools both a valuation function V and an event function
E. If we retain the notion of preconditions at the conceptual
level, then we can characterize a situation in which an agent
believes e to be possible, when in fact it is not.

DEFINITION 5: The possible events EP
i (h)

for an agent i at a history h in an uncertainty par-
tition I = {w1, ..., h, ..., wn} are just those events
e such that

⋃
I ⊆ V (pre (e))

If we are in a state-dependent ETL model〈
Σ,Π, {∼i}i∈A , V

〉
, then there is no constraint that

for any h ∈ Π, and agent i, EP
i (h) = {e ∈ Σ|he ∈ Π}.

In other words, the set of possible events from the agent’s
perspective need not equal the actual possibilities allowed
by the model. Of course, this move deflates the role of
preconditions; they no longer play a structural role in
constraining the model, but merely act as a bookkeeping
device for tracking agent expectations.

4. An Example: the Absent Minded Driver

Perhaps the simplest example of a game with diachronic
uncertainty is the Absent Minded Driver (fig. 1).

The driver begins at Ø and drives straight. He passes
through two intersections, w1 and w2. At each intersection,
he can either continue to drive straight, or turn. If he turns
at the first intersection, he arrives in the bad part of town, B.
If he turns at the second intersection, he arrives home, H, as
desired. If the driver continues straight through both inter-
sections, he must stay at a motel, M. It is stipulated, how-
ever, that the driver cannot distinguish the first and second
intersections; in other words, he cannot remember whether
he has turned or not.

In light of the considerations raised above, we might ask
whether there is a distinct game tree, equivalent to the Ab-
sent Minded Driver in the relevant respects, but prioritiz-
ing epistemic states. Such a game tree would satisfy syn-
chronicity, in line with the analysis of uncertainty as a fun-
damentally synchronic notion, yet would preserve in some
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Figure 1. The Absent Minded Driver

sense the causal structure of the original model. We might
call such a pair of models epistemically equivalent.

DEFINITION 6: Two ETL models M1 and
M2 are epistemically equivalent iff

(i) all agents i ∈ A1
⋂

A2 pass through un-
certainty states in the same order (with possible
duplications) in M1 and M2

(ii) all events e ∈ Σ1
⋂

Σ2 occur in the same
order (with possible duplications) in M1 and M2

Consider, for example, the ETL model depicted in figure 2.
In this model, the agent passes through the same sequence
of epistemic states as in the Absent Minded Driver; the un-
certainty partition from figure 1 has merely been duplicated
to capture the fact that the agent will experience it at two
distinct points in time. There are two questionable model-
ing choices here, however. First, what is the significance
of moves s1 and s2? Second, how should one interpret [X]
and [Y]? s1 and s2represent the epistemic disjunct between
the choice of a single action (go straight), and the two re-
sulting possibilities, w1 and w2. Rather than consider these
as two distinct moves, or events, we may instead wish to in-
clude separate moves by the driver and a chance player. The
driver chooses s, but chance (or, perhaps it would be better
to call him confusion) plays to increase the possibilities the
agent countenances. This “move” must be interpreted as an
epistemic, rather than physical, event: the event of forget-
ting.

The worlds above [X] and [Y] are those which the agent
erroneously believes possible. We have several modeling
options available to us here, though we consider only three.
First, we might simply leave these as terminal nodes. Sec-
ond, we may replace [X] and [Y] with unitary chance moves
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Figure 2. The Epistemic Absent Minded Driver

to some distinguished world; this world might be inter-
preted as an impossible state. Both these strategies would
capture the agent’s error, or the physical impossibility of
any events occurring at [X] and [Y]. Both these options
fail to connect with game theoretic models, however. The
first, because game theoretic models never allow uncertain-
ties over terminal states; the second, because transitions to
an “impossible” world would involve adding a new termi-
nal state, but one without any coherent notion of payoff at-
tached to it.

A third option would connect quite nicely with the game
theoretic literature, in particular [Th52]. Thompson defines
equivalence classes of extensive form games with respect to
the corresponding strategic game. He suggests four trans-
formations on game trees which preserve strategic form.
Any two extensive form games which share a strategic form
can be transformed into each other via some sequence of
these four transformations. Since Thompson only consid-
ers models which satisfy weak synchronicity, the Absent
Minded Driver does not fall within his paradigm. One strat-
egy for dealing with [X] and [Y] suggested by Thompson’s
transformations is simply to copy the game tree from un-
der the other node in the uncertainty partition to the posi-
tion under the “impossible” node. Conceptually, we might
interpret this as capturing the fact that the actual possibili-
ties are the same from both states in the driver’s uncertainty
partition as he is only actually at one of them. If we ap-
ply this strategy plus that described above for adding moves
by a chance player, we derive figure 3. In figure 3, the se-
quence of epistemic states in figure 1 is preserved, as is the
sequence of actual events. We have had to add a chance
move, interpreted as the epistemic process of forgetting, but
doing so has allowed us to produce a model which is sus-
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Figure 3. The Epistemic Absent Minded Driver
(final)

ceptible to the transformations described in [Th52].
Final remark: the strategy described for transforming the

model in figure 1 to the model in figure 3 will not work in
all cases. Consider, for example, crossed ETL models.

DEFINITION 7: An ETL model〈
Σ,Π, {∼i}i∈A , V

〉
is crossed iff there ex-

ists an agent i ∈ A and histories h, h′, h′′, and
h′′′ with h #= h′′ such that hh′, h′′h′′′ ∈ Π,
h !i h′, h′′ !i h′′′, hh′ ∼i h′′, and h ∼i h′′h′′′

Example 6 of [Pi97] is a crossed model. If one attempts
to implement the transformation strategy described above
on a crossed ETL model, one will produce an infinite tree
which cycles through the two partitions {h, h′′h′′′} and
{hh′, h′′}. It remains to be seen what precise class of con-
straints on ETL models characterizes just those susceptible
to the above described transformation. At the very least,
such models must be uncrossed.
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Abstract

In this paper, we compare two modal frameworks for
multi-agent belief revision: dynamic doxastic logics com-
puting stepwise updates and temporal doxastic logics de-
scribing global system evolutions, both based on plausibil-
ity pre-orders. We prove representation theorems showing
under which conditions a doxastic temporal model can be
represented as the stepwise evolution of a doxastic model
under successive ’priority updates’. We define these proper-
ties in a suitable doxastic-temporal language, discuss their
meaning, and raise some related definability issues.

Analyzing the behavior of agents in a dynamic environ-
ment requires describing the evolution of their knowledge
as they receive new information. Moreover agents entertain
beliefs that need to be revised after learning new facts. I
might be confident that I will find the shop open, but once I
found it closed, I should not crash but rathermake a decision
on the basis of new consistent beliefs. Such beliefs and in-
formation may concern ground-level facts, but also beliefs
about other agents. I might be a priori confident that the
price of my shares will rise, but if I learn that the market is
rather pessimistic (say because the shares fell by 10%), this
information should change my higher-order beliefs about
what other agents believe.
Tools from modal logic have been successfully applied

to analyze knowledge dynamics in multi-agent contexts.
Among these, Temporal Epistemic Logic [23], [19]’s In-
terpreted Systems, and Dynamic Epistemic Logic [2] have
been particularly fruitful. A recent line of research [11, 10,
9] compares these alternative frameworks, and [10] presents
a representation theorem that shows under which conditions
a temporal model can be represented as a dynamic one.
Thanks to this link, the two languages also become com-
parable, and one can merge ideas: for example, a new line

∗The second author was supported by a GLoRiClass fellowship of the
European Commission (Research Training Fellowship MEST-CT-2005-
020841).

of research explores the introduction of protocols into the
logic of public announcements PAL, as a way of modeling
informational processes (see [9]).
To the best of our knowledge, there are no similar re-

sults yet for multi-agent belief revision. One reason is
that dynamic logics of belief revision have only been well-
understood recently. But right now, there is work on both
dynamic doxastic logics [5, 3] and on temporal frameworks
for belief revision, with [14] as a recent example. The ex-
act connection between these two frameworks is not quite
like the case of epistemic update. In this paper we make
things clear, by viewing belief revision as priority update
over plausibility pre-orders. This correspondence allows
for similar language links as in the knowledge case, with
similar precise benefits.
We start in the next section with background about ear-

lier results and basic terminology. In section 2 we give the
main new definitions needed in the paper. Section 3 presents
the key temporal doxastic properties that we will work with.
In section 4 we state and prove our main result linking the
temporal and the dynamic frameworks, first for the special
case of total pre-orders and then in general. We also dis-
cuss some variations and extensions. In section 5 we intro-
duce formal languages, providing an axiomatization for our
crucial properties, and discussing some related definability
issues. We state our conclusions and mention some further
applications and open problems in the last section.

1 Introduction: background results

Epistemic temporal trees and dynamic epistemic logics
with product update are complementary ways of looking
at multi-agent information flow. Representation theorems
linking both approaches were proposed for the first time in
[6]. A nice presentation of these early results can be found
in [21, ch5]. We start with one recent version from [9],
referring the reader to that paper for a proof, as well as gen-
eralizations and variations.
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Definition 1.1 [Epistemic Models, Event Models and
Product Update]

• An epistemic modelM is of the form 〈W, (∼i)i∈N , V 〉
whereW $= ∅, for each i ∈ N , ∼i is a relation onW ,
and V : Prop → ℘(H).

• An event model ε = 〈E, (∼i)i∈N , pre〉 hasE $= ∅, and
for each i ∈ N , ∼i is a relation on W . Finally, there
is a precondition map pre : E → LEL, where LEL is
the usual language of epistemic logic.

• The product updateM⊗ε of an epistemicmodelM =
〈W, (∼′

i)i∈N , V 〉 with an event model ε is the model
〈E, (∼i)i∈N , pre〉, whose worlds are pairs (w, e) with
the world w satisfying the precondition of the event e,
and accessibilities defined as:

(w, e) ∼′
i (w′, e′) iff e ∼i e′, w ∼i w′

#

Intuitively epistemic models describe what agents cur-
rently know while the product update describe the new
multi-agent epistemic situation after some epistemic event
has taken place. Nice intuitive examples are in [1].
Next we turn to the epistemic temporal models intro-

duced by [23]. In what follows, Σ∗ is the set of finite se-
quences on any set Σ, which forms a branching ‘tree’.

Definition 1.2 [Epistemic Temporal Models] An epistemic
temporal model (ETL model for short) H is of the form
〈Σ, H, (∼i)i∈N , V 〉 where Σ is a finite set of events, H ⊆
Σ∗ and H is closed under non-empty prefixes. For each
i ∈ N , ∼i is a relation on H , and there is a valuation V :
Prop → ℘H . #

The following epistemic temporal properties drive [9]’s
main theorem.

Definition 1.3 Let H = 〈Σ, H, (∼i)i∈N , V 〉 be an ETL
model. H satisfies:

• Propositional stability if, whenever h is a finite
prefix of h′, then h and h′ satisfies the same proposi-
tion letters.

• Synchronicity if, whenever h ∼ h′, we have
len(h) = len(h′).

Let ∼∗ be the reflexive transitive closure of the relation⋃
i∈N ∼i:

• Local Bisimulation Invariance if, whenever
h ∼∗ h′ and h and h′ are epistemically bisimilar1, we
have h′e ∈ H iff he ∈ H .

1The reader is referred to Subsection 3.1 for a precise definition of
bisimulation invariance.

• Perfect Recall if, whenever ha ∼i h′b, we also
have h ∼i h′ .

• Local No Miracles if, whenever ga ∼i g′b and
g ∼∗ h ∼i h′, then for every h′a, hb ∈ H , we also
have h′a ∼i hb.

#

These properties describe the idealized epistemic agents
that are presupposed in dynamic epistemic logic:

Theorem 1.4 (van Benthem et al. [9]) Let H be an ETL
model,M an epistemic model, and the ‘protocol’P a set of
finite sequences of pointed events models closed under pre-
fixes. We write ⊗ for product update. Let Forest(M, P ) =⋃

!ε∈P M ⊗ $ε be the ‘epistemic forest generated by’M and
sequential application of the events in P . 2 The following
are equivalent:

• H is isomorphic to Forest(M, P ).

• H satisfies propositional stability, synchronicity, local
bisimulation invariance, Perfect Recall, and Local No
Miracles.

Thus, epistemic temporal conditions describing ideal-
ized epistemic agents characterize just those trees that arise
from performing iterated product update governed by some
protocol. [9] and [21, ch5] have details.
Our paper extends this analysis to the richer case of be-

lief revision, where plausibility orders of agents evolve as
they observe possibly surprising events. We prove two main
results, with variations and extensions:

Theorem 1.5 Let H be a doxastic temporal model, M a
plausibility model, $ε a sequence of event models, and⊗ pri-
ority update. The following are equivalent, where the no-
tions will of course be defined later:

1. H is isomorphic to the forest generated byM⊗ $ε

2. H satisfies propositional stability, synchronicity, in-
variance for bisimulation, as well as principles of Pref-
erence Propagation, Preference Revelation and Ac-
commodation.

Theorem 1.6 Preference Propagation, Preference Revela-
tion and Accommodation are definable in an extended dox-
astic modal language.

2For a more precise definition of this notion, see Section 2 below.
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2 Definitions

We now turn to the definitions needed for the simplest
version of our main representation theorem, postponing
matching formal languages to Section 5. In what follows,
letN = {1, . . . , n} be a finite set of agents.

2.1 Plausibility models, event models and
priority update

As for the epistemic case, we first introduce static mod-
els that encode the current prior (conditional) beliefs of
agents. These carry a pre-order ≤ between worlds encod-
ing a plausibility relation. Often this relation is taken to be
total, but when we think of elicited beliefs as multi-criteria
decisions, a pre-order allowing for incomparable situations
may be all we get [18]. We will therefore assume reflexivity
and transitivity, but not totality.
As for notation: we write a"b (‘indifference’) if a ≤ b

and b ≤ a, and a < b if a ≤ b and b #≤ a.

Definition 2.1 [Doxastic Plausibility Models] A doxastic
plausibility modelM = 〈W,
(%i)i∈N , V 〉 hasW #= ∅, for each i ∈ N , %i is a pre-order
onW , and V : Prop → ℘H . "

We now consider how such models evolve as agents ob-
serve events.

Definition 2.2 [Plausibility Event Model] A plausibil-
ity event model (event model, for short) ε is a tuple
〈E, (%i)i∈N , pre〉 with E #= ∅, each %i a pre-order on E,
and pre : E → L, where L is a doxastic language. 3 "

Definition 2.3 [Priority Update; [3]]
Priority update of a plausibility model M = 〈W, (%i

)i∈N , V 〉 and an event model ε = 〈E, (%i)i∈N , pre〉 is the
plausibility modelM⊗ ε = 〈W ′, (%′

i)i∈N , V ′〉 defined as
follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)}

• (w, e) %′
i (w′, e′) iff either e≺ie

′, or e"ie
′ and w %i

w′

• V ′((s, e)) = V (s)

Here, the new plausibility relation is still a pre-order. "

The idea behind priority update is that beliefs about the
last event override prior beliefs. If the agent is indifferent,
however, the old plausibility order applies. Moremotivation
can be found in [3, 8].

3This definition is incomplete without specifying the relevant language,
but all that follows can be understood by considering the formal language
as a ’parameter’.

2.2 Doxastic Temporal Models

Definition 2.4 [Doxastic Temporal Models] A doxastic
temporal model (DoTL model for short) H is of the form
〈Σ, H, (≤i)i∈N , V 〉, where Σ is a finite set of events, H ⊆
Σ∗ is closed under non-empty prefixes, for each i ∈ N , ≤i

is a pre-order onH , and V : Prop → ℘H . "

Our task is to identify just when a doxastic temporal
model is isomorphic to the ‘forest’ generated by a sequence
of priority updates:

2.3 Dynamic Models Generate Doxastic
Temporal Models

Definition 2.5 [DoTL model generated by updates]
Each initial plausibility model M = 〈W, (%i)i∈N , V 〉

and sequence of event models εj = 〈Ej , (%
j
i )i∈N , prej〉

yields a generated DoTL plausibility model 〈Σ, H, (≤i

)i∈N ,V〉 as follows:

• Let Σ :=
⋃m

i=1
ei.

• Let H1 := W and for any 1 < n ≤ m let Hn+1 :=
{(we1 . . . en)|(we1 . . . en−1) ∈ Hn andM ⊗ ε1 ⊗
. . . ⊗ εn−1 ! pren(en)}. Finally let H =⋃

1≤k≤m Hk.

• If h, h′ ∈ H1, then h ≤i h′ iff h %M
i h′.

• For 1 < k ≤ m, he ≤i h′e′ iff 1. he, h′e′ ∈ Hk, and
2. either e≺k

i e′, or e"k
i e′ and h ≤i h′.

• Let wh ∈ V(p) iff w ∈ V (p).

This is a temporal doxastic model as above. "

Now come the key doxastic temporal properties of our
idealized agents.

3 Frame Properties for Priority Updaters

We first introduce the notion of bisimulation, modulo a
choice of language.

3.1 Bisimulation Invariance

Definition 3.1 [≤-Bisimulation]
LetH andH′ be twoDoTL plausibility models 〈H, (≤1

, . . . ,≤n), V 〉 and 〈H ′, (≤′
1, . . . ,≤

′
n), V ′〉 (for simplicity,

assume they are based on the same alphabet Σ). A relation
Z ⊆ H×H ′ is a≤-Bisimulation if, for all h ∈ H , h′ ∈ H ′,
and all ≤i in (≤1, . . . ,≤n),

(prop) h and h′ satisfy the same proposition letters,
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(zig) If hZh′ and h ≤i j, then there exists j′ ∈ H ′ such that
jZj′ and h′ ≤′

i j′,

(zag) If hZh′ and h′ ≤′
i j′, then there exists j ∈ H such that

jZj′ and h ≤i j.

If Z is a ≤n-bisimulation and hZh′, we will say that h
and h′ are ≤-bisimilar. !

Definition 3.2 [≤-Bisimulation Invariance] A DoTL
model H satisfies ≤-bisimulation invariance if, for all
≤-bisimilar histories h, h′ ∈ H , and all events e, h′e ∈ H
iff he ∈ H . !

3.2 Agent-Oriented Frame Properties

In the following we drop agent labels and the “for each
i ∈ N” for the sake of clarity. Also, when we write ha we
will always assume that ha ∈ H . We will make heavy use
of the following notion:

Definition 3.3 [Accommodating Events]
Two events a, b ∈ Σ are accommodating if, for all

ga, g′b, (g ≤ g′ ↔ ga ≤ g′b) and similarly for ≥, i.e.,
a, b preserve and anti-preserve plausibility.

!

Definition 3.4 Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL
model. H satisfies:

• Propositional stability if, whenever h is a finite
prefix of h′, then h and h′ satisfy the same proposition
letters.

• Synchronicity if, whenever h ≤ h′, we have
len(h) = len(h′).

The following three properties trace the belief revising
behavior of agents in doxastic trees.

• Preference Propagation if, whenever ja ≤ j′b,
then h ≤ h′ implies ha ≤ h′b.

• Preference Revelation if, whenever jb ≤ j′a,
then ha ≤ h′b implies h ≤ h′.

• Accommodation if, a and b are accommodating
whenever both ja ≤ j′b and ha '≤ h′b.

!

These properties - and in particular the last one - are some-
what trickier than in the epistemic case, reflecting the pecu-
liarities of priority update in settings where incomparability
is allowed. But we do have:

Fact 3.5 If ≤ is a total pre-order and H satisfies Prefer-
ence Propagation and Preference Revelation, thenH satis-
fies Accommodation.

Proof. From left to right. Assume that g ≤ g′ and ja ≤ j′b.
By Preference Propagation, ga ≤ g′b. Now assume that
ha '≤ h′b. Then by totality, h′b ≤ ha. Since g ≤ g′, it
follows by Preference Propagation that gb ≤ g′a.
From right to left, assume that gb ≤ g′a and that ja ≤

j′b. It follows by Preference Revelation that g ≤ g′. Now
assume that ga ≤ g′b (1) and ha '≤ h′b (2). From (2), it
follows by totality that h′b ≤ ha (3). But if (3) and (1),
then by Preference Revelation we have g ≤ g′. QED

We can also prove a partial converse without totality:

Fact 3.6 If H satisfies Accommodation, it satisfies Prefer-
ence Propagation.

Proof. Let ja ≤ j′b (1) and h ≤ h′ (2). Assume that
ha '≤ h′b. Then by Accommodation, for every ga, g′b, g ≤
g′ ↔ ga ≤ g′b. So, in particular, h ≤ h′ ↔ ha ≤ h′b. But
since h ≤ h′, we get ha ≤ h′b: a contradiction. QED

No similar result holds for Preference Revelation. An
easy counter-example shows that, even when≤ is total:

Fact 3.7 Accommodation does not imply Preference Reve-
lation.

4 The Main Representation Theorem

We start with a warm-up case, taking plausibility to be a
total pre-order.

4.1 Total pre-orders

Theorem 4.1 Let H be a total doxastic-temporal model,
M a total plausibility model, "ε a sequence of total event
models, and let ⊗ stand for priority update. The following
are equivalent:

• H is isomorphic to the forest generated byM⊗ "ε.

• H satisfies propositional stability, synchronicity,
bisimulation invariance, Preference Propagation, and
Preference Revelation.

Proof.

Necessity We first show that the given conditions are
indeed satisfied by any DoTL model generated through
successive priority updates along some given protocol se-
quence. Here, Propositional stability and Synchronicity are
straightforward from the definition of generated forests.
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Preference Propagation Assume that ja ≤ j′b (1). It
follows from (1) plus the definition of priority update that
a ≤ b (2). Now assume that h ≤ h′ (3). It follows from (2),
(3) and priority update that ha ≤ h′b.

Preference Revelation Assume that jb ≤ j′a (1). It fol-
lows from (1) and the definition of priority update that b ≤ a
(2). Now assume ha ≤ h′b (3). By the definition of priority
update, (3) can happen in two ways. Case 1: a < b (4). It
follows from (4) by the definition of < that b "≤ a (5). But
(5) contradicts (2). We are therefore in Case 2: a#b (6) and
h ≤ h′ (7). But (7) is precisely what we wanted to show.
Note that we did not make use of totality here.

Sufficiency Given a DoTL modelM, we first show how
to construct a DDL model, i.e., a plausibility model and a
sequence of event models.

Construction Here is the initial plausibility modelM =
〈W, (%i)i∈N , V̂ 〉:

• W := {h ∈ H | len(h) = 1}.

• Set h %i h′ iff ≤i.

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

Now we construct the j-th event model εj =
〈Ej , (%

j
i )i∈N , prej〉:

• Ej := {e ∈ Σ | there is a history he ∈
H with len(h) = j}

• For each i ∈ N , set a%j
i b iff there are ha, h′b ∈ H

such that len(h) = len(h) = j and ha ≤i h′b.

• For each e ∈ Ej , let prej(e) be the formula that char-
acterizes the set {h | he ∈ H and len(h) = j}. By
general modal logic, bisimulation invariance guaran-
tees that there is such a formula, though it may be an
infinitary one in general.

Now we show that the construction is correct in the fol-
lowing sense:

Claim 4.2 (Correctness) Let ≤ be the plausibility relation
in the given doxastic temporal model. Let !F

DDL be the
plausibility relation in the forest induced by priority update
over the just constructed plausibility model and matching
sequence of event models. We have:

h ≤ h′ iff h !F
DDL h′.

Proof of the claim The proof is by induction on the length
of histories. The base case is obvious from the construction
of our initial modelM. Now for the induction step. As for
notation we will write a ≤ b for a%n

i b with n the length for
which the claim has been proved, and i an agent.

From DoTL to Forest(DDL) Assume that h1a ≤ h2b
(1). It follows that in the constructed event model a ≤ b (2).
Case 1: a < b. By priority update we have h1a !F

DDL h2b.
Case 2: b ≤ a (3). This means that there are h3b, h4a such
that h3b ≤ h4a. But then by Preference Revelation and
(1) we have h1 ≤ h2 (in the doxastic temporal model). It
follows by the inductive hypothesis that h1 !F

DDL h2. But
then by priority update, since by (2) and (3) a and b are
indifferent, we have h1a !F

DDL h2b.

From Forest(DDL) to DoTL Next let h1a !F
DDL

h2b. The definition of priority update has two clauses. Case
1: a < b. By definition, this implies that b "≤ a. But then by
the above construction, for all histories h3, h4 ∈ H we have
h3b "≤ h4a. In particular we have h2b "≤ h1a. But then by
totality4, h1a ≤ h2b. Case 2: a#b (4) and h1 !F

DDL h2.
For a start, by the inductive hypothesis, h1 ≤ h2 (5). By
(4) and our construction, there are h3a, h4b with h3a ≤ h4b
(6). But then by Preference Propagation, (5) and (6) imply
that we have h1a ≤ h2b. QED

Next, we turn to the general case of pre-orders, allowing
incomparability.

4.2 The general case

While the argument went smoothly for total pre-orders,
it gets somewhat more interesting when incomparability en-
ters the stage. In the case of pre-orders we need the addi-
tional axiom of Accommodation as stated below:

Theorem 4.3 Let H be a doxastic-temporal model, M a
plausibility model, "ε be a sequence of event models while⊗
is priority update. The following assertions are equivalent:

• H is isomorphic to the forest generated byM⊗ "ε,

• H satisfies bisimulation invariance, propositional sta-
bility, synchronicity, Preference Revelation and Ac-
commodation.

By Fact 3.6, requiring Accommodation also gives us
Preference Propagation.

Proof.
Necessity of the conditions The verification of the condi-
tions in the preceding subsection did not use totality. So we
concentrate on the new condition:

4Note that this is the only place in which we make use of totality.
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Accommodation Assume that ja ≤ j′b (1). It follows
by the definition of priority update that a ≤ b (2). Now let
ha "≤ h′b (3). This implies by priority update that a "< b (4).
By definition, (2) and (4) means that a#b (5). Now assume
that g ≤ g′ (6). It follows from (5), (6) and priority update
that ga ≤ g′b. For the other direction of the consequent
assume instead that g "≤ g′ (7). It follows from (5), (7) and
priority update that ga "≤ g′b.

Sufficiency of the conditions Given a DoTL model, we
again construct aDDL plausibility model plus sequence of
event models:

Construction The plausibility model M = 〈W, (%i

)i∈N , V̂ 〉 is as follows:

• W := {h ∈ H | len(h) = 1},

• Set h %i h′ whenever≤i,

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

We construct the j-th event model εj =
〈Ej , (%

j
i )i∈N , prej〉 as follows:

• Ej := {e ∈ Σ | there is a history of the form he ∈
H with len(h) = j}

• For each i ∈ N , define a%j
i b iff either (a) there are

ha, h′b ∈ H such that len(h) = len(h) = j and
ha ≤i h′b, or (b) [a new case] a and b are accom-
modating, and we put a # b (i.e. a ≤ b and b ≤ a).

• For each e ∈ Ej , let prej(e) be the formula that char-
acterizes the set {h | he ∈ H and len(h) = j}. Bisim-
ulation invariance guarantees that there is always such
a formula (maybe involving an infinitary syntax).

Again we show that the construction is correct in the fol-
lowing sense:

Claim 4.4 (Correctness) Let ≤ be the plausibility relation
in the doxastic temporal model. Let !F

DDL be the plausi-
bility relation in the forest induced by successive priority
updates of the plausibility model by the sequence of event
models we constructed. We have:

h ≤ h′ iff h !F
DDL h′.

Proof of the claim We proceed by induction on the length
of histories. The base case is clear from our construction of
the initial modelM. Now for the induction step, with the
same simplified notation as earlier.

FromDoTL to Forest(DEL) There are two cases:

Case 1. ha ≤ h′b, h ≤ h′. By the inductive hypothesis,
h ≤ h′ implies h !F

DDL h′ (1). Since ha ≤ h′b, it follows
by construction that a ≤ b (2). It follows from (1) and (2)
that by priority update ha !F

DDL h′b.

Case 2. ha ≤ h′b, h "≤ h′. Clearly, then, a and b are not
accommodating and thus the special clause has not been
used to build the event model, though we do have a ≤ b
(1). By the contrapositive of Preference Revelation, we also
conclude that for all ja, j′b ∈ H , we have j′b "≤ ja (2).
Therefore, our construction gives b "≤ a (3), and we con-
clude that a < b (4). But then by priority update, we get
ha !F

DDL h′b.

From Forest(DEL) to DoTL We distinguish again
two relevant cases.

Case 1. ha !F
DDL h′b, h !F

DDL h′. By definition of pri-
ority update, ha !F

DDL h′b implies that a ≤ b (1). There
are two possibilities. Case 1: The special clause of the con-
struction has been used, and a, b are accommodating (2).
By the inductive hypothesis, h !F

DDL h′ implies h ≤ h′

(3). But (2) and (3) imply that ha ≤ h′b. Case 2: Clause (1)
holds because for some ja, j′b ∈ H , in the DoTL model,
ja ≤ j′b (4). By the inductive hypothesis, h !F

DDL h′

implies h ≤ h′ (5). Now, it follows from (4), (5) and Pref-
erence Propagation that ha ≤ h′b.

Case 2. ha !F
DDL h′b, h "!F

DDL h′. Here is where we
put our new accommodation clause to work. Let us label
our assertions: h "!F

DDL h′ (1) and ha !F
DDL h′b (2). It

follows from (1) and (2) by the definition of priority update
that a < b (3), and hence, by definition b "≤ a (4). Clearly, a
and b are not accommodating (5): for otherwise, we would
have had a#b, and hence b ≤ a, contradicting (4). There-
fore, (3) implies that there are ja, j′b ∈ H with ja ≤ j′b
(6). Now assume for contradictio that (in theDoTLmodel)
ha "≤ h′b (7). It follows from (6) and (7) by Accommo-
dation that a and b are accommodating, contradicting (5).
Thus we have ha ≤ h′b. QED

Given a doxastic temporal model describing the evolu-
tion of the beliefs of a group of agents, we have determined
whether it could have been generated by successive ‘local’
priority updates of a plausibility model. Of course, further
scenarios are possible, e.g., bringing in knowledge as well.
We discuss some extensions in the next subsection.

4.3 Extensions and variations

4.3.1 Unified plausibility models

There are two roads to merging epistemic indistinguishabil-
ity and doxastic plausibility. The first works with a plau-
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sibility order and an epistemic indistinguishability relation,
explaining the notion of belief with a mixture of the two.
Baltag and Smets [3] apply product update to epistemic in-
distinguishability and priority update to the plausibility re-
lation. A characterization for the doxastic epistemic tempo-
ral models induced in this way follows from van Benthem
et al. [9] Theorem 1.4 plus Theorem 4.3 of previous sub-
section (or its simpler counterpart for total orders). All this
has the flavor of working with prior beliefs and information
partitions, taking the posteriors to be computed from them.
However there are also reasons for working with (poste-

rior) beliefs only (see e.g. [22]). Indeed, Baltag and Smets
[3] take this second road, using unified ‘local’ plausibility
models with just one explicit relation !. We briefly show
how our earlier results transform to this setting. In what
follows, we write a ∼= b iff a ! b and b ! a.

Definition 4.5 The priority update of a unified plausibility
model M = 〈W, (!i)i∈N , V 〉 and a !-event model ε =
〈E, (!i)i∈N , pre〉 is the unified plausibility model M ⊗
ε = 〈W ′, (!′

i)i∈N , V ′〉 constructed as follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)},

• (w, a) !′
i (w′, b) iff either 1. a !i b, b ' !a and w !

w′ ∨ w′ ! w or 2. a !i b, b ! a and w ! w′,

• V ′((s, e)) = V (s).

"

Here are our familiar key properties in this setting:

Agent revision properties in terms of!i

• !-Perfect Recall if, whenever ha ! h′b we have h !

h′ ∨ h′ ! h.

• !-Preference Propagation if, wheneverh!h′ and ja!

j′b then ha ! h′b.

• !-Preference Revelation if, whenever ha ! h′b and
jb ! j′a, also h ! h′.

• !-Accommodation if, whenever (ja!j′b, h′!h and
ha ' !h′b), for all ga, g′b ∈ H (g ! g′ ↔ ga ! g′b),
and for all g′a, gb ∈ H (g ! g′ ↔ gb ! g′a).

The last axiom is slightly weaker than Accommodation.
The following result is proved in the extended version of
this paper.

Theorem 4.6 Let H be a unified doxastic-temporal model,
M a unified plausibility model, #ε be a sequence of unified
event models, while ⊗ is priority update. The following as-
sertions are equivalent:

• H is isomorphic to the forest generated byM⊗ #ε,

• H satisfies bisimulation invariance, propositional sta-
bility, synchronicity, !-Perfect Recall, !-Preference
Propagation, !-Preference Revelation and !-
Accommodation.

Our next source of variation is an issue that we have left
open throughout our analysis so far, which may have both-
ered some readers.

4.3.2 Bisimulations and pre-condition languages

Our definition of event models presupposed a language for
the preconditions, and correspondingly, the right notion of
bisimulation in our representation results should matching
(at least, on finite models) the precondition language used.
For instance, if the precondition language contains a belief
operator scanning the intersection of a plausibility ≤i rela-
tion and an epistemic indistinguishability relation ∼, then
the zig and zag clauses should not only apply to ≤i and
∼i separately, but also to ≤i ∩ ∼i. And things get even
more complicated if we allow temporal operators in our lan-
guages (cf. [10]). We do not commit to any specific choice
here, since the choice of a language seems orthogonal to
our main concerns. But we will discuss formal languages in
the next section, taking definability of our major structural
constraints as a guide.
Finally, our results can be generalized by including one

more major parameter in describing processes:

4.3.3 Protocols

So far we have assumed that the same sequences of events
were executable uniformly anywhere in the initial doxastic
model, provided the worlds fulfilled the preconditions. This
strong assumption is lifted in [10, 9], who allow the pro-
tocol, i.e., the set of executable sequences of events form-
ing our current informational process, to vary from state to
state. Initially, they still take the protocol to be common
knowledge, but eventually, they allow for scenarios where
agents need not know which protocol is running. These
variations change the complete dynamic-epistemic logic of
the system. It would be of interest to extend this work to
our extended doxastic setting.

5 Dynamic Languages and Temporal Doxas-
tic Languages

Our emphasis so far has been on structural properties of
models. To conclude, we turn to the logical languages that
can express these, and hence also, the type of doxastic rea-
soning our agents can be involved with.
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5.1 Dynamic doxastic language

We first look at a core language that matches dynamic
belief update.

5.1.1 Syntax

Definition 5.1 [Dynamic Doxastic-Epistemic language]
The language of dynamic doxastic languageDDEL is de-
fined as follows:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈i〉φ | Eφ | 〈ε, e〉φ

where i ranges over overN , p over a countable set of propo-
sition letters Prop, and (ε, e) ranges over a suitable set of
symbols for event models. #

All our dynamic doxastic logics will be interpreted on
the following models.

5.1.2 Models

Definition 5.2 [Epistemic Plausibility Models] An epis-
temic plausibility model M = 〈W, (%i)i∈N , (∼i)i∈N , V 〉
has W '= ∅, and for each i ∈ N , %i is a pre-order on
W , and ∼i any relation, while V : Prop → ℘H . #

Definition 5.3 [∼,%-event model] An epistemic plausibil-
ity event model (∼,%-event model for short) ε is of the form
〈E, (%i)i∈N , (∼i)i∈N , pre〉 where E '= ∅, for each i ∈ N ,
%i is a pre-order on E and ∼i is a relation on W . Also,
there is a precondition function pre : E → DDEL

#

Definition 5.4 [Priority update] The priority update of
an epistemic plausibility model M = 〈W, (%i)i∈N , (∼i

)i∈N , V 〉 and a ∼,≺-event model ε = 〈E, (%i)i∈N , (∼i

)i∈N , pre〉 is the plausibility model M ⊗ ε = 〈W ′, (%′
i

)i∈N , V ′〉 whose structure is defined as follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)}

• (w, e) %′
i (w′, e′) iff e≺ie

′, or e.ie
′ and w %i w′

• (w, e) ∼′
i (w′, e′) iff e ∼i e′ and w ∼i w′

• V ′((s, e)) = V (s).

The result of the update is an epistemic plausibility model.
#

5.1.3 Semantics

Here is how we interpret theDDE(L) language. A pointed
event model is an event model plus an element of its do-
main. To economize on notation we use event symbols in
the semantic clause. We write pre(e) for preε(e) when it
is clear from context.

Definition 5.5 [Truth definition]
LetKi[w] = {v | w ∼i v}.

M, w ! p iff w ∈ V (p)
M, w ! ¬φ iff M, w '! φ
M, w ! φ ∨ ψ iff M, w ! φ orM, w ! ψ
M, w ! 〈≤i〉φ iff ∃v such that w %i v andM, v ! φ
M, w ! 〈i〉φ iff ∃v such that v ∈ Ki[w] andM, v ! φ
M, w ! Eφ iff ∃v ∈ W such thatM, v ! φ
M, w ! 〈ε, e〉φ iff M, w ! pre(e) andM× ε, (w, e) ! φ

#

The knowledge operator Ki and the universal modality A
are defined as usual.

5.1.4 Reduction axioms

The methodology of dynamic epistemic and dynamic dox-
astic logics revolves around reduction axioms. On top
of some complete static base logic, these fully describe
the dynamic component. Here is well-known Action −
Knowledge reduction axiom of [2]:

[ε, e]Kiφ ↔ (pre(e) →
∧

{Ki[ε, f ]φ : e ∼i f}) (1)

Similarly, here are the key reduction axioms for 〈ε, e〉〈≤i〉
with priority update:

Proposition 5.6 The following dynamic-doxastic principle
is sound for plausibility change:

〈ε, e〉〈≤i〉φ ↔

(pre(e) ∧ (〈≤i〉
∨

{〈f〉φ : e.if}∨

E
∨

{〈g〉φ : e <i g}))

(2)

The crucial feature of such a dynamic ‘recursion step’ is
that the order between action and belief is reversed. This
works because, conceptually, the current beliefs already
pre-encode the beliefs after some specified event. In the
epistemic setting, principles like this also reflect agent prop-
erties of Perfect Recall and No Miracles [11]. Here, they
rather encode radically ‘event-oriented’ revision policies,
and the same point applies to the principles we will find
later in a doxastic temporal setting.
Finally for the existential modality 〈ε, e〉E we note the

following fact:
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Proposition 5.7 The following axiom is valid for the exis-
tential modality:

〈ε, e〉Eφ ↔ (pre(e) ∧ (E
∨

{〈f〉φ : f ∈ Dom(ε)})) (3)

We do not pursue further issues of axiomatic complete-
ness here, since we are just after the model theory of our
dynamic and temporal structures.

5.2 Doxastic epistemic temporal language

Next epistemic-doxastic temporal models are simply our
old doxastic temporal models H extended with epistemic
accessibility relations∼i.

5.2.1 Syntax

Definition 5.8 [Doxastic Epistemic Temporal Languages]
The language of DETL is defined by the following in-

ductive syntax:

φ := p | ¬φ | φ ∨ φ | 〈e〉φ | 〈e−1〉φ | 〈≤i〉φ | 〈i〉φ | Eφ

where i ranges over N , e over Σ, and p over proposition
letters Prop. #

5.2.2 Semantics

The language DETL is interpreted over nodes h in our
trees (cf. [11]):

Definition 5.9 [Truth definition]
LetKi[h] = {h′ | h ∼i h′}.

H, h ! p iff h ∈ V (p)
H, h ! ¬φ iff H, h )! φ
H, h ! φ ∨ ψ iff H, h ! φ orH, h ! ψ
H, h ! 〈e〉φ iff ∃h ′ ∈ H s.t. h′ = he andH, h′ ! φ
H, h ! 〈e−1〉φ iff ∃h ′ ∈ H s.t. h′e = h andH, h′ ! φ
H, h ! 〈≤i〉φ iff ∃h ′ s.t. h ≤i h′ andH, h′ ! φ
H, h ! 〈i〉φ iff ∃h ′ s.t. h′ ∈ Ki[h] andH, h′ ! φ
H, h ! Eφ iff ∃h ′ ∈ H s.t. H, h′ ! φ

#

Now we have the right syntax to analyze our earlier struc-
tural conditions.

5.3 Defining the frame conditions

We will prove semantic correspondence results (cf. [13])
for our crucial properties using somewhat technical axioms
that simplify the argument. Afterwards, we present some re-
formulations whose meaning for belief-revising agents may
be more intuitive to the reader:

5.3.1 The key correspondence result

Theorem 5.10 (Definability) Preference Propagation,
Preference Revelation and Accommodation are definable in
the doxastic-epistemic temporal languageDETL.

• H satisfies Preference Propagation iff the following
axiom is valid:

E〈a〉〈≤i〉〈b
−1〉+ →

((〈≤i〉〈b〉p ∧ 〈a〉q)

→ 〈a〉(q ∧ 〈≤i〉p)

(PP )

• H satisfies Preference Revelation iff the following ax-
iom is valid:

E〈b〉〈≤i〉〈a
−1〉+ →

(〈a〉〈≤i〉(p ∧ 〈b−1〉+) → 〈≤i〉〈b〉p)
(PR)

• H satisfies Accommodation iff the following axiom is
valid:

E〈a〉〈≤i〉〈b
−1〉+

∧ E [〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉+) )

∧ [a] (p1 → [≤i]¬p2)]

→ ( (〈≤i〉〈b〉q → [a]〈≤i〉q)

∧ (〈a〉〈≤i〉(r ∧ 〈b−1〉+) → 〈≤i〉〈b〉r)

(AC)

Proof. We only prove the case of Preference Propagation,
the other two are in the extended version of the paper. We
drop agent labels for convenience.

(PP ) characterizes Preference Propagation We first
show that (PP ) is valid on all models H based on
preference-propagating frames. Assume that H, h !

E〈a〉〈≤i〉〈b−1〉+ (1). Then there are ja, j′b ∈ H such
that ja ≤ j′b (2). Now let H, h ! (〈≤〉〈b〉p ∧ 〈a〉q)
(3). Then there is h′ ∈ H such that h ≤ h′ (4) and
H, h′ ! 〈b〉p (5), while also H, ha ! q (6). We must show
that H, h " 〈a〉(q ∧ 〈≤i〉p) (7). But, from (2),(4),(6) and
Preference Propagation, we get ha ≤ h′b, and the conclu-
sion follows by the truth definition.

Next, we assume that axiom (PP ) is valid on a doxas-
tic temporal frame, that is, true under any interpretation of
its proposition letters. So, assume that ja ≤ j′b (1), and
also h ≤ h′ (2). Moreover, let ha, h′b ∈ H (3). First note
that (1) automatically verifies the antecedent of (PP ) in any
node of the tree. Next, we make the antecedent of the sec-
ond implication in (PP ) true at h by interpreting the propo-
sition letter p as just the singleton set of nodes h′b, and q as
just ha (4). Since (PP ) is valid, its consequent will also
hold under this particular valuation V . Explicitly we have
H, V, h ! 〈a〉(q ∧ 〈≤i〉p). But spelling out what p, q mean
there, we get just the desired conclusion that ha ≤ h′b. QED
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The preceding correspondence argument is really just a
Sahlqvist substitution case (cf. [13]), and so are the other
two. We do not prove a further completeness result, but will
show one nice derivation, as a syntactic counterpart to our
earlier Fact 3.5.

E [〈a〉 (ψ ∧ E (φ ∧ 〈b−1〉$) ) ∧ [a] (ψ → [≤i]¬φ)]

→ (〈a〉〈≤i〉(φ ∧ 〈b−1〉$) → 〈≤i〉〈b〉φ)
(F )

Here is an auxiliary correspondence observation:

Fact 5.11 On total doxastic temporal models the following
axiom is valid:

〈a〉(ψ ∧ E (φ ∧ 〈b−1〉$)) →

( 〈a〉(ψ ∧ 〈≤i〉φ) ∨ E〈b〉(φ ∧ 〈≤i〉(ψ ∧ 〈a−1〉$))
(Tot)

Now we can state an earlier semantic fact in terms of
axiomatic derivability in some obvious minimal system for
the languageDETL:

Fact 5.12

• ( ((PP ) ∧ (F )) → (AC)

• ( ((PR) ∧ (Tot)) → (F )

We leave the simple combinatorial details to the ex-
tended version of this paper. We now get an immediate
counterpart to Fact 3.5:

Corollary 5.13

( ((PP ) ∧ (PR) ∧ (Tot)) → (AC) (4)

5.3.2 Two intuitive explanations

Here are two ways to grasp the intuitive meaning of our
technical axioms.

Reformulation with safe belief. An intermediate notion
of knowledge first considered by [24] has been argued for
doxastically as safe belief by [3] as describing those beliefs
we do not give up under true new information. The safe be-
lief modality !≥ is just the universal dual of the existential
modality 〈≥〉 scanning the converse of ≤. Without going
into details of its logic (e.g., safe belief is positively, but not
negatively introspective), here is how we can rephrase our
earlier axiom:

• H satisfies Preference Propagation iff the following
axiom is valid onH:

E〈a〉〈≥〉〈b−1〉$ → (〈a〉!≥ip → !≥i [b]p) (PP ’)

A similar reformulation is easy to give for Preference
Revelation. These principles reverse action modalities and
safe belief much like the better-known Knowledge-Action
interchange laws in the epistemic-temporal case. We invite
the reader to check their intuitive meaning in terms of ac-
quired safe beliefs as informative events happen.

Analogies with reduction axioms Another way to under-
stand the above axioms in their original format with exis-
tential modalities is their clear analogy with the reduction
axiom for priority update. Here are two cases juxtaposed:

〈ε, e〉〈≤i〉p ↔

(pre(e) ∧ (〈≤i〉
∨

{〈f〉p : e+if}

∨ E
∨

{〈g〉p : e <i g}))

(2)

E〈a〉〈≤i〉〈b
−1〉$ →

(〈≤i〉〈b〉p → [a]〈≤i〉p)
(PP )

E〈b〉〈≤i〉〈a
−1〉$ →

(〈a〉〈≤i〉(p ∧ 〈b−1〉$) → 〈≤i〉〈b〉p)
(PR)

Family resemblance is obvious, and indeed, (PP ) and
(PR) may be viewed as the two halves of the reduction
axiom, transposed to the more general setting of arbitrary
doxastic-temporal models.

5.4 Variations and extensions of the dox-
astic temporal language

5.4.1 Weaker languages

The above doxastic-temporal language is by no means the
only reasonable one. Weaker forward-looking modal frag-
ments also make sense, dropping both converse and the ex-
istential modality. But they do not suffice for the purpose of
our correspondence.

Proposition 5.14 (Undefinability)
Preference Propagation, Preference Revelation and

Accommodation are not definable in the forward looking
fragment ofDETL.

Proof. The reason is the same in all cases: we show that
these properties are not preserved under taking bounded p-
morphic images. The Figure gives an indication how this
works concretely. QED
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Figure 1. Preference Propagation is not pre-
served under p-morphic images

5.4.2 Richer languages

But there is also a case to be made for richer languages. For
instance, if we want to define the frame property of syn-
chronicity, we must introduce an equilevel relation in our
models, with a corresponding modality for it. While ex-
pressing synchronicity then becomes easy, this move is dan-
gerous in principle. Van Benthem and Pacuit [11] point at
the generally high complexity of tree logics when enriched
with this expressive power.

Likewise, finer epistemic and doxastic process descrip-
tions require further temporal modalities, such as “Since”
and “Until”, beyond the basic operators we used for match-
ing the needs of dynamic doxastic logic directly.

Finally, there may be even more urgent language exten-
sions for doxastic temporal logic, having to do with our very
notion of belief. We have emphasized the notion of safe be-
lief, which scans the plausibility relation ≥ as an ordinary
modality. This notion can be used to define the more stan-
dard notion of belief as truth in all most plausible worlds:
cf. [15]. But it has been argued recently by [3], and also by
[16] that we really want a more ‘entangled’ version of the
latter notion as well, referring to the most plausible worlds
inside the epistemically accessible ones. Such a notion of
‘posterior belief’ has the following semantics:

H, h ! Biφ iff ∀h ′ ∈ Min(Ki[h],≤i) we haveH, h′ ! φ

Technically, expressing this requires an additional inter-
section modality. While this extension loses some typical
modal properties, it does satisfy reduction axioms in the for-
mat discussed here: cf. [21].

6 Conclusion

Agents that update their knowledge and revise their be-
liefs can behave very differently over time. We have deter-
mined the special constraints that capture agents operating
with the ‘local updates’ of dynamic doxastic logic. This
took the form of some representation theorems that state
just when a general doxastic temporal model is equivalent
to the forest model generated by successive priority updates
of an initial doxastic model by a protocol sequence of event
models. We have also shown how these conditions can be
defined in an appropriate extended modal language, making
it possible to reason formally about agents engaged in such
updates and revisions. Our methods are like those of exist-
ing epistemic work, but the doxastic case came with some
interesting new notions.
As for open problems, the paper has indicated several

technical issues along the way, e.g., concerning the ex-
pressive power of different languages over our models and
their complexity effects (cf. [11] for the epistemic case).
In particular, we have completely omitted issues of com-
mon knowledge and common belief, even though these are
known to generate complications [12].
But from where we are standing now, we see several

larger directions to pursue:

• A systematic “protocol logic” of axiomatic complete-
ness for constrained revision processes, analogous to
the purely epistemic theory of observation and conver-
sation protocols initiated in [9],

• A comparison of our ‘constructive’ DDL-inspired
approach to DTL universes with the more abstract
AGM -style postulational approach of [14],

• A theory of variation for different sorts of agents with
different abilities and tendencies, as initiated in [21],

• An analysis of knowledge and belief dynamics in
games [7, 17, 4]

• Connections with formal learning theory over
epistemic-doxastic temporal universes (cf. [20]).
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l’Interaction (MFI’07), pages 61–73, 2007.

[18] K. Eliaz and E. A. Ok. Indifference or indecisiveness?
Choice-theoretic foundations of incomplete preferences.
Games and Economic Behavior, 56(1):61–86, July 2006.

[19] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reason-
ing About Knowledge. MIT Press, Cambridge, 1995.

[20] K. Kelly. Ockham’s razor, truth, and information. In J. van
Behthem and P. Adriaans, editors, Handbook of the Philos-
ophy of Information. 2008.

[21] F. Liu. Changing for the Better: Preference Dynamics and
Agent Diversity. Phd dissertation, ILLC Amsterdam, 2008.

[22] S. Morris. The common prior assumption in economic the-
ory. Economics and Philosophy, 11:227–253, 1995.

[23] R. Parikh and R. Ramanujam. A knowledge based semantics
of messages. Journal of Logic, Language and Information,
12(4):453–467, 2003.

[24] R. Stalnaker. A theory of conditionals. In R. Stalnaker, W. L.
Harper, and G. Pearce, editors, Ifs: Conditionals, Belief, De-
cision, Chance and Time. D. Reidel, Dordrecht, 1981.

57



When all is done but not (yet) said:
Dynamic rationality in extensive games

Alexandru Baltag
Oxford

baltag@comlab.ox.ac.uk

Sonja Smets
Brussels & Oxford

sonsmets@vub.ac.be

Jonathan A. Zvesper
Amsterdam

jonathan@illc.uva.nl

The jury is still out concerning the epistemic conditions
for backward induction, the “oldest idea in game theory”
([2, p. 635]). Aumann [2] and Stalnaker [31] take contradic-
tory positions in the debate: Aumann claims that common
‘knowledge’ of ‘rationality’ in a game of perfect informa-
tion entails the backward-induction solution; Stalnaker that
it does not.1 Of course there is nothing wrong with any of
their relevant formal proofs, but rather, as pointed out by
Halpern [22], there are differences between their interpre-
tations of the notions of knowledge, belief, strategy and ra-
tionality. Moreover, as pointed out by Binmore [14, 15],
Bonanno [17], Bicchieri [13], Reny [26], Brandenburger
[18] and others, the reasoning underlying the backward in-
duction method seems to give rise to a fundamental para-
dox (the so-called “BI paradox”): in order to even start the
reasoning, a player assumes that (common knowledge, or
some form of common belief in) Rationality holds at all the
last decision nodes (and so the obviously irrational leaves
are eliminated); but then, in the next reasoning step (go-
ing backward along the tree), some of these (last) decision
nodes are eliminated, as being incompatible with (common
belief in) Rationality! Hence, the assumption behind the
previous reasoning step is now undermined: the reasoning
player can now see, that if those decision nodes that are
now declared “irrational” were ever to be reached, then the
only way that this could happen is if (common belief in)
Rationality failed. Hence, she was wrong to assume (com-
mon belief in) Rationality when she was reasoning about
the choices made at those last decision nodes. This whole
line of arguing seems to undermine itself!

In this paper we use as a foundation the relatively stan-
dard and well-understood setting of Conditional Doxastic
Logic (CDL, [16, 5, 7, 6]), and its “dynamic” version (ob-
tained by adding to CDL operators for truthful public an-
nouncements [!ϕ]ψ): the logic PAL-CDL, introduced by
Johan van Benthem [11]. In fact, we consider a slight ex-

1Others agree with Stalnaker in disagreeing with Aumann: for exam-
ple, Samet [29] and Reny [26] also put forwards arguments against Au-
mann’s epistemic characterisation of subgame-perfect equilibrium. Sec-
tion 5 is devoted to a discussion of related literature.

tension of this last setting, namely the logic APAL-CDL,
obtained by further adding dynamic operators for arbitrary
announcements [!]ψ, as in [3]). We use this formalism to
capture a novel notion of “dynamic rationality” and to in-
vestigate its role in decision problems and games. As usual
in these discussions, we take a deterministic stance, assum-
ing that the initial state of the world at the beginning of
the game already fully determines the future play, and thus
the unique outcome, irrespective of the players’ (lack of)
knowledge of future moves. We do not, however, require
that the state of the world determines what would happen,
if that state were not the actual state. That is, we do not
need to postulate the existence of any “objective counter-
factuals”. But instead, we only need “subjective counter-
factuals”: in the initial state, not only the future of the play
is specified, but also the players’ beliefs about each other, as
well as their conditional beliefs, pre-encoding their possible
revisions of belief. The players’ conditional beliefs express
what one may call their “propensities”, or “dispositions”, to
revise their beliefs in particular ways, if given some partic-
ular pieces of new information.

Thus at the outset of a game, all is “done”, including the
future. But all is not necessarily said. In a deterministic
model, as time progresses the only thing that changes are
the pictures of the world in the minds of the players: the in-
formation states of the players. This is “on-line” learning:
while the game is being played, the players learn the played
moves, and so they may change their minds about the situa-
tion. We can simulate this on-line learning (and its effect on
the players’ beliefs) via off-line “public announcements”:
if, before the start of the game, the agents were publicly told
that the game will reach some node u, then they would be
in the same epistemic state as they would have been by (not
having any such public announcement but instead) playing
the game until node u was reached.

So in this paper we stress the importance of the dynam-
ics of beliefs and rationality during a play of an extensive
game, and we use dynamic operators in order to simulate
the play of the game. Since we focus on games of perfect
information, we only need public announcements to simu-
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late the moves of the game. The idea of adding modalities
for public announcements to epistemic logic was introduced
and developed in [24, 20]. Dynamic epistemic logic [4] pro-
vides for much richer dynamic modalities than just public
announcements, capturing the effects of more complex and
more “private” forms of learning. We think these could be
applied to the case of games with imperfect information.
However, for simplicity, we leave these developments for
future work and consider for now only perfect information,
and so only public announcements.

Using the terminology of Brandenburger [18], ours is a
belief-based approach to game theory (in the same category
as the work of Battigalli and Siniscalchi [9, 10]), in con-
trast to the knowledge-based approach of Aumann [2] and
others. This means that we take the players’ beliefs (in-
cluding conditional beliefs) as basic, instead of their knowl-
edge. However, there is a notion of knowledge that naturally
arises in this context: the “irrevocable knowledge”, consist-
ing of the beliefs that are absolutely unrevisable, i.e. be-
lieved under any conditions. This notion of knowledge is
meant to apply only to the players’ “hard information”, ob-
tained by observation or by undoubtable evidence. This
is a much stronger condition than “certain belief” (subjec-
tive probability 1) or even “true belief”, and as a result it
may happen that very few things are “known” in this sense.
One of the things we assume to be irrevocably known is the
structure of the game: the possible outcomes, the players’
preferences etc; also, in a game of perfect information, the
played moves are observed, and thus known, after they are
played; finally, another thing irrevocably known to a player
is her own beliefs: by introspection, she knows what she be-
lieves and what not. Besides this, we do not assume much
else to be known, although our setting is definitely consis-
tent with (common) knowledge of all the players’ beliefs,
their strategies, their rationality etc.

One thing we do not assume as known is the future of the
game: no outcomes that are consistent with the structure
of the game are to be excluded at the outset of the game.
In fact, we make the opposite assumption: that it is com-
mon knowledge that nobody knows the future, i.e. nobody
knows that some outcome will not be reached. This “open
future” assumption seems to contradict common knowledge
of rationality; but in fact, it is consistent with it, if by ratio-
nality we only mean “rational planning”, leaving open the
possibility that players may make mistakes or may change
their minds. The players may certainly believe their ratio-
nal plans will be faithfully carried out, but they have no way
to “know” this in advance. We think of our “open future”
assumption as being a realistic one, and moreover one that
embodies the agents’ “freedom of choice”, as well as the
“possibility of error”, that underly a correct notion of ratio-
nality. An agent’s rationality can be assessed only if she is
given some options to freely choose from. There are cer-

tainly cases in which the future can be known, e.g. when it
is determined by a known natural law. But it is an essen-
tial feature of rational agents that their own choices are not
known to them to be thus determined; or else, they would
have no real choices, and thus no rational choice. Any natu-
ral determinism is assumed to be absorbed in the definition
of the game structure, which does pose absolute limits to
choices. In a sense, this simply makes precise the mean-
ing of our “knowledge” as “hard information”, and makes a
strict delimitation between the past and the future choices,
delimitation necessary to avoid the various paradoxes and
vicious circles that plague the notions of rational decision
and freedom of choice: the agents may have “hard informa-
tion” about the past and the present, but not about their own
future free choices (although they may have “soft” infor-
mation, i.e. “certain” beliefs, with probability 1, about their
future choices).

Our notion of “dynamic” rationality takes into account
the dynamics of beliefs, as well as the dynamics of knowl-
edge. On the one hand, following Stalnaker, Reny, Batti-
galli and Siniscalchi etc. (and in contrast with Aumann), we
assess the rationality of a player’s move at a node against the
beliefs held at the moment when the node is reached. On the
other hand, we incorporate the above-mentioned epistemic
limitation to rationality: the rationality of an agent’s move
only makes sense when that move is not already known
(in an irrevocable manner) to her. Agents cannot be held
responsible for moves that they cannot choose or change
any more. Since the agents’ knowledge increases during a
game of perfect information, their set of available options
decreases: passed options/nodes, or nodes that were by-
passed, cannot be the objects of choice any more. As a re-
sult, our notion of rationality is future-oriented: it only con-
cerns her plans concerning current and future decisions. An
agent can be rational now even if in the past she has made
some “irrational” moves. So in a sense, the meaning of “ra-
tionality” changes in time, synchronous to the change of be-
liefs and the change of (known) set of options. This concept
of rationality, developed on purely a priori grounds, solves
in one move the “BI-paradox”: the first reasoning step in
the backward-induction argument (dealing with the last de-
cision nodes of the game) is not undermined by the result of
the second reasoning step, since the notion of “Rationality”
assumed in the first step is not the same as the “Rationality”
disproved in the second step! The second step only shows
that some counterfactual nodes cannot be reached by ratio-
nal play, and thus it implies that some agent must have been
irrational (or must have had some doubts about the others’
rationality, or must have made some “mistake”) before such
an “irrational” node was reached; but this doesn’t contradict
in any way the assumption that the agents will be rational at
that node (and further in the future).

Since dynamic rationality is only about rational plan-
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ning, we need to strengthen it in order to capture rational
playing of the game. We do this by adding to dynamic
rationality a condition requiring that players actually play
in accordance with their beliefs. The resulting condition is
called “rational play”.

Dynamics cannot really be understood without its correl-
ative: invariance under change. Certain truths, or beliefs,
stay true when everything else changes. We have already
encountered an “absolute” form of invariance: “irrevocable
knowledge”, i.e. belief that is invariant under any possible
information change. Now, we need a second, weaker form
of invariance: “stability”. A truth, or a belief, is stable if it
remains true, or continues to be believed, after any (joint)
learning of “hard” information (via some truthful public
announcement). In fact, in the case of an “ontic” (non-
doxastic) fact p, Stalnaker’s favourite notion of “knowl-
edge” of p [31, 33] (a modal formalisation of Lehrer and
Klein’s “defeasibility theory of knowledge”), also called
“safe belief” in [7], corresponds precisely to stable belief
in p. Stability can be or not a property of a belief or a com-
mon belief: a proposition P is a “stable (common) belief”
if the fact that P is (common) belief is a stable truth, i.e. P
continues to be (common) belief after any (joint) learning
of “hard” information.

We can now give an informal statement of the main the-
orem of this paper:

Common knowledge of the game structure, of
“open future” and of stable (common2) belief in
rational play entails common belief in the back-
ward induction outcome.

Overview of the Paper To formalise stability and “stable
common belief”, we introduce in the next section Condi-
tional Doxastic Logic CDL and its dynamic version APAL-
CDL. Section 2 recalls the definition of extensive games
and shows how to build models of those games in which
the structure of the game is common knowledge, in our
strong sense of “knowledge”. In Section 3 we define “ra-
tionality” and “rational play”, starting from more general
decision-theoretic considerations, and arriving at a defini-
tion of dynamic rationality in extensive (aka “dynamic”)
games, which is in some sense a special case of the more
general notion. Section 4 gives a formal statement of our
main results. Section 5 discusses connections between our
work and some existing literature on the epistemic founda-
tions of backward induction.

2Adding the word “common” to this condition doesn’t make a differ-
ence: common knowledge that everybody has a stable belief in P is the
same as common knowledge of common safe belief in P .

1 Conditional Doxastic Logic

CDL models, also called “plausibility models” are es-
sentially the “belief revision structures” in Board [16], sim-
plified by incorporating structurally the assumption of Full
Introspection of Beliefs (which allows us to use binary plau-
sibility relations on worlds for each agent, instead of ternary
relations). But since we will also want to talk about the ac-
tual change under the effects of actions, like moves in a
game, rather than just the static notion that is in effect cap-
tured by Board’s models, we will enrich the language of
CDL with model-changing dynamic operators for “public
announcements”, in the spirit of Dynamic Epistemic Logic
(cf. [4, 11, 12]).

The models are “possible worlds” models, where the
worlds will usually be called states. Grove [21] showed
that the AGM postulates [1] for rational belief change are
equivalent to the existence of a suitable pre-order over the
state space.3 The intended interpretation of the pre-order≤i

of some agent i is the following: s ≤i t means that, in the
event {s, t}, i considers s at least as plausible as t.

In interactive situations, where there are several players,
each player i has a doxastic pre-order ≤i. In addition to
having different beliefs, any two players might have dif-
ferent knowledge. We follow the mainstream in game the-
ory since Aumann and model interactive knowledge using
a partitional structure. However, as in Board [16], we will
derive i’s partition from i’s pre-order ≤i. Let us be more
precise: fix a set S and a relation ≤i⊆ S × S; then we de-
fine the comparability class of s ∈ S for ≤i to be the set
[s]i = {t ∈ S | s ≤i t or t ≤i s} of states ≤i-comparable
to s. Now we want the set of comparability classes to form
a partition of S, so we will define a plausibility frame to
be a sequence (S,≤i)i∈N in which S is a non-empty set
of states, and each ≤i a pre-order on S such that for each
s ∈ S, the restriction of ≤i to [s]i is a “complete” (i.e. “to-
tal” or “connected”) preorder.

Fact 1.1 In any plausibility frame, {[s]i | s ∈ S} forms
a partition of S. We will interpret this as the information
partition for player i (in the sense of “hard” information, to
be explained below).

So we can define player i’s knowledge operator in the
standard way, putting for any “proposition” P ⊆ S:

KiP := {s ∈ S | [s]i ⊆ P}

As explained below, this captures a notion of indefeasible,
absolutely unrevisable knowledge. But we also want a no-
tion of belief B, describing “soft” information, which might

3A pre-order is any reflexive transitive relation. In Grove’s representa-
tion theorem the pre-order must also be total and converse-well-founded.
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be subject to revision. So we want conditional belief oper-
ators BP , in order to capture the revised beliefs given some
new information P . If S is finite, let min≤i(P ) denote the
≤i-minimal P elements {s ∈ P | ∀t ∈ P, s ≤i t}. So
min≤i(P ) denotes the set of states which i considers most
plausible given P . Then min≤i(P ∩ [s]i) denotes the set
of that states which i considers most plausible given both
P and i’s knowledge at state s. Thus we define player i’s
conditional belief operator as:

BQ
i P := {s ∈ S | min≤i(Q ∩ [s]i) ⊆ P}.

There is a standard way to extend this definition to total pre-
orders on infinite sets of states, but we skip here the details,
since we are mainly concerned with finite models. BQ

i P is
the event that agent i believes P conditional on Q. Condi-
tional belief should be read carefully: BQ

i P does not mean
that after learning that Q, i will believe P ; rather it means
that after learning Q, i will believe that P was the case be-
fore the learning. This is a subtle but important point: the
conditional belief operators do not directly capture the dy-
namics of belief, but rather as van Benthem [11] puts it,
they ‘pre-encode’ it. We refer to [11, 7] for more discus-
sion. The usual notion of (non-conditional) belief can be
defined as a special case of this, by putting BiP := BS

i P .
The notions of common knowledge CkP and common be-
lief CbP are defined in the usual way: first, one introduces
general knowledge EkP :=

⋂
i KiP and general belief

EbP :=
⋂

i BiP , then one can define CkP :=
⋂

n(Ek)nP
and CbP :=

⋂
n(Eb)nP .

It will be useful to associate with the states S some
non-epistemic content; for this we use a valuation function.
Assume given some finite set Φ of symbols, called basic
(or atomic) sentences, and meant to describe ontic (non-
epistemic, non-doxastic) “facts” about the (current state of
the) world. A valuation on Φ is a function V that associates
with each p ∈ Φ a set V (p) ⊆ S: V specifies at which states
p is true. A plausibility model for (a given set of atomic sen-
tences) Φ is a plausibility frame equipped with a valuation
on Φ.

Interpretation: ‘hard’ and ‘soft’ information Informa-
tion can come in different flavours. An essential distinction,
due to van Benthem [11], is between ‘hard’ and ‘soft’ in-
formation. Hard information is absolutely “indefeasible”,
i.e. unrevisable. Once acquired, a piece of ‘hard’ informa-
tion forms the basis of the strongest possible kind of knowl-
edge, one which might be called irrevocable knowledge and
is denoted about by Ki. For instance, the principle of Intro-
spection of Beliefs states that (introspective) agents possess
‘hard’ information about their own beliefs: they know, in
an absolute, irrevocable sense, what they believe and what
not. Soft information, on the other hand, may in principle
be defeated (even if it happens to be correct). An agent

usually possesses only soft information about other agents’
beliefs or states of mind: she may have beliefs about the oth-
ers’ states of mind, she may even be said to have a kind of
‘knowledge’ of them, but this ‘knowledge’ is defeasible: in
principle, it could be revised, for instance if the agent were
given more information, or if she receives misinformation.

For a more relevant, game-theoretic example, consider
extensive games of perfect information: in this context, it
is typically assumed (although usually only in an implicit
manner) that, at any given moment, both the structure of
the game and the players’ past moves are ‘hard’ informa-
tion; e.g. once a move is played, all players know, in an
absolute, irrevocable sense, that it was played. Moreover,
past moves (as well as the structure of the game) are com-
mon knowledge (in the same absolute sense of knowledge).
In contrast, a player’s ‘knowledge’ of other players’ ratio-
nality, and even a player’s ‘knowledge’ of her own future
move at some node that is not yet reached, are not of the
same degree of certainty: in principle, they might have to be
revised; for instance, the player might make a mistake, and
fail to play according to her plan; or the others might in fact
play “irrationally”, forcing her to revise her ‘knowledge’
of their rationality. So this kind of defeasible knowledge
should better be called ‘belief’, and is based on players’
“soft” information.4

In the ‘static’ setting of plausibility models given above,
soft information is captured by the “belief” operator Bi. As
already mentioned, this is defeasible, i.e. revisable, the re-
vised beliefs after receiving some new information ϕ being
pre-encoded in the conditional operator Bϕ

i . Hard informa-
tion is captured by the “knowledge” operator Ki; indeed,
this is an absolutely unrevisable form of belief, one which
can never be defeated, and whose negation can never be
accepted as truthful information. This is witnessed by the
following valid identities:

KiP =
⋂

Q⊆S

BQ
i P = B¬P

i ∅.

Special Case: Conditional Probabilistic Systems If, for
each player i, we are given a conditional probabilistic sys-
tem a la Renyi [27] over a common set of states S (or if al-
ternatively we are given a lexicographic probability system
in the sense of Blume et al), we can define subjective con-
ditional probabilities Probi(P |Q) for events of zero prob-
ability. When S is finite and the system is discrete (i.e.,
Prob(P |Q) is defined for all non-empty events Q), we can
use this to define conditional belief operators for arbitrary
events, by putting BQ

i P := {s ∈ S : Probi(P |Q) = 1}.
4By looking at the above probabilistic interpretation, one can see that

the fact that an event or proposition has (subjective) probability 1 cor-
responds only to the agent having “soft” information (i.e. believing the
event). “Hard” information corresponds to the proposition being true in all
the states in the agent’s information cell.
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It is easy to see that these are special cases of finite plausi-
bility frames, by putting: s ≤i t iff Probi({s}|{s, t}) "= 0.
Moreover, the notion of conditional belief defined in terms
of the plausibility relation is the same as the one defined
probabilistically as above.

Dynamics and Information: ‘hard’ public announce-
ments Dynamic epistemic logic is concerned with the
“origins” of hard and soft information: the “epistemic ac-
tions” that can appropriately inform an agent. In this pa-
per, we will focus on the simplest case of hard-information-
producing actions: public announcements. These actions
model the simultaneous joint learning of some ‘hard’ piece
of information by a group of agents; this type of learning
event is perfectly “transparent” to everybody: there is noth-
ing hidden, private or doubtful about it. But dynamic epis-
temic logic [4] also deals with other, more complex, less
transparent and more private, forms of learning and com-
munication.

Given a plausibility model M = (S,≤i, V )i∈N and a
“proposition” P ⊆ S, the updated model M ! P produced
by a public announcement of P is given by conditionalisa-
tion: (P,≤i! P, V ! P ), where ≤! P is the restriction of
≤ to P and (V ! P )(p) = V (p) ∩ P . Notice that public
announcements can change the knowledge and the beliefs
of the players. So far we have, for readability, been writ-
ing events without explicitly writing the frame or model in
question. However, since we are now talking about model-
changing operations it is useful to be more precise; for this
we will adopt a modal logical notation.

APAL-CDL: Language and Semantics Our language
APAL − CDL is built recursively, in the usual manner,
from atomic sentences in Φ, using the Boolean connectives
¬ϕ, ϕ∧ψ, ϕ∨ψ and ϕ ⇒ ψ, the epistemic operators Kiϕ,
Bϕ

i ψ, Ckϕ and Cbϕ and the dynamic modalities [!ϕ]ψ and
[!]ϕ. (The language CDL of conditional doxastic logic con-
sists only of the formulas of APAL − CDL that can be
formed without using the dynamic modalities.)

For any formula ϕ of this language, we write !ϕ"M for
the interpretation of ϕ, the event denoted by ϕ, in M. We
write Mϕ for the updated model M ! !ϕ"M after the pub-
lic announcement of ϕ. The interpretation map is defined
recursively: !p"M = V (p); Boolean operators behave as
expected; and the definitions given above of the epistemic
operators in terms of events give the interpretation of epis-
temic formulae. Then the interpretation of the dynamic
formulae, which include public announcement modalities
[!ϕ]ψ, goes as follows:

![!ϕ]ψ"M = {s ∈ S | s ∈ !ϕ"M ⇒ s ∈ !ψ"Mϕ}

Thus [!ϕ]ψ means that after any true public announcement
of ϕ, ψ holds. The arbitrary (public) announcement modal-

ity [!]ϕ is to be read: after every (public) announcement, ϕ
holds. Intuitively, this means ϕ is a “stable” truth: not only
it is true, but it continues to stay true when any new (true)
information is (jointly) learned (by all the players). There
are some subtleties here: do we require that the new in-
formation/announcement be expressible in the language for
example? This is the option taken in [3], where the possible
announcements are restricted to epistemic formulas, and a
complete axiomatisation is given for this logic. In the con-
text of finite models (as the ones considered here), this defi-
nition is actually equivalent to allowing all formulas of our
language L as announcements. As a result, we can safely
use the following apparently circular definition:

![!]ϕ"M = {s ∈ S | ∀ψ ∈ L s ∈ ![!ψ]ϕ"M}

Dynamic epistemic logic captures the “true” dynamics
of (higher-level) beliefs after some learning event: in the
case of public announcements, the beliefs of an agent i af-
ter a joint simultaneous learning of a sentence ϕ are fully
expressed by the operator [!ϕ]Bi, obtained by composing
the dynamic and doxastic operators. Note that this is not
the same as the conditional operator Bϕ

i , but the two are
related via the following “Reduction Law”, introduced in
[11]:

[!ϕ]Biψ ⇔ (ϕ ⇒ Bψ
i [!ϕ]ψ).

This is the precise sense in which the conditional belief op-
erators are said to “pre-encode” the dynamics of belief.

Special Case: Bayesian Conditioning In the case of a
conditional probability structure, the update M ! P by a
public announcement !P corresponds to Bayesian update
(conditionalisation): the state space is reduced to the event
P , and the updated probabilities are given by Prob′i(Q) :=
Probi(Q|P ). So a dynamic modality [!P ]Q corresponds to
the event that, after conditionalising with P , event Q holds.
Similarly, the arbitrary announcement modality [!]P is the
event that P stably holds, i.e. it holds after conditionalising
with any true event.

2 Models and languages for games

The notion of extensive game with perfect information
is defined as usual (cf. [23]): Let N be a set of ‘players’,
and G be a finite tree of ‘decision nodes’, with terminal
nodes (leaves) O (denoting “possible outcomes”), such that
at each non-terminal node v ∈ G − O, some player i ∈ N
is the decision-maker at v. We write Gi ⊆ G for the set
of nodes at which i is the decision-maker. Add to this a
payoff function hi for each player i, mapping all the leaves
o ∈ O into real numbers, and you have an extensive game.
We write ‘G’ to refer both to the game and to the corre-
sponding set of nodes. We also write u → v to mean that
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v is an immediate successor of u, and u ! v to mean that
there is a path from u to v. A subgame of a game G is any
game G′, having a subset G′ ⊆ G as the set of nodes and
having the immediate successor relation→′, the set of deci-
sion nodes G′

i and the payoff function h′
i (for each player i)

being given by restrictions to G′ of the corresponding com-
ponents of the game G (e.g. G′

i = Gi ∩G′ etc). For v ∈ G,
we write Gv for the subgame of G in which v is the root.
A strategy σi for player i in the game G is defined as usu-
ally as a function from Gi to G such that v → σi(v) holds
for all v ∈ Gi. Similarly, the notions of strategy profile, of
the (unique) outcome determined by a strategy profile and
of subgame-perfect equilibrium are defined in the standard
way. Finally, we define as usually a backward induction
outcome to be any outcome o ∈ O determined by some
subgame-perfect equilibrium. We denote by BIG the set of
all backward-induction outcomes of the game G.

Consider as an example the “centipede” game G
(cf. [14]) given in Figure 1. This is a two-player game for a
(Alice) and b (Bob).

!"#$%&'(v0 : a !!

""

!"#$%&'(v1 : b !!

""

!"#$%&'(v2 : a !!

""

)*+,-./0o4 : 4, 5

)*+,-./0o1 : 3, 0 )*+,-./0o2 : 2, 3 )*+,-./0o3 : 5, 2

Figure 1. The “centipede” game G

Here, we represent the nodes of the game by circles and
the possible moves by arrows. In each circle we write first
the name of the node that the circle represents; then, if
the node is non-terminal, we write the name of the player
who decides the move at that node; while in the termi-
nal nodes (outcomes) o1, o2, o3, o4, we write the payoffs as
pairs (pa, pb), with pa being Alice’s payoff, and pb Bob’s.
Note that in this game there is one backward induction out-
come, o1, and furthermore that the unique backward induc-
tion strategy profile assigns to each vm the successor om+1.

Language for Games For any given game G, we define a
set of basic (atomic) sentences ΦG from which to build a
language. First, we require ΦG to contain a sentence for
each leaf: for every o ∈ O, there is a basic sentence o. For
simplicity, we often just write o, instead of o. In addition
ΦG contains sentences to express the players’ preferences
over leaves: for each i ∈ N and {o, o′} ⊆ O, ΦG has a
basic sentence o ≺i o′. Our formal language for games
G is simply the language APAL − CDL defined above,
where the set of atomic sentences is the set ΦG. To talk
about the non-terminal nodes, we introduce the following

abbreviation:
v :=

∨

v!o

o ,

for any v ∈ G − O. As for terminal nodes, we will often
denote this sentence by v for simplicity, instead of v.
Plausibility Models for Games We now turn to defining
game models. A plausibility model for game G is just a
plausibility model (S,≤i, V )i∈N for the set ΦG. We inter-
pret every state s ∈ S as an initial state in a possible play
of the game. Intuitively, the sentence o is true at a state s if
outcome o will be reached during the play that starts at s;
and the sentence o ≺i o′ says that player i’s payoff at o is
strictly smaller than her payoff at o′.

Observe that nothing in our definition of models for G
guarantees that states come with a unique outcome or that
the players know the set of outcomes! To ensure this (and
other desirable constraints), we later focus on a special class
of plausibility models for a game, called “game models”.

Examples Figures 2 and 3 represent two different plausibil-
ity modelsM1 andM2 for the centipede game G. Here, we
use labelled arrows for the converse plausibility relations
≥a (going from less plausible to more plausible states), but
for convenience we skip all the loops.12 3456 78o3
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Figure 2. A game modelM1 for the centipede
game G
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Figure 3. A plausibility model M2 for G,
which is not a game model

Note that in the model M2, Alice (player a) knows the
state of the world: in each state, she knows both the out-
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come and Bob’s beliefs (and belief revision policy), i.e. the
sentence

∧
o∈O(o ⇒ Kao) holds at all states of M2. But

this is not true in model M1: on the contrary, in M1 (it is
common knowledge that) nobody knows the outcome of the
game, and moreover nobody can exclude any outcome. In-
tuitively, the future is “epistemically open” in M1, but not in
M2. However, we can also intuitively see that, in both mod-
els, (it is common knowledge that) all the players know the
(structure of the) game: the available outcomes, the struc-
ture of the tree, the payoffs etc.

We now want to formalise our intuitions about open fu-
ture and about having common knowledge of the structure
of the game. To do this, we will focus on a special class
of models, that we call “game models”. Intuitively, each
state of a game model comes with a complete play of the
game, and hence it should have a uniquely determined out-
come, and the set of possible outcomes as well as the play-
ers’ preferences over them should be common knowledge.
However, the players in this (initial) state should not have
non-trivial knowledge about the outcome of the play. In-
deed, they should have “freedom of choice” during the play,
which means they can in principle play any move, so that at
the outset of the play they cannot exclude a priori any out-
comes.

Game Models The class of game models for G, denoted
by MG, as the class of all plausibility model for G satisfy-
ing the following conditions (for all players i ∈ N ):

1. ∀s ∈ S ∃!o ∈ O : s ∈ V (o)

2. V (o ≺i o′) =
{

S if hi(o) < hi(o′)
∅ otherwise

3. ∀s ∈ S ∀o ∈ O : V (o) ∩ [s]i (= ∅

The first condition entails that there is common knowledge
of the set of possible outcomes, as well as of the fact that
each state is associated a unique actual outcome. This re-
flects the fact that the future, for each particular play (state),
is determined. The second condition entails that the pref-
erences over outcomes are commonly known. Finally, the
third condition says that (it is common knowledge that) the
future is epistemically open: in the initial state of any play,
no player has “knowledge” (in the strong sense of “irrevoca-
ble”, absolutely unrevisable knowledge) that any outcome is
impossible. This is meant to apply even to the states that are
incompatible with that player’s plan of action.

Open Future We take condition (3) to embody the play-
ers’ freedom of choice, as well as the possibility of error: in
principle, players might always change their minds or make
mistakes, hence any belief excluding some of the outcomes
may have to be revised later. Even if we would assume (as

usually is assumed) that players (irrevocably) know their
own strategy, i.e. even if they are not allowed to change their
minds, and even if we assume (as postulated by Aumann)
that they have common knowledge of “rationality” (and so
that they can exclude some obviously irrational choices), it
still would not follow that they can completely exclude any
outcome: mistakes can always happen, or players may al-
ways lose their rationality and become temporarily insane;
so a rational plan does not necessarily imply a rational play,
and hence the future still remains open.

Condition (3) is natural given our interpretation of the
“knowledge” operator K as representing hard information,
that is absolutely certain and irrevocable. If any node is
“known” (in this sense) to be unreachable, then that node
should simply be deleted from the game tree: this just cor-
responds to playing a different game. So if a player i would
irrevocably know that a node is unreachable, then the struc-
ture of the game is not “really” common knowledge: i
would in fact know that she is playing another game than
G. Thus, one can consider the “open future” postulate as
a natural strengthening of the “common knowledge of the
game” assumption.

A different way to proceed would be to impose the above
conditions only locally, at the “real” (initial) state of the
play. Let StructG be the following sentence, describing the
“structure of the game” G:

∨

o∈O
o ∧

∧

o#=o′∈O
¬(o ∧ o′)∧

∧

i∈N,o,o′∈O
s.t. hi(o)<hi(o′)

o ≺i o′ ∧
∧

i∈N,o,o′∈O
s.t. hi(o)≥hi(o′)

¬o ≺i o′

Similarly, let FG :=
∧

o∈O,i∈N ¬Ki¬o be the sentence
saying that at the outset of game G the future is epistemi-
cally open. Then our proposed “local” requirement is that in
the initial state s we have “common knowledge of the struc-
ture of the game and of open future”, i.e. s satisfies the sen-
tence Ck(StructG∧FG). Then it is easy to see that this “lo-
cal” requirement is equivalent to the above global require-
ment of having a “game model”: for every state s in any
plausibility model M for G, s satisfies Ck(StructG ∧ FG)
iff it is bisimilar5 to a state in some game modelM′ ∈ MG .
Examples Note that the modelM1 from Figure 2 is a game
model, whileM2 from Figure 3 is not: indeed, inM2 it is
common knowledge that Alice always knows the outcome,
which contradicts the “Open future” assumption.

Encoding Strategies as Conditional Beliefs If a player
adopts a particular (pure) strategy, our language can encode

5Here, “bisimilarity” is the standard notion used in modal logic, applied
to plausibility models viewed as Kripke models with atomic sentences in Φ
and with relations≤i. The important point is that our language APAL−
CDL cannot distinguish between bisimilar models and states.
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this in terms of the player’s conditional beliefs about what
she would do at each of her decision nodes. For instance,
we say that Alice “adopts the backward induction strategy”
in a given state s of a model for the Centipede Game in
Figure 1 iff the sentences Bao1 and Bv2

a o3 hold at state s.
Similarly, we can express the fact that Bob adopts a partic-
ular strategy, and by putting these together we can capture
strategy profiles. A given profile is realized in a model if the
correspondent sentence is true at a state of that model.

Note that, in our setting, nothing forces the players to
adopt (pure) strategies. Strategies are “complete” plans of
action prescribing a unique choice (a belief that a partic-
ular move will be played) for each decision node of the
player. But the players might simply consider all their op-
tions as equi-plausible, which essentially means that they
do not have a strategy.
Examples In (any state of) modelM1 from Figure 2 it is
common knowledge that both players adopt their backward
induction strategies. In contrast, in the modelM3 from Fig-
ure 4, it is common knowledge that no player has a strategy
(at any node): !" #$%& '(o3
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Figure 4. A game modelM3 in which players
don’t have strategies

So the assumption that players have (pure) “strategies”
is an extremely strong assumption, which we will not need.
There is no a priori reason to assume (and there are good
empirical reasons to reject) that players play according to
fully-determined strategies. Our models are general enough
to dispense with this assumption; indeed, our work shows
that this assumption is not needed for proving (common be-
lief) that the backward induction strategy is played.
Intentions as Beliefs In the above discussion, we identified
an agent’s intentions with her beliefs about what she is go-
ing to do, and so we represented the decision maker’s plan
of action as a belief about her (future) action. This iden-
tification is philosophically debatable, since agents may be
aware of the possibility of mistakes, and so they may doubt
that their intentions will be realized. But one can also ar-
gue that, in the context of Game Theory, such distinctions
will be of very limited significance: indeed, an intention
that is not believed to be enforceable is irrelevant for strate-

gic planning (though see [28] for a discussion of intentions
in game theory). The players only need to know each oth-
ers’ beliefs about their future actions and about each oth-
ers’ beliefs etc., in order to make their own rational plans;
whether or not they are being informed about each others’
(completely unenforceable and not believed to be enforce-
able) “intentions” will not make any difference. So, for the
purposes of this paper, we can safely adopt the simplifying
assumption that the agents believe that they will be able to
carry out their plans. Given this assumption, an agent’s “in-
tentions” can be captured by her beliefs about her (future)
actions.

Representing Players’ Evolving Beliefs Recall that we
think of every state of a game model MG ∈ MG as an
initial state (of a possible play) of the game G. As the
play goes on, the players’ hard and soft information, their
knowledge and beliefs, evolve. To represent this evolution,
we will need to successively change our model, so that
e.g. when a node v is reached, we want to obtain a cor-
responding model of the subgame Gv . That is precisely,
in this perfect information setting, what is achieved by up-
dating the model with public announcements: indeed, in a
game of perfect information, every move, say from a node
u to one of its immediate successors u′, can be “simulated”
by a public announcement !u′. In this way, for each sub-
game Gv of the original modelM, we obtain a modelMv ,
that correctly describes the players’ knowledge and beliefs
at the moment when node v is reached during a play. This
is indeed a model of the corresponding subgame Gv:

Proposition 2.1 IfM ∈ MG thenMv ∈ MGv .

Example Consider a play of the Centipede game G that
starts in the initial situation described by the modelM1 in
Figure 2, and in which the real state of the world is the one
having outcome o2: so Alice first plays “right”, reaching
node v1, and the Bob plays “down”, reaching the outcome
o2. The modelM1 from Figure 2 gives us the initial situ-
ation, the modelMv1

1 in Figure 5 describes the epistemic
situation after the first move, and then the modelMo2

1 in
Figure 6 gives the epistemic situation at the end of the play:

In this way, for each given initial state s (of a given play
v0, v1, . . . , o of the game, where o is the unique outcome
such that s ∈ V (o)), we obtain a sequence of evolving game
models

M =Mv0 ,Mv1 , . . . ,Mo ,

describing the evolving knowledge and beliefs of the play-
ers during any play. Each modelMv accurately captures
the players’ beliefs at the moment when node v is reached.
Note also that every such sequence ends with a modelMo

consisting of only one node (a leaf o); this reflects the fact
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Figure 6. The model Mo2
1

that at the end of the game, there is no uncertainty left: the
outcome, as well as the whole history of the game, are now
common knowledge.
Simulating Moves by Public Announcements Using the
dynamic “public announcement” modalities in constructs
such as [!v]Bi, we can talk, at the initial state s ∈ M and
without leaving the original model M ∈ MG, about all
these future, evolving beliefs of the players at nodes v other
than the initial node v0. Indeed, in a game of perfect infor-
mation, all the moves are public. So the epistemic effect of
a move to node v is the same as that of a truthful public an-
nouncement !v (saying that the node v is reached during the
play). In other words, we can “simulate” moves in games
of perfect information by truthful public announcements.6

3 Rationality in Decisions and Games

We now define our fundamental notions of dynamic ra-
tionality and rational play. First we will look at single-
agent (one-step) decision situations, and then at interactive
decision situations, i.e. games.

3.1 Single Agent Decision Problems

Given a one-step decision problem P with a set of out-
comes O, the decision-maker i selects one of the outcomes
o ∈ O. The decision-maker may have various hard and
soft information about which outcomes can actually be re-
alized and which not. This will determine her knowledge
and her beliefs. We assume that her “hard” knowledge re-
stricts her possible choices: she can only select outcomes
that she doesn’t know to be impossible.

6We believe that the more general case, of games of imperfect infor-
mation, can also be handled by using other kinds of epistemic actions pro-
posed in Dynamic Epistemic Logic [4]. But we leave this development for
future work.

What this amounts to is the following: for the decision
maker i, the “true” set of possible outcomes is {o ∈ O |
¬Ki¬o}, i.e. the set of all the “epistemically possible” out-
comes. So her selected option must satisfy: o ∈ {o ∈ O |
¬Ki¬o}. This allows us to capture the “selection” problem
using epistemic operators.

To assess whether the decision is “rational” or not,
one considers the decision-maker’s subjective preferences,
modelled as a total preorder !i on O. We assume that
agents know their preferences; indeed, these are interpreted
as “doxastic” preferences: beliefs about what’s best. Given
this interpretation, the CDL postulation of Full Introspec-
tion (of beliefs) implies that agents know their preferences.
Rational Choice Rationality, in this case, corresponds to re-
quiring that the selected option is not worse than any other
(epistemically) possible alternative. In other words, i’s so-
lution of the decision problem P is rational if she does not
choose any option that is strictly less preferable than an op-
tion she doesn’t know to be impossible:

RPi :=
∧

o,o′∈O
(o ≺i o′ ∧ ¬Ki¬o′ ⇒ ¬o).

The main difference between our definition and the standard
definition of rational decision-making is the epistemic lim-
itation of the choice set. The epistemic operators are used
here to delimit what is currently known about the availabil-
ity of options: i’s choice should only be compared against
options that are not known to be unavailable. This is an
important difference, and its importance will become clear
when we generalise our definition to extensive games.

3.2 Extensive Games

We now aim to extend the above definitions to the case
of multi-agent many-stage decisions, i.e. “extensive games”
(of perfect information). Recall that in an extensive game
we are given the players’ subjective preferences !i only
over the leaves. However, at all the intermediate stages
of the game, players have to make local choices, not be-
tween “final” outcomes, but between “intermediary” out-
comes, that is: between other nodes of the game tree.

So, in order to assess players’ rationality, we need to ex-
tend the subjective preference relations to all the nodes of
the game tree. Fortunately, given the above doxastic inter-
pretation of preferences, there is an obvious (and natural)
way to define these extensions. Namely, a player considers
a node u to be strictly less preferable to a node u′ if she be-
lieves the first to be strictly dominated by the second. More
precisely, if every outcome that she believes to be achiev-
able given that u is reached is worse than every outcome
that she believes to be achievable given that u′ is reached:

u ≺i u′ :=
∧

o,o′∈O
(¬Bu

i ¬o ∧ ¬Bu′

i ¬o′ ⇒ o ≺i o′).

9
66



By the Full Introspection of beliefs (a postulate of the logic
CDL), it follows that we still have that players know their
extended preferences over all the nodes of the game.
Rationality at a Node Each node v ∈ Gi can be consid-
ered as a (distinct) decision problem, in which the decision-
maker is i, the set of outcomes is the set {u ∈ G : v → u}
of all immediate successors of v, and the subjective pref-
erence relation is given by the (restriction of the) extended
relation ≺i defined above (to the set {u ∈ G : v → u}). So
we can define the rationality of a player i at a node v ∈ Gi

as rationality for the corresponding decision problem, i.e.
the player’s selection at each decision node consists only of
“best answers”. Note that, as before, the player’s choice is
epistemically limited: if she has “hard knowledge” exclud-
ing some successors (for instance, because those nodes have
already been bypassed), then those successors are excluded
from the set of possible options. The only difference is that
the “knowledge” involved is the one the agent would have at
that decision node, i.e. it is conditional on that node being
reached. Formally, we obtain:

Rv
i :=

∧

u,u′←v

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u)

where Kϕ
i ψ := Ki(ϕ⇒ ψ).

Dynamic Rationality Let Ri be the sentence

Ri =
∧

v∈Gi

Rv
i .

If Ri is true, we say that player i satisfies dynamic ratio-
nality. By unfolding the definition, we see it is equivalent
to:

Ri =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u).

As we’ll see, asserting this sentence at a given moment is a
way of saying that the player will play rationally from that
moment onwards, i.e. she will make the best move at any
current or future decision node.

In the following, “Dynamic Rationality” denotes the sen-
tence

R :=
∧

i

Ri

saying that all players are dynamically rational.

Comparison with Substantive Rationality To compare
our notion with Aumann’s concept of “substantive rational-
ity”, we have to first adapt Aumann’s definition to a belief-
revision context. This has already been done by a number
of authors e.g. Battigalli and Siniscalchi [9, 10], resulting in
a definition of “rationality at a node” that differs from ours
only by the absence of epistemic qualifications to the set of
available options (i.e. the absence of the term ¬Kv

i ¬u′).

The notion of substantive rationality is then obtained from
this in the same way as dynamic rationality, by quantify-
ing over all nodes, and it is thus equivalent to the following
definition:

SRi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ⇒ ¬u).

It is obvious that substantive rationality implies dynamic
rationality

SRI ⇒ Ri,

but the converse is in general false. To better see the dif-
ference between SRi and Ri, recall that a formula being
true in a model M ∈ MG means that it is true at the first
node (the root) of the game tree G. However, we will later
have to evaluate the formulas Ri and SRi at other nodes w,
i.e. in other models of the form Mw (models for subgames
Gw). Since the players’ knowledge and beliefs evolve dur-
ing the game, what is (not) known/believed conditional on
v in model Mw differs from was (not) known/believed con-
ditional on v in the original model (i.e. at the outset of the
game). In other words, the meaning of both dynamic ratio-
nality Ri and substantive rationality SRi will change during
a play. But they change in different ways. At the initial
node v0, the two notions are equivalent. But, once a node
v has been bypassed, or once the move at v has already
been played by a player i, that player is counted as rational
at node v according to our definition, while according to
the usual (non-epistemically qualified) definition the player
may have been irrational at v.

In other words, the epistemic limitations we imposed on
our concept of dynamic rationality make it into a future-
oriented concept. At any given moment, the rationality of a
player depends only on her current beliefs and knowledge,
and so only on the options that she currently considers pos-
sible: past, or by-passed, options are irrelevant. Dynamic
Rationality simply expresses the fact that the player’s de-
cision in any future contingencies is rational (given her fu-
ture options and beliefs). Unlike substantive rationality, our
concept has nothing to do with the past or with contingen-
cies that are known to be impossible: a player i may still
be “rational” in our sense at a given moment/node v even
when v could only have been reached if i has already made
some “irrational” move. The (knowledge of some) past mis-
take(s) may of course affect the others’ beliefs about this
player’s rationality; but it doesn’t directly affect her ratio-
nality, and in particular it doesn’t automatically render her
irrational.

Solving the BI Paradox As explained above, our concept
is very different from (and, arguably, more realistic than)
Aumann’s and Stalnaker’s substantive rationality, but also
from other similar concepts in the literature (for exam-
ple Rabinowicz’s [25] “habitual” or “resilient” rationality,
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etc). The difference becomes more apparent if we consider
the assumption that “rationality” is common belief, in the
strongest possible sense, including common “strong” be-
lief (in the sense of Battigalli and Siniscalchi [10]), com-
mon persistent belief, or even common “knowledge” in the
sense of Aumann. As correctly argued by Stalnaker and
Reny, these assumptions, if applied to the usual notions of
rationality in the literature, bear no relevance for what the
players would do (or believe) at the nodes that are incom-
patible with these assumptions! The reason is that, if these
counterfactual nodes were to be reached, then by that time
the belief in “rationality” would have already been publicly
disproved: we cannot even entertain the possibilities reach-
able by irrational moves except by suspending our belief (or
“knowledge”) in rationality. Hence, the above assumptions
cannot tell us anything about the players’ behaviour or ra-
tionality at such counterfactual nodes, and thus they cannot
be used to argue for the plausibility of the backward induc-
tion solution (even if they logically imply it)! In contrast,
our notion of dynamic rationality is not automatically dis-
proved when we reach a node excluded by common belief
in it: a player may still be rational with respect to her cur-
rent and future options and decisions even after making an
“irrational” move. Indeed, the player may have been play-
ing irrationally in the past, or may have had a moment of
temporary irrationality, or may have made some mistakes
in carrying out her rational plan; but she may have recov-
ered now and may play rationally thereafter. Since our no-
tion of rationality is future-oriented, no information about
past moves will necessarily and automatically shatter belief
in rationality (although of course it may still shatter it, or
at least weaken it). So it is perfectly consistent (although
maybe not always realistic) to assume that players maintain
their common belief in dynamic rationality despite all past
failures of rationality. In fact, this is our proposed solution
to the BI paradox: we will show that such a “stable” com-
mon belief in dynamic rationality (or more precisely, com-
mon knowledge of the stability of the players’ common be-
lief in rationality) is exactly what is needed to ensure com-
mon belief in the backward induction outcome!

Rational Planning A weaker condition requires only that,
for each decision node v, the option that the decision-
maker is planning at v to select (at v) is the best, given
the other (epistemically) possible alternatives. By identify-
ing as above the players’ plans of actions with their beliefs
about their actions, we can thus say that a decision maker is
a rational planner in the game G if at each decision node
she believes that she will take “the best decision”, even if in
the end she may accidentally make a wrong choice:

RPi :=
∧

v∈Gi

Bv
i Rv

i .

By unfolding the definition, we see it is equivalent to:

RPi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ Bv

i ¬u).

No Mistakes As noted above, RPPi only states that the de-
cision maker i has a rational plan for current and future
contingencies. But mistakes can happen, so if we want to
ensure that the decision that is actually taken is rational we
need to require the player makes no mistakes in carrying out
her plan:

No-Mistakesi :=
∧

v∈Gi

∧

u←v

(Bv
i ¬u⇒ ¬u)

The sentence No-Mistakesi says that player i’s decision
are always consistent with her “plan”: she never plays a
move that, at the moment of playing, she believed won’t be
played.

As expected, the conjunction of “rational planning” and
“no mistakes” entails “rational playing”:

RPi ∧ No-Mistakesi ⇒ Ri.

4 Backward Induction in Games of Perfect
Information

It is easy to see that Aumann’s theorem can be strength-
ened to the following

Proposition 4.1 In any state of any plausibility model for
a game of perfect information, common knowledge of dy-
namic rationality implies the backward induction outcome.

Unfortunately, common knowledge of (either dynamic
or substantive) rationality can never hold in a game model:
it is simply incompatible with the “Epistemically-Open Fu-
ture” condition. By requiring that players have “hard” in-
formation about the outcome of the game, Aumann’s as-
sumption does not allow them to reason hypothetically or
counterfactually about other possible outcomes, at least not
in a consistent manner.7 This undermines the intuitive ratio-
nale behind the backward induction solution, and it is thus
open to Stalnaker’s criticism.

So in this section, we are looking for natural conditions
that can be satisfied on game models, but that still imply the
backward induction outcome (or at least common belief in
it). One such condition is common knowledge of (general)
stable belief in (dynamic) rationality: Ck[!]EbR. This is
in fact a “strong” form of common belief, being equivalent
to Ck[!]CbR, i.e. to common knowledge of stable common
belief in rationality.

7Indeed, if o is the backward induction outcome, then the above Propo-
sition entails Kio for all players i, and thus for every other outcome o′ != o

and every proposition P , we have Bo′
i P : the players believe everything

(including inconsistencies) conditional on o′.
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Theorem 4.2 The following holds in any state s of any
game model M ∈MG:

Ck[!]EbR ⇒ Cb(BI) ,

where BI :=
∨
{o | o ∈ BIG} is the sentence saying that

the current state determines a backward-induction outcome.
Equivalently, the following formula is valid over plausibility
frames for the game G:

Ck(StructG ∧ FG ∧ [!]CbR) ⇒ Cb(BI).

In English: assuming common knowledge of the game
structure and of open future, if it is common knowledge
that, no matter what new (truthful) information the play-
ers may (jointly) learn during the game (i.e. no matter what
is played), general belief in rationality will be maintained,
then it is common belief that the backward induction out-
come will be reached. If we define “stable common be-
lief” in a proposition P as [!]CbP , then we can give a more
concise English formulation of the above theorem: common
knowledge of the game structure, of open future and of sta-
ble common belief in dynamic rationality implies common
belief in the backward-induction outcome.

Although rationality cannot be common knowledge in a
game model, rational planning can be. When this is the
case, we obtain the following

Corollary 4.3 In a game model, common knowledge of
“rational planning” and of stable belief in “no mistakes”
implies the backward-induction outcome; i.e. the formula

Ck(RP ∧ [!]EbNo-Mistakes) ⇒ Cb(BI)

is valid on game models.

The above results only give us common belief in the
backward-induction outcome, but nothing ensures that this
belief is correct. If we want to ensure that the backward-
induction outcome is actually played, we need to add the
requirement that the (stable common) belief in rational play
assumed in the premise is correct, i.e. that players actually
play rationally:

Theorem 4.4 The following holds in any state s of any
game model M ∈MG:

R ∧ Ck[!]EbR ⇒ BI

No strategies! Observe that we did not assume that the
players have complete (pure) “strategies” (fully determined
plans of action, uniquely specifying one move for at each
decision node), but only that they have partial plans, i.e. (in-
complete) beliefs about what moves should they play: at
each decision node they choose a set of moves rather than

one unique move. So an important side-result of our work
is that the assumption that players have (complete, pure)
strategies is not necessary for proving backward-induction
results.

Ensuring Backward-Induction Strategy Profile If,
however, we want to postulate that every player does have a
(complete, pure) strategy, we need to say that, for each node
v of her choice, there exists a (unique) immediate successor
u that she believes will be played if v is reached (i.e. she
plans to play u at v):

Strategies :=
∧

i

∧

v∈Gi

∨

u←iv

Bv
i u.

In cases where Str is common knowledge as well, we can
strengthen the Theorem 4.2 to:

Corollary 4.5 The following holds in any state s of any
game model M ∈MG:

Ck(Strategies ∧ [!]EbR) ⇒ Cb(BI-Profile)

where BI-Profile is the sentence saying that the strategies
given by each player’s conditional beliefs in the initial state
s form a backward-induction profile.

Finally, the following theorem ensures that above results
are not vacuous:

Theorem 4.6 For every extensive game G, there is a game
model M ∈MG and a state s ∈M satisfying the sentence

No-Mistakes ∧ Ck(RP ∧ Strategies ∧ [!]EbNo-Mistakes).

As a consequence, the sentence R ∧ Ck[!]EbR ∧
CkStrategies is also satisfied.

The proofs of these theorems are in Appendix 1. Alter-
native (weaker) conditions ensuring the backward induction
outcome are given in Appendix 2.

5 Comparison with Other Work

The game-theoretic issues that we deal with in this paper
originate in the work of Aumann [2], Stalnaker [30, 31, 32]
and Reny [26], and have been investigated by a number of
authors [14, 15, 13, 8, 9, 10, 17, 18, 22, 29, 19] etc. Our
work obviously owes a great deal to these authors for their
illuminating discussions of the topic.

The logic CDL of conditional belief was first introduced
and axiomatised by Board [16], in a slightly more compli-
cated form. The version presented here is due to Baltag and
Smets [5, 7]. The dynamic extension of CDL obtained by
adding the public announcements modalities (coming from
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the public announcement logic PAL, originally developed
by Plaza [24]) has been developed by van Benthem [11]
and, independently, by Baltag and Smets [5]. The extension
of PAL with arbitrary announcement modalities [!]ϕ is due
to Balbiani et al [3]. The belief-revision-friendly version of
APAL presented here (obtained by combining APAL with
CDL) is an original contribution of our paper.

The work of Battigalli and Siniscalchi [10] is the clos-
est to ours, both through their choice of the basic setting for
the “static logic” (also given by conditional belief operators)
and through the introduction of a strengthened form of com-
mon belief (“common strong belief”) as an epistemic basis
for a backward-induction theorem. Strong belief, though
different from our “stable” belief, is another version of per-
sistent belief: belief that continues to be maintained unless
and until it is contradicted by new information. However,
their notion of rationality is only “partially dynamic”: al-
though taking into account the dynamics of beliefs (using
conditional beliefs given node v to assess the rationality of
players’ choices at v), it does not fully take into account the
limitations posed to the set of possible options by the dy-
namics of “hard knowledge”. In common with most other
previous notions of rationality, it requires agents to make
rational choices at all nodes, including the past ones and
the ones that have already been bypassed. As a result, it is
enough for a player to make only one “irrational” move to
completely shatter the (common) belief (however strong) in
rationality; and as a consequence, common strong belief in
rationality does not by itself imply backward induction. To
obtain their theorem, Battigalli and Siniscalchi have to add
another assumption: that the game model is a complete type
structure, i.e. it contains, in a certain sense, every possible
epistemic-doxastic “type” for each player. This means that
the players are assumed to have absolutely no “hard” in-
formation, not only about the outcomes or about the other
players’ strategies, but also about the other players’ beliefs,
so that they have to consider as epistemically possible all
consistent (probabilistic) belief assignments for the other
players! This is an extremely extremely strong (and, in our
opinion, unrealistic) “completeness” assumption, one that
can only be fulfilled in an infinite model. In contrast, the
analogue completeness assumption in our approach is the
much weaker “Open Future” assumption, postulating that
(at the beginning of the game) players have no non-trivial
“hard” information about the outcomes (except the informa-
tion given by the structure of the game): they cannot foretell
the future, cannot irrevocably know the players’ freely cho-
sen future moves (though they do irrevocably know the past,
and they may irrevocably know the present, including all the
beliefs and the plans of action of all the players). Our more
realistic postulate is weak enough to be realized on finite
models. In particular, it can be realized on models as small
as the set of terminal nodes of the game tree (having one

state for each terminal node), and in which all the plans of
action are common knowledge, so that the only uncertainty
concerns possible mistakes in playing (and hence the final
outcome).

Samet [29] introduces a notion of hypothetical knowl-
edge, in order to develop an epistemic characterisation of
backward induction. Hypothetical knowledge looks prima
facie similar to conditional belief, except that the interpre-
tation of the hypothetical knowledge formula Kϕ

i ψ is dif-
ferent: “Had ϕ been the case, i would have known ψ”
(op. cit., p. 237). This mixture of counterfactual condition-
als and knowledge is specifically introduced in [29] only to
discuss backward induction, and it has not occurred before
or subsequently in the literature. In contrast, our approach
is grounded in the relatively standard and well-understood
foundations of Conditional Doxastic Logic, independently
studied by logicians and philosophers. While Samet does
make what we agree is the important point that some form
of counterfactual reasoning is of vital importance to the
epistemic situation in extensive games, his model and con-
ditions seem to us more complex, less transparent and less
intuitive that ours.

We are aware of only one prior work that uses dy-
namic epistemic logic (more precisely, the logic of pub-
lic announcements, but in the context of “classical DEL”,
i.e. dealing only with knowledge update and not with belief
revision) for the analysis of solution concepts in extensive
games: van Benthem’s work [12]. That work takes Au-
mann’s “static” notion of rationality as given, and accepts
Aumann’s classical result as valid, and so it does not attempt
to deal with the cases in which Aumann’s assumptions do
not apply, nor to address the criticism and the issues raised
by Stalnaker, Reny and others. Instead, van Benthem’s con-
tribution focuses on the sources of knowledge, on explain-
ing how complex epistemic conditions of relevance to Game
Theory (such as Aumann’s common knowledge of rational-
ity) can be brought about, via repeated public announce-
ments of rationality. So van Benthem does not use public
announcements in order to simulate a play of the game.
Public announcements in van Benthem’s approach repre-
sent off-line learning, i.e. pre-play or inter-play learning,
whereas the public announcements in our present approach
represent on-line learning, i.e. learning that takes place dur-
ing the play of the game. A very interesting open question is
to address the same issue answered by van Benthem, but for
the case of the dynamic-epistemic condition proposed here,
instead of Aumann’s condition: find some off-line com-
munication or learning protocol that can achieve common
knowledge of stable common belief in rational play.
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Appendix 1: Some Proofs

Definition 5.1 For a finite set O of “outcomes” and a finite set P
of “players”, we denote by Games(O, P ) the class of all perfect
information games having any subset ofO as their set of outcomes
and having any subset of P as their set of players. !

Definition 5.2 A sentence is valid on a game G if it is true at
every state s of every game model M ∈MG.

A sentence is valid over Games(O, P ) if it is valid on every
game G ∈ Games(O, P ). !

Lemma 5.3 For every perfect information game G, if we denote
the root of G by v0, the first player of G (playing at v0) by i and
the first move of i (the successor node played at v0) by v1, then the
sentence

Rv0
i ∧

^

u←v0

Bu
i [!u]BI ∧ [!v1]BI ⇒ BI

is valid on G.

Proof.This follows directly from the definition of rationality at a
node and the definition of BI. The assumption that Bu

i [!u]BI is
true at s means that all the states (deemed as “most plausible by i
conditional on u ”) in the set su

i := min≤i(u∩[s]i) have only out-
comes that are backward induction outcomes in the corresponding
subgame: i.e. we have o(t) ∈ BIGu for all t ∈ su

i . Given that
all these outcomes {u : u ← v0} are consistent with i’s knowl-
edge (since we are in a game model), the fact that i is rational
at v0 implies that the successor node v1 chosen by i must be one
that maximises her payoff hi(o(s

u
i )) among all the outcomes inS

u←v0
BIGu . But, by the definition, such a node v1 is exactly

the choice prescribed at v0 by the backward induction strategy!
Given this backward-induction choice (v1) of i at node v0, and
given the fact (ensured by the condition [!v1]BI) that starting from
node v1 everybody will play the backward induction choices, we
can conclude that the outcome o(s) belongs to the backward in-
duction set of outcomes BIGv = BIG for the game G. Hence s
satisfies BI. QED

The Main Lemma underlying our results is the following:

Lemma 5.4 (“Main Lemma”) Fix a finite set O of outcomes and
a finite set P of players. Let φ be any sentence in our language
APAL − CDL having the following property: for every game
G ∈ Games(O, P ), if we denote the root of G by v := vG

0 , the
first player of G (playing at v0) by i := iG0 and the first move of i
(the successor node played at vG

0 ) by v1 := vG
1 , then the sentence

φ⇒ Rv0
i ∧

^

u←v0

Bu
i [!u]φ ∧ [!v1]φ

is valid on G.
Under this assumption, we have that the sentence

φ⇒ BI

is valid over Games(O, P ).

Proof.We need to prove that, for every game G ∈ Games(O, P ),
the sentence φ ⇒ BI is valid on G. The proof is by induction on
the length of the game G.

For games of length 0 (only one outcome, no available moves),
the claim is trivial (since the only possible outcome is by definition
the backward induction outcome).

Let G be now a game of length n > 0, and assume the claim is
true for all games of smaller length. Let v0 be the root of G, i be
the first player of G, M ∈MG be a game model for G and s be a
state in M such that s |=M φ.

Let u be any arbitrary immediate successor of v0 (i.e. any
node such that u← v0). By the property assumed in the statement
of this Lemma, we have that s |=M Bu

i [!u]φ, and so (if su
i is

the set defined in the proof of the previous Lemma, then) we have
t |=M [!u]φ for all t ∈ su

i . Hence, we have t |=Mu φ for all
t ∈ su

i ∩u. By the induction hypothesis, we must have t |=Mu BI
(since Mu is a game model for Gu, which has length smaller
than G, and so the implication φ ⇒ BI is valid on Mu), for all
t ∈ su

i ∩ u. From this we get that t |=M [!u]BI for all t ∈ su
i , and

hence that s |=M Bu
i [!u]BI.

Let v1 be now the first move of the game in state s (i.e. the
unique immediate successor v1 ← v0 such that s |=M v1). By
the property assumed in this Lemma, we have that s |=M [!v1]φ.
By the same argument as in the last paragraph, the induction hy-
pothesis gives us that s |=M [!v1]BI. Putting together with the
conclusion of the last paragraph and with the fact (following from
the theorem’s assumption) that φ ⇒ Rv0

i is valid on M, we in-
fer that s |=M Rv0

i ∧
V

u←v0
Bu

i [!u]BI ∧ [!v1]BI. The desired
conclusion follows now from Lemma 5.3. QED

Lemma 5.5 The sentence

φ := R ∧ Ck[!]EbR

has the property assumed in the statement of Lemma 5.4.

Proof.The claim obviously follows from the following three sub-
claims:

1. dynamic rationality is a “stable” property, i.e. the implication
R ⇒

V
u[!u]R is valid;

2. the implication Ck[!]Ebψ ⇒ Bu
i [!u]Ck[!]Ebψ is valid, for

all formulas ψ and all nodes u ∈ G;

3. the implication Ck[!]Ebψ ⇒ [!u]Ck[!]Ebψ is valid, for all
formulas ψ and all nodes u.

All these claims are easy exercises in dynamic-epistemic logic.
The first follows directly from the definition of dynamic rational-
ity.

The second sub-claim goes as follows: assume that we
have Ck[!]Ebψ at some state of a given model; then we also
have Ck[!u][!]Ebψ for any node u (since [!]θ implies [!u][!]θ),
and so also KiCk[!u][!]Ebψ (since common knowledge im-
plies knowledge of common knowledge), from which we get
Bu

i Ck[!u][!]Ebψ (since knowledge implies conditional belief un-
der any conditions). This is the same as Bu

i (u→ Ck[!u][!]Ebψ),
which implies Bu

i (u → Cku[!u][!]Ebψ) (since common knowl-
edge implies conditional common knowledge). But this last clause
is equivalent to Bu

i [!u]Ck[!]Ebψ (by the Reduction Law for com-
mon knowledge after public announcements).
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The third sub-claim goes as follows: assume that we have
Ck[!]Ebψ in some state of a given model; then as before we
also have Ck[!u][!]Ebψ, and thus Cku[!u][!]Ebψ (since common
knowledge implies conditional common knowledge). From this
we get u → Cku[!u][!]Ebψ (by weakening), which is equivalent
to [!u]Ck[!]Ebψ (by the Reduction Law for common knowledge
after public announcements). QED

Theorems 4.4 and 4.2

Proof.Theorem 4.4 follows now from Lemma 5.4 and Lemma 5.5.
Theorem 4.2 follows from Theorem 4.4, by applying the operator
Ck[!]Eb to both its premiss and its conclusion, and noting that the
implication

Ck[!]Ebψ ⇒ Ck[!]EbCk[!]Ebψ

is valid. QED

Appendix 2

The epistemic condition R ∧ Ck[!]EbR that was given in this
paper (to ensure backward induction) is not the weakest possible
condition (ensuring this conclusion). Any property φ satisfying
the assumption of our Main Lemma (Lemma 5.4) would do it. In
particular, there exists a weakest such condition (the smallest event
E ⊆ S such that E ⊆ Rv0

i ∩
T

u←v0
Bu

i [!u]E ∩ [!v1]E), but it
is a very complicated and unnatural condition. The one given in
the paper seems to be simplest such condition expressible in our
language APAL− CDL.

However, one can give weaker simple conditions if one is will-
ing to go a bit beyond the language APAL − CDL, by adding
fixed points for other (definable) epistemic operators.

Let stable true belief be a belief that is known to be a stable
belief and it is also a stably true belief. Formally, we define:

Stbiϕ := Ki[!]Biϕ ∧ [!]ϕ.

Stable true belief is a form of “knowledge”, since it implies truth
and belief:

Stbiϕ⇒ ϕ ∧Biϕ

(and in fact it implies stable truth: Stbiϕ ⇒ [!]ϕ). Knowledge
that something is stably true implies stable true belief in it:

Ki[!]ϕ⇒ Stbiϕ.

Stable true belief is inherently a “positively introspective” attitude,
i.e.

Stbiϕ⇒ StbiStbiϕ,

but it is not positively introspective with respect to (“hard”) knowl-
edge:

Stbiϕ '⇒ KiStbiϕ.

Stable true belief is not negatively introspective, neither inherently
nor with respect to knowledge.

We can define common stable true belief in the same way as
common knowledge: first define general stable true belief

Estbϕ =
^

i∈P

Stbiϕ

(“everybody has stable true belief”), then put

Cstbϕ =
^

n

(Estb)nϕ.

Note that this definition, although semantically meaningful, is not
a definition in our language APAL− CDL, since it uses infinite
conjunctions. Indeed, we conjecture that common stable true be-
lief is undefinable in the language APAL−CDL, since it doesn’t
seem to be expressible as a combination of common knowledge,
common belief and dynamic operators.

Lemma 5.6 The sentence CstbR satisfies the assumptions of our
Main Lemma (Lemma 5.4).

As an immediate consequence, we have:

Theorem 5.7 The sentence

CstbR ⇒ BI

is valid over game models. In English: (if we assume common
knowledge of the structure of the structure of the game and of open
future, then) common stable true belief in (dynamic) rationality
implies the backward induction outcome .
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Abstract

We propose an explicit logic of strategies (SDGL) in
the Dynamic Game Logic (DGL) framework and provide
a complete axiomatization for this logic. Some discussions
are put forward regarding SDGL and DGL, raising an
interesting issue about their combination.

1. Introduction: cudos for strategies

Many events that happen in our daily life can be thought
of as games. In fact, besides the ‘games’ in the literal sense,
our day-to-day dialogues, interactions, legal procedures,
social and political actions, biological phenomena - all
these can be viewed as games together with their goals and
strategies. The theory of games has its various applications
in the areas of economics, logic, computer science as
well as linguistics. Games play a very important role in
modelling intelligent interaction. In Rubinstein’s words, ‘I
view game theory as an analysis of concepts used in so-
cial reasoning when dealing with situations of conflict’ [16].

As evident from the existing literature, much of game
theory deals with strategic equilibriums. Various equi-
librium theories have been developed till date both for
zero-sum as well as non zero-sum games, starting from the
initial concept of Nash [12], which have their implications
in the studies of the society. They help in providing a ‘plan
of action’ to the agents participating in the state of affairs,
which could be articulated as ‘games’, when faced with
strategic decision making in situations of conflict.

Over the past few decades a lot of work has been done
in the epistemic foundations of game theory, studying
the formal logics of knowledge and belief. The formal
systems expressing players’ knowledge and beliefs about
themselves as well as their competitors were looked at
in much details - a tremendous amount of work is still
going on. But a very related and relevant issue - players’

strategies/plan of actions to play the game, which they base
on their epistemic states almost have rarely been looked
upon, until very recently. To mention a few, [15] proposes
a logic of strategies in games over finite graphs, whereas
[17] makes strategies explicit in Alternating-time Temporal
Logic. The incorporation of ‘strategies’ within the logical
language would very well aid in the currently popular
ventures into social choice mechanism designs.

Strategies of the players playing the game form a basic
ingredient of game theory, whether looked upon from the
winning point of view or from the best-response one. A
lot of other issues like the rationality of the players, their
goals and preferences are also very important issues, but
they are outside the scope of this work, though we plan to
incorporate them in the future.

Our main goal in this work is to incorporate explicit
notions of strategies in the framework of Dynamic Game
Logic (DGL) [13]. Not unlike other logics talking about
game and coalition structures [1, 14], DGL suffers from
‘∃-sickness’ : the detailed level of game structures getting
suppressed by existential quantifiers of “having a strategy”
[7]. We intend to provide a logic (SDGL) that makes the
game structures explicit to a great extent.

In general, strategies are partial transition relations and
hence dynamic modal logic provides a good framework to
talk about them, as mentioned in [4, 5]. But the main chal-
lenge here is to combine the strategy calculus together with
the game calculus. As one can easily guess, the constructs
of Propositional Dynamic Logic [11] play an important
role in achieving this amalgamation. In this regard, we
should mention that, a lot of discussions and proposals have
already been put forward by van Benthem [9, 8]. This effort
can be looked upon as a follow-up of one of these proposals.

After providing a brief overview of DGL in the next sec-
tion, we propose a logic for strategizing DGL (SDGL)
in section 3 with a complete axiomatization. Section 4
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provides some discussions over the two logics DGL and
SDGL, with several pointers towards future work men-
tioned in the last one.

2. Dynamic Game Logics : an overview

We now give a brief review of DGL, the dynamic game
logic of two-person sequential games in this section, which
was first proposed in [13], and further developed by [14],
[6], [10] and others. DGL talks about ‘generic’ games
which can be played starting from any state s on the ‘game
boards’ and the semantics is based on the ‘forcing relations’
describing the powers each player has to end in a set of final
states, starting from a single initial state.

sρi
GX : player i has a strategy for playing game G

from state s onwards, whose resulting final states
are always in the set X , whatever the other play-
ers choose to do.

To exemplify, let us move onto real extensive games for
once. Consider the game tree:

E

!!!!
!!

!
""""

""
"

A

####
#

$$$
$$

A

####
#

$$$
$$

1 2 3 4

In this game, player E has two strategies, forcing the sets of
end states {1, 2}, {3, 4}, while player A has four strategies,
forcing one of the sets {1, 3}, {1, 4}, {2, 3}, {2, 4}.

These forcing relations satisfy the following two simple
set-theoretic conditions [3]:

(C1) Monotonicity: If sρi
GX and X ⊆ X ′, then sρi

G X ′.

(C2) Consistency: If sρE
GY and sρA

GZ, then Y , Z overlap.

In the semantics of DGL as proposed in [13, 14], another
extra condition is assumed :

(C3) Determinacy: If it is not the case that sρE
GX , then,

sρA
GS-X , and the same for A vis-a-vis E.

Both [13] and [14] talks about determined games. This
simplifies things a lot, but fails to express the roles of
the players in the games. The dynamic logic for non-
determined games was studied extensively in [10] which
also introduced the notion of parallel games in the syntax.
For the present work the concurrent game construct has not
been dealt with. The iteration operation for repeated play as
present in [13] has also not been considered here. We only
consider the following constructs which form new games:

choice (G ∪ G′), dual (Gd), and sequential composition
(G; G′). The readers could easily guess the intuitive mean-
ings of these constructs. For the sake of continuation to the
next section, in what follows, the DGL for non-determined
games has been briefly discussed. To start with, it should be
noted here that the players’ powers have a recursive struc-
ture in the complex games:

Fact 2.1 Forcing relations for players in complex sequen-
tial two-person games satisfy the following equivalences:

sρE
G∪G′ X iff sρE

G X or sρE
G′X

sρA
G∪G′ X iff sρA

GX and sρA
G′X

sρE
GdX iff sρA

GX
sρA

GdX iff sρE
GX

sρi
G;G′X iff ∃Z : sρi

GZ and for all z ∈ Z, zρi
G′X.

The basic models that play the role of game boards are
defined as follows:

Definition 2.2 A game model is a structure M = (S, {ρi
g |

g ∈ Γ}, V ), where S is a set of states, V is a valuation
assigning truth values to atomic propositions in states, and
for each g ∈ Γ, ρi

g ⊆ S × P(S). We assume that for each g,
the relations are upward closed under supersets (the earlier
Monotonicity), while also, the earlier Consistency condition
holds for the forcing relations of the players A, E. "

The language of DGL (without game iteration) is defined
as follows:

Definition 2.3 Given a set of atomic games Γ and a set of
atomic propositions Φ, game terms γ and formulas φ are
defined inductively:

γ := g | φ? | γ; γ | γ ∪ γ | γd

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ,

where p ∈ Φ, g ∈ Γ and i ∈ {A,E}.
"

The truth definition for formulas φ in a model M at a
state s is standard, except for the modality 〈γ, i〉φ, which is
interpreted as follows:

M, s |= 〈γ, i〉φ iff there exists X : sρi
γX and

∀x ∈ X : M, x |= φ.

The complete axiomatization of this logic has been pro-
posed and proved in [10] :

Theorem 2.4 DGL is complete and its validities are ax-
iomatized by the following axioms:

a) all propositional tautologies and inference rules

b) if + φ → ψ then + 〈g, i〉φ → 〈g, i〉ψ
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c) 〈g, E〉φ → ¬〈g, A〉¬φ

d) reduction axioms:

〈α ∪ β, E〉φ ↔ 〈α, E〉φ ∨ 〈β, E〉φ
〈α ∪ β, A〉φ ↔ 〈α, A〉φ ∧ 〈β, A〉φ
〈γd, E〉φ ↔ 〈γ, A〉φ
〈γd, A〉φ ↔ 〈γ, E〉φ
〈α; β, i〉φ ↔ 〈α, i〉〈β, i〉φ
〈δ?, E〉φ ↔ (δ ∧ φ)

〈δ?, A〉φ ↔ (¬δ ∧ φ).

This logic is also decidable. As can be noticed, the truth
definition of the modal game formulas of the form 〈γ, i〉φ
is given in terms of existence of strategies, without going
into their structures. In what follows, the strategy structures
have been explicitly dealt together with the game structures.

3. Strategizing DGL

3.1. A logic for strategies

Mentioning strategies explicitly in the dynamic game
logic framework prompt us to divert from the usual DGL
semantics that takes into consideration ‘generic’ games on
game boards. The whole point is to bring strategies within
the logical language which till now have their place in giv-
ing meaning to the game as well as coalition modalities
[14]. Adding explicit strategy terms to DGL, the language
of Strategized DGL (SDGL) is defined by,

Definition 3.1 Given a set of atomic games Γ, a set of
atomic strategies Σ, a finite set of atomic actions Π and a
set of atomic propositions Φ, game terms γ, strategy terms
σ, action terms π and formulas φ are defined inductively in
the following way:

γ := g | φ? | γd | γ; γ | γ ∪ γ
σ := s | σ ∪ σ | σ; σ
π := b | π ∪ π | π∗
φ := ⊥ | p | ¬φ | φ ∨ φ | [π]φ | 〈π〉φ | 〈σ, i, γ〉φ

where p ∈ Φ, s ∈ Σ, g ∈ Γ, b ∈ Π, and i ∈ {A,E}. (

Regarding the intuitive understanding of the strategy
terms, ‘∪’ corresponds to the choice of strategies, and ‘;’
to the composition of strategies. It should be mentioned
here that, the way the semantics is given later, it would
have been enough to use just one combination operation
of the strategy terms. The use of both of them aids in
understanding the intuition behind their usage.

Moving away from the ‘generic’ game structures, the
models take the form of extensive game trees with a few
additional actions. Before going into all these, we need a
parent model which is given as follows.

Definition 3.2 A model is a structure M = 〈 S, {Rπ : π ’s
are actions}, ref, L, R, V 〉, where S is a set of states and V
is a valuation assigning truth values to atomic propositions
in states. For each π, Rπ is a binary relation on S. ref, L,
R are all reflexive relations over S, with 〈 S, {Rπ : π ’s are
actions}〉 forming a regular action frame. (

In this model, atomic and composite games from a spec-
ified ‘start’-state are defined in the following. It should be
mentioned that all these game structures are taken to be fi-
nite, defined over finite subsets of S.

Definition 3.3 Game(M, s, γ) is a structure defined recur-
sively as follows:

(i) For atomic games g, Game(M, s, g) is a structure
given as follows: 〈W ⊆ S, s ∈ W , {Rb ↓W : b ∈ Π},
V = VM ↓W , P : W → {E, A, end}〉.

(ii) For test games φ?, Game(M, s, φ?) is a structure
given as follows: 〈{s}, s, ref ↓{s}, V = VM ↓{s}, P :
{s}→{ end}〉.

(iii) Given Game(M, s, γ), Game(M, s, γd) is the struc-
ture, 〈W ⊆ S, s ∈ W, {Rb ↓W : b ∈ Π}, V = VM ↓W , P :
W → {E, A, end}〉, where all the constituents of the struc-
ture are the same as the corresponding ones in Game(M, s,
γ), except for Pγd , which satisfies the property: Pγd(w) =
E/A, whenever Pγ(w) = A/E, respectively.

(iv) Given Game(M, s, γ) and Game(M, s, γ′),
Game(M, s, γ ∪ γ′) is the structure given by, 〈W ⊆ S, s ∈
W , {Rb ↓W : b ∈ Π}, L ↓{s,s}, R ↓{s,s}, V = VM ↓W ,
P : W → {E,A, end}〉, where W = Wγ , Wγ′ , and P
extends both Pγ and Pγ′ .

(v) Given Game(M, s1, γ) and Game(M, s2, γ′),
Game(M, s, γ; γ′) is defined if for each t ∈ P−1

γ (end),
Game(M, t, γ′) can be defined. Suppose we have
Game(M, t1, γ′), . . ., Game(M, tn, γ′). In that case,
Game(M, s, γ; γ′) is the structure 〈W ⊆ S, s ∈
W, {Rb ↓W : b ∈ Π}, V = VM ↓W , P : W →
{E,A, end}〉, where W = Wγ ∪W 1

γ′ ∪ . . .∪Wn
γ′ ; s = s1;

P extends Pγ , P 1
γ , . . ., Pn

γ , with the restriction that for
w ∈ P−1

γ (end) ∩W , P (w) = Pγ′(s2).
(

Because of some technical reasons regarding satisfiabil-
ity, choice games can only be defined for the games with
the same initial state, which is not really a big issue. The
sequential composition game could also be defined under
certain restrictions as mentioned above. It is now time to
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define strategies of the players in a game, which again has
a recursive definition. Note that we will only talk about full
strategies here and the definition is given likewise.

Definition 3.4 Given Game(M, s, γ), a strategy for a
player i, given by the relationRγ

i is defined by,
(i) For Game(M, s, g), Rg

E [Rg
A] ⊆

⋃
{Rb ↓Wg : b ∈ Π}

satisfying the following conditions:
(a) s ∈ Dom(Rg

E)[Dom(Rg
A)], and Ran(Rg

E)
[Ran(Rg

A)] ∩ P−1
g (end) %= ∅

(b) For each t ∈ P−1
g (E, A)− {s}, t ∈ Dom(Rg

E)
[Dom(Rg

A)] iff t ∈ Ran(Rg
E)[Ran(Rg

A)].
(c) For each s ∈ P−1(E)[P−1(A)],∃ unique s′ such

that (s, s′) ∈ Rg
E [Rg

A].
(d) For each s ∈ P−1(A)[P−1(E)], (s, s′) ∈⋃
{Rb ↓Wg : b ∈ Π} implies (s, s′) ∈ Rg

E [Rg
A].

(e) Nothing else is inRg
E [Rg

A].

(ii) For Game(M, s, φ?),Rφ?
i = ref ↓{s}.

(iii) For Game(M, s, γd),Rγd

E = Rγ
A, andRγd

A = Rγ
E .

(iv) For Game(M, s, γ ∪ γ′),
Rγ∪γ′

E = L ↓{s,s} ∪Rγ
E or, R ↓{s,s} ∪Rγ′

E ,
and,Rγ∪γ′

A = L ↓{s,s} ∪R ↓{s,s} ∪Rγ
A ∪Rγ′

A .

(v) For Game(M, s, γ; γ′),Rγ;γ′

i =Rγ
i ∪R

γ′

ij1
∪ . . .∪Rγ′

ijl
,

where the indices correspond to the number of times the
‘end’-state is reached inRγ

i . #

For an example of the players’ strategies, consider the
simple extensive game tree:

s1, E

!!!!!!!!!!!

"""""""""""

s2, A

####
##

$$$$
$$

s3, A

####
##

$$$$
$$

s4, end s5, end s6, end s7, end

The strategies of E are {(s1, s2), (s2, s4), (s2, s5)},
and {(s1, s3), (s3, s6), (s3, s7)}, whereas the strate-
gies for A are {(s1, s2), (s1, s3), (s2, s4), (s3, s6)},
{(s1, s2), (s1, s3), (s2, s4), (s3, s7)}, {(s1, s2), (s1, s3),
(s2, s5), (s3, s6)}, and {(s1, s2), (s1, s3), (s2, s5), (s3, s7)}.

If we consider the choice operations of two such games,
the strategies of the players could be easily computed.
For the sequential composition, consider the following two
games:

s1, E

%%%%
%%

%
&&&&

&&
&

s2, end G s3, end

t1, A

''''
''

'
(((

((
((

t2, end H t3, end

The strategies of E in G are {(s1, s2)}, and {(s1, s3)},
and in H is {(t1, t2), (t1, t3)}, and similarly, that for A in G
is {(t1, t2), (t1, t3)}, and in H are {(t1, t2)}, and {(t1, t3)}.

Suppose, the model is such that G; H could be defined
and it is as follows:

s1, E

))!!!!!!!!

**""""""""

s2, A

####
##

$$$$
$$

s3, A

####
##

$$$$
$$

t4, end t5, end t6, end t7, end

The readers can notice that it is just the game given
as example earlier, and hence could easily verify that
the strategies of the players in this complex game con-
form with the definition given to compute the strategies
of the sequential composition games, from the simpler ones.

Before going into the truth-definitions of formulas, let us
mention a few words about interpreting the strategy terms
of the language. The strategy terms are always interpreted
corresponding to some game structure Game(M, s, γ) and
player i. Let Rγ

i denote the set of all strategies for player i
in Game(M, s, γ).

Definition 3.5 Given Game(M, s, γ) and player i, a strat-
egy functionFγ

i is a partial function from the set of all strat-
egy terms to Rγ

i , satisfying the following conditions.

(i) For s ∈ Σ, Fγ
i (s) is defined, only when γ is an atomic

or a test game.

(ii) For the choice game α ∪ β, Fα∪β
i is given by,

Fα∪β
E (σ ∪ τ) = L ↓Wα∪β ∪Rα

E iff Fα
E(σ) = Rα

E ,

Fα∪β
E (σ ∪ τ) = R ↓Wα∪β ∪Rβ

E iff Fβ
E(τ) = Rβ

E ,

Fα∪β
A (σ ∪ τ) = Rα∪β

A iff Fα
A(σ) = Rα

A

and, Fβ
A(τ) = Rβ

A.

(iii) Fγd

E (σ) = Rγd

E iff Fγ
A(σ) = Rγ

A, and,
Fγd

A (σ) = Rγd

E iff Fγ
A(σ) = Rγ

A.

(iv) For the composition game α;β, Fα;β
i satisfies,

Fα;β
i (τ ; η) = Rα;β

i iff Fα
i (τ) = Rα

i

and, Fβ
i (η) = Rβ

i .
#

Note that the way these partial functions are given, it
takes care of the cases of mismatched syntax (like, 〈σ ∪
τ, E, α; β〉φ), which does not have any corresponding struc-
ture in the model. For the semantics of our language, we
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define the truth of a formula φ in M at a state s in the
obvious manner, with the action modalities defined in the
usual PDL-style and the following key clause for the game-
strategy modality:

M, s |= 〈σ, i, γ〉φ iff for all s′ ∈ Ran(Fγ
i (σ)) ∩

P−1(end) in Game(M, s, γ), M, s′ |= φ.

Here are some validities of this logic.

• 〈σ, i, γ〉φ → 〈σ, i, γ〉(φ ∨ ψ)

• 〈σ, i, γ〉(φ ∧ ψ) ↔ 〈σ, i, γ〉φ ∧ 〈σ, i, γ〉ψ

3.2. Axioms and completeness

We now provide a complete axiomatization of SDGL.

Theorem 3.6 SDGL is complete and its validities are ax-
iomatized by

a) all propositional tautologies and inference rules

b) generalization rule for the action modalities

c) axioms for the action constructs:

[π](φ → ψ) → ([π]φ → [π]ψ)

〈π〉φ ↔ ¬[π]¬φ

〈π1 ∪ π2〉φ ↔ 〈π1〉φ ∨ 〈π2〉φ
〈π∗〉φ ↔ (φ ∨ 〈π〉〈π∗〉φ)

[π∗](φ → [π]φ) → (φ → [π∗]φ)

d) 〈s, i, g〉φ → 〈b1 ∪ . . .∪ bn〉〈(b1 ∪ . . .∪ bn)∗〉φ, where
Π = {b1, . . . , bn}

e) 〈σ, i, γ〉(φ → ψ) → (〈σ, i, γ〉φ → 〈σ, i, γ〉ψ)

f) if * φ → ψ then * 〈σ, i, γ〉φ → 〈σ, i, γ〉ψ

g) reduction axioms:

〈σ ∪ τ, E, α ∪ β〉φ ↔ 〈σ, E, α〉φ ∨ 〈τ, E,β〉φ
〈σ ∪ τ, A, α ∪ β〉φ ↔ 〈σ, A, α〉φ ∧ 〈τ, A,β〉φ
〈σ, E, γd〉φ ↔ 〈σ, A, γ〉φ
〈σ, A, γd〉φ ↔ 〈σ, E, γ〉φ
〈τ ; η, i, α; β〉φ ↔ 〈τ, i, α〉〈η, i, β〉φ
〈σ, E, δ?〉φ ↔ (δ ∧ φ)

〈σ, A, δ?〉φ ↔ (¬δ ∧ φ)

h) strategy rules:

for each X ⊆ Π, the rule below:

if * φ → 〈(∪X)〉〈(∪X)∗〉ψ then * φ → 〈s, i, g〉ψ .

Proof. Soundness of some of the interesting reduction ax-
ioms and the strategy rules for the game-strategy modality
are shown below. The readers can easily verify the validity
of the rest.

1. 〈σ ∪ τ, E,α ∪ β〉φ ↔ 〈σ, E, α〉φ ∨ 〈τ, E, β〉φ
Suppose M, s |= 〈σ ∪ τ, E,α ∪ β〉φ. Then, for all s′ ∈

Ran(Fα∪β
E (σ ∪ τ)) ∩ P−1

α∪β(end) in Game(M, s, α ∪ β),
M, s′ |= φ. Now, Fα∪β

E (σ ∪ τ) = L ↓Wα∪β ∪Rα
E or,

R ↓Wα∪β ∪Rβ
E . W.l.o.g. suppose that Fα∪β

E (σ ∪ τ) =
L ↓Wα∪β ∪Rα

E . Then, for all s′ ∈ Ran(L ↓Wα∪β

∪Rα
E) ∩ P−1

α∪β(end) in Game(M, s,α ∪ β), M, s′ |= φ.
By definition of strategies in ∪ games, this implies that,
for all s′ ∈ Ran(Rα

E) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ. Hence, for all s′ ∈ Ran(Fα
E(σ)) ∩ P−1

α (end)
in Game(M, s, α), M, s′ |= φ.So, we have that, M, s |=
〈σ, E, α〉φ. Similarly, if Fα∪β

E (σ ∪ τ) = R ↓Wα∪β ∪R
β
E ,

one can show that, M, s |= 〈τ, E,α〉φ. So, M, s |=
〈σ, E, α〉φ or M, s |= 〈τ, E, α〉φ. Hence, M, s |=
〈σ, E, α〉φ ∨ 〈τ, E, β〉φ.

For the converse, suppose that M, s |= 〈σ, E, α〉φ.
Then, for all s′ ∈ Ran(Fα

E(σ)) ∩ P−1
α (end)

in Game(M, s,α), M, s′ |= φ. So, for all
s′ ∈ Ran(Rα

E) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ, which implies that, for all s′ ∈
Ran(L ↓Wα∪β ∪Rα

E)∩P−1
α∪β(end) in Game(M, s, α∪β),

M, s′ |= φ. Hence, reasoning as earlier we have that,
M, s |= 〈σ∪τ, E, α∪β〉φ. The proof for the other disjunct
can be dealt with in a similar manner.

2. 〈σ ∪ τ, A, α ∪ β〉φ ↔ 〈σ, A,α〉φ ∧ 〈τ, A, β〉φ
Suppose M, s |= 〈σ ∪ τ, A, α ∪ β〉φ. Then, for all s′ ∈

Ran(Fα∪β
A (σ ∪ τ)) ∩ P−1

α∪β(end) in Game(M, s, α ∪ β),
M, s′ |= φ. Now, Fα∪β

A (σ ∪ τ) = Rα∪β
A , i.e.

L ↓{s,s} ∪R ↓{s,s} ∪Rγ
A ∪ Rγ′

A . It follows that for
all s′ ∈ Ran(Rα

A) ∩ P−1
α (end) in Game(M, s, α),

M, s′ |= φ, and for all s′ ∈ Ran(Rβ
A) ∩ P−1

β (end) in
Game(M, s,β), M, s′ |= φ. Then, from the definitions it
follows that M, s |= 〈σ, A, α〉φ∧ 〈τ, A, β〉φ. The converse
can be proved by retracing the steps backwards.

3. 〈σ, E, γd〉φ ↔ 〈σ, A, γ〉φ
Suppose M, s |= 〈σ, E, γd〉φ. Then, for all

s′ ∈ Ran(Fγd

E (σ)) ∩ P−1
γd (end) in Game(M, s, γd),

M, s′ |= φ. By definition of strategies in the dual game,
this implies that, for all s′ ∈ Ran(Fγ

A(σ)) ∩ P−1
γ (end) in

Game(M, s, γ), M, s′ |= φ and so, M, s |= 〈σ, A, γ〉φ.
For the converse proof, retrace back.

4. 〈τ ; η, i,α; β〉φ ↔ 〈τ, i,α〉〈η, i,β〉φ
Suppose M, s |= 〈τ ; η, i, α;β〉φ. Then, for all
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s′ ∈ Ran(Fα;β
i (σ; τ)) ∩ P−1

α;β(end) in Game(M, s,α; β),
M, s′ |= φ. Hence, for all s′ ∈ Ran(Rα

i ∪ Rβ
ij1

∪ . . .∪ Rβ
ijl

) ∩P−1
α;β(end) in Game(M, s, α; β), M, s′ |=

φ. Then, for k = 1, . . ., l, for all t ∈ Ran(Rβ
ijk

) ∩
P−1

βjk
(end) in Game(M, tjk ,β), M, t |= φ, and hence

for all t′ ∈ Ran(Rα
i ) ∩ P−1

α (end), in Game(M, s, α),
M, t′ |= 〈η, i,β〉φ. So, M, s |= 〈τ, i, α〉〈η, i, β〉φ.

For the converse part, suppose M, s |=
〈τ, i, α〉〈η, i, β〉φ. Then, for all t′ ∈ Ran(Rα

i )∩P−1
α (end),

in Game(M, s, α), M, t′ |= 〈η, i, β〉φ, where
Fα

i (τ) = Rα
i . This can be possible, only when, for each

t ∈ P−1
γ (end), Game(M, t, γ′) can be defined. Hence,

Game(M, s,α;β) is defined, and for all s′ ∈ Ran(Rα
i

∪ Rβ
ij1

∪ . . .∪ Rβ
ijl

) ∩P−1
α;β(end) in Game(M, s,α; β),

M, s′ |= φ. So, M, s |= 〈τ ; η, i, α; β〉φ.

The validity of the strategy rules follows from the
fact that, if there is a path from some state s to a state
satisfying some formula φ, then the Game(M, s, g) and a
corresponding strategy relation Rg

i can be defined in such
a way that 〈s, i, g〉φ holds at s.

The completeness of the axiom system is proved by
showing that every consistent formula is satisfiable. Let α
be a consistent formula. Let Cl(α) denote the subformula
closure of α, satisfying the FL-closure conditions for the
action modalities with the following extra conditions:

(i) If 〈σ ∪ τ, E,α ∪ β〉φ ∈ Cl(α), then 〈σ, E, α〉φ ∨
〈τ, E,β〉φ ∈ Cl(α).
(ii) If 〈σ ∪ τ, A, α ∪ β〉φ ∈ Cl(α), then 〈σ, A, α〉φ ∧
〈τ, A, β〉φ ∈ Cl(α).
(iii) If 〈τ ; η, i, α;β〉φ ∈ Cl(α), then 〈τ, i, α〉〈η, i, β〉φ ∈
Cl(α).
(iv) Cl(α) is closed under single negations.

Any maximal consistent subset of Cl(α) is said to be an
atom. Let A denote the set of all such atoms. For T ∈ A,
let T̂ denote the conjunction of all the formulas present in
T . For C, D ∈ A, define CRπD if Ĉ ∧ 〈π〉D̂ is consistent.
The regular canonical model C is defined to be the tuple
〈A, {Rπ: π’s are actions}, ref ,L,R,V〉, where, ref, L,R
are reflexive relations on A, and V(p) = {T ∈ A : p ∈ T},
and Rπ’s satisfy the regularity conditions. The existence
lemma for the modalities 〈π〉, can be proved in the usual
way, and we have that C, A |= φ iff φ ∈ A, for each
φ ∈ Cl(α), and each A ∈ C where φ is either an atomic or
a boolean or an action modal formula.

It remains to be shown that C, A |= 〈σ, i, γ〉φ iff
〈σ, i, γ〉φ ∈ A. Because of the reduction axioms, it suffices
to show that for each 〈s, i, g〉φ ∈ Cl(α), and each A ∈ C,

C, A |= 〈s, i, g〉φ iff 〈s, i, g〉φ ∈ A. In other words, we
have to show that 〈s, i, g〉φ ∈ A iff in Game(C, A, g),
Ran(Fg

i (s)) ∩ P−1(end) is the set of all atoms T , such
that φ ∈ T .

Suppose 〈s, i, g〉φ ∈ A. Then because of axiom (d),
Game(C, A, g), and Fg

i can be defined in such a way, that
the implication holds. The converse follows from the fact
that if < bi1 > . . . < bim > φ is consistent, then so is
< bi1 > . . . < bim > φ ∧ 〈s, i, g〉φ, which holds because
of the strategy rules. QED

4. DGL and SDGL - a comparison

As mentioned earlier, DGL talks about generic games
played on game boards, and the meaning of the game
modalities is given by existence of strategies. SDGL
brings out these strategies to the fore. Strategy combi-
nations for playing composite games are talked about in
this framework which brings out the extensional nature of
strategies, though according to certain views, strategies
are inherently intensional. As mentioned by van Benthem
[4, 5], strategies of the players in the game tree can be
talked about using the program constructs of the dynamic
modal logic. Some proposals for combining strategies to
achieve a certain goal are also made there.

The task was to combine the strategy constructs together
with the game constructs. SDGL proposes a way to do
it. As evident from the previous section, one has to resort
to the PDL-style action constructs. To make strategies
explicit, one can no longer talk about generic games.
Extensive game trees come into the treatise - games are
defined as tree structures, and strategies are defined as
subtrees.

In the tradition of DGL semantics, the so-called forcing
relations satisfy the conditions of upward-monotonicity
and consistency (determinacy also, in case of Parikh’s
and Pauly’s DGL). The sets of states forced by these
relations have an inherent ‘disjunctive’ interpretation.
A ‘conjunctive’ interpretation of these sets which is
needed when parallel game constructs are introduced,
has been taken in [10]. It is interesting to note that, the
way strategies are defined as relations between states, it
corroborates with the ‘conjunctive’ interpretation of the
set of ‘end’-states reached. Hence, this language rather
suggests ‘downward monotonicity’ at this conjunctive level.

It is clear that there are some sentences which could be
expressed in SDGL, but not in DGL. But it is also the
case that there are certain statements that can be expressed
in DGL, but not in SDGL : for example, ‘player i does

79



not have any strategy in the game g to achieve φ’ can be
expressed in DGL as ¬〈g, i〉φ. Under these circumstances
it would be ideal to have a logic that could express both.
This gives rise to the following issue:

Question What would be the complete axiomatization
of a logic that has both Parikh’s original game modalities
as well as the game-strategy modalities presented in the
earlier section of this paper?

In fact, for the set of strategy relations Rγ
i for player i in

Game(M, s, γ), one can easily define ρi
γ (cf.§2), as follows:

sρi
γX iff X = Ran(Rγ

i ) ∩ P−1
γ (end), for someRγ

i ∈ Rγ
i .

It remains to be seen what conditions have to be im-
posed on ρi

γ to maintain compatibility. This is precisely the
same issue as finding joint logics of proofs and provability
in arithmetic, on which a lot of effort has been made in the
recent past. For a detailed overview, one can have a look
at [2]. The most natural analogy that one can think of hav-
ing both such existential criterion, as well as the witnesses
conforming to it could be found in first order logic - ∃xφ
together with term substitutions like φ[σ/x].

5. Conclusions and intentions

This paper proposes a logic which makes strategies ex-
plicit in the dynamic game logic framework. The need
for the dynamic modal logic syntax for achieving such tar-
gets becomes apparent. An interesting issue of getting a
joint logic of complex game modalities together with game-
strategy modalities emerges. Some possible areas for future
investigations are given below.

Explicit strategies for other logics Several other lan-
guages talking about game structures and coalition struc-
tures like Alternating-time temporal logic and Coalition
logic could be investigated so as to add an explicit notion
of strategies, which merely occur as an existential notion in
the semantics of these logics. This could very well aid in
the social choice mechanism designs.

Adding knowledge and preference notions To come
closer to the real game scenario which are played by the ra-
tional players, one has to incorporate the knowledge/belief
as well as preference modalities in the existing framework,
i.e. epistemic versions of these game logics with explicit
strategies need to be explored.

Games with imperfect information It is evident that the
uniform strategies in the imperfect information games do
not conform with the compositional analysis that has been

done here. That study is inherently different taking into ac-
count the knowledge level of the players, which provides a
very interesting challenge.
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Abstract

The aim of this paper is to pursue the line of research
initiated by Prashant Parikh which gives content and rigour
to the intuitive idea that speaking a language is a rational
activity. He employs the most promising tool to that end,
namely game theory. I consider one of his examples as a
sample case, and the model I build is a slight modification
of that developed by him. I argue that my account has some
advantage, yet many of the key ideas employed are left un-
changed. I analyse this model in detail, describing some of
its formal features. I conclude raising a problem that has
not been yet, sketching a plausible solution.

1. Introduction

The case I want to analyse concerns sentences like

Every ten minutes a man gets mugged in (1)
New York.

This sentence has two readings, one is that there is a cer-
tain man in New York, either very unlucky, or reckless, or
masochist, that is mugged every ten minutes. The other
reading is that every ten minutes, some man or other, not
necessarily the same, gets mugged in New York. Imagine
an actual conversation where (1) is uttered, the problem is,
how can the hearer decide what is the reading originally in-
tended by the speaker? As for (1), we can hardly imagine
a situation where the reading intended by the speaker is the
first one – namely the unlucky, reckless, masochist interpre-
tation – and where this is the reading selected by the hearer.
A relevant feature of (1) is that one of the two possible read-
ings entails the other, in this case the second reading is a
logical consequence of the first. We can think of sentences
sharing this same feature with (1), but such that they can be
employed in a conversation where the intended reading is
the logically stronger one. Consider

All of my graduate students love a Finnish (2)
student in my Game-Theory class.

Suppose that (2) is uttered by a professor in Amsterdam.
I do not know how many Finnish students studying game
theory there are in Amsterdam. Assume there are very few
of them. My intuition is that in most situations the hearer
would infer that there is a unique Finnish student in the
speaker’s class that all graduate students love.

I will use game theory to analyse those conversations that
involve sentences that, like (1) and (2), can be interpreted in
two different ways, such that one reading is a logical con-
sequence of the other. My starting point will be the account
proposed by Prashant Parikh in several works [6, 7, 8].

If modelled in game-theoretic terms,1 conversations like
these involve two players, 1 and 2, where the set of 2’s
possible moves contains two elements, say A and B, cor-
responding to two alternative interpretations of some am-
biguous sentence φ. As is customary in game theory, I
will imagine that player 1 is male, and player 2 female.
In Parikh’s model, player 1 has some private information,
unknown to player 2. Parikh defines this basic unknown
as the speaker’s intended meaning. Player 2 has some be-
liefs about what this private information is, hence about
what message player 1 wants to convey, and these beliefs
can be expressed as subjective probabilities. Here lies the
main shortcoming of Parikh’s model. The hearer’s task in
a conversation is to guess the speaker’s intended meaning,
or, better, to select a set of possible alternatives, and as-
sess a probability value for these. Therefore, if we model
disambiguation as a game, the probability of the intended
meaning should not be one of the primitives of the game,
rather we have to explain how the hearer can infer this value
from the structure of the game. In other terms, if the task of
player 2 is to guess what the intended meaning is, and if she
already knows which alternative is more likely to be true,
then there is not much to be done anymore, she only needs
to multiply the subjective probability of each alternative by
the payoffs that the moves available to her would yield in
each of these alternatives. Suppose that p is the prior proba-
bility that player 2 assigns to the belief that player 1 wants to
convey the meaning corresponding to A; and that 1−p is the
probability of the belief that he wants to convey the meaning

1Most of the notation and terminology employed is borrowed from
Roger Myerson [4], chapters 2-5.
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B. Let ga be the gain for player 2 if she selects the interpre-
tation A when player 1 really wants to convey A, and let ma

be her gain if she selects A when 1’s intended meaning is B.
Similarly, let gb be her gain if she correctly selects B, and
mb her gain when she wrongly selects B. If we describe the
situation in this way, her task is very simple, she must select
A whenever p×ga+(1−p)×ma > p×mb+(1−p)×gb and
B whenever p×ga +(1−p)×ma < p×mb +(1−p)×gb.
Once we know that she is able to assign a probability value
to the belief that 1’s intended meaning is A – no matter how
she could accomplish this – there is nothing more to be ex-
plained, and hence no more need to appeal to game theory to
give an account of her behaviour. But, presumably, we need
game theory to explain how she could assess this probabil-
ity.

This is why I claim that the content of player 1’s pri-
vate information has to be something more basic, and there-
fore that player 2’s prior probabilities have to concern
what player 1 actually knows. With this modelling of the
game, the speaker’s intention to convey a given message
can be derived from facts with a minor degree of intention-
ality, namely his knowledge. To paraphrase Willard Van
Quine [9], it reduces the grade of intentional involvement.
Just consider the questions ‘What does player 1 know?’ and
‘What does player 1 want to say?’. We are not always able
to provide definite answers to the questions of the first kind,
but, at least, we can assess the probability of the answers,
just considering what we know about the player’s sources
of information. Of course, we can also assess the probabil-
ity of the answers of the questions of the second kind, but
the data to be considered include all those relevant for the
first kind, and something else, at least this person’s goals. In
other words, any reasoning behind an answer to a question
of the first kind is conceptually simpler than that required
by the second kind.

2. Extensive Form

What is now the shape of our model? If A and B are the
only legitimate interpretations of an ambiguous utterance φ,
then either he believes that A or he believes that B. But in
the case we are examining, one of the two readings is a log-
ical consequence of the other, for example we can assume
that B logically entails A. If this is true, then if 1 believes
that B, he necessarily believes that A. Then, as far as player
2 knows, there are two possibilities:

alternative a: 1 knows that A and it is not the case that he
knows that B (either because he knows that not B, or
because he does not know whether B);

alternative b: he knows that A and B.

This imposes some restrictions on the payoffs of the game.
If a is the real situation, then, if 2 selects A when 1 utters

φ, she will acquire some new and reliable true knowledge,
let us name ‘ga’ the value that this outcome has for her.
But, if in the same situation she chooses B, instead, she
gets a false or at least unreliable new belief and hence some
bad result, let us name ‘mb’ the value of this outcome. If
b is the real situation, then the choice of B will yield some
new knowledge, and let be gb the value she puts on it. But
since in this situation the information corresponding to A
is true and reliable as well, if she chooses A she does not
get some bad payoff, her gain should again be ga. Let us
now use ‘p’ to refer to the prior probability of situation a,
so that 1− p is the prior probability of b. Which moves are
available to player 1? One of them is of course the uttering
of the ambiguous sentence φ. But, he could also choose
to convey the message he has in mind using some longer
but unambiguous sentence, µa if he is in situation a, µb

if he is in situation b. When player 1’s choice is one of
these two, player 2 does not have to consider alternative
interpretations, hence, in game-theoretic terms, she has no
opportunity to move. In this case, no misunderstanding is
possible.

We have to imagine that he is sincere and honest, that she
believes what he says, and that this is common knowledge.
For simplicity, imagine also that both of them are interested
exclusively in the pure flow of information and no further
aims. This is unrealistic, of course, but it is just an idealiza-
tion not more problematic than the physicist’s speculations
on frictionless planes. Following Parikh, I will construct
my model as a coordination game where the players have
the same payoffs, which are determined by the net value of
the information minus a ‘cost’ which is proportional to the
length of the sentence. Since the two players have iden-
tical payoffs, this is a game of ‘pure coordination’. The
rationale for this choice is that when honest and rational
agents communicate, they all aim at successful communi-
cation. Of course there are commonly cases where this is
not true, most notably when people lie. But we can legiti-
mately focus attention on those benign cases, especially be-
cause the very possibility of lying presupposes the existence
of honest communication.

The payoff ga has to be equal to the value of the true
information provided by A, call it va, minus the cost c in-
volved by φ. If player 1 utters µa in situation a, there is
no possibility of a misunderstanding, but its cost is higher.
Hence this combination yields a value g′

a = va − c′, where
c′ > c. Similarly, if we call ‘vb’ the net value of the true
information provided by B, we have that gb = vb − c. And
if player 1 utters µb in situation b, then the payoff will be
g′b = vb − c′, if, for the sake of simplicity, we assume
that the cost involved by µa and µb is analogous. Moreover,
since B logically entails A, while A does not entail B, we
should have that vb > va, and this entails that gb > ga, and
g′

b > g′
a.
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What is the best choice for player 2? Can we say again
that she has only to check whether p× ga + (1− p)× ga >
p×mb+(1−p)×gb, i.e. whether p > (gb−ga)/(gb−mb),
or whether ga < p×mb + (1− p)× gb? Assume that this
is the case, and imagine, for example, that ga > p ×mb +
(1− p)× gb. What happens if b, not, a, is the real situation,
and 1 wants to convey message B? He would probably utter
the longer but unambiguous sentence µb. This behaviour is
not outright irrational, we shall see that it corresponds to
an equilibrium in our model, but it is not always the best
outcome that player 1 and player 2 can get, in other words
it might be inefficient. Moreover, from the mere fact that
there is a probability p that 1 knows that A and not that
B nothing follows, from a conceptual point of view, about
what he means when he says something. Now she really
needs to consider also his goals in order to be able to guess
which alternative he wants her to choose.

We can conceive of cases where an unambiguous sen-
tence is so much longer than the corresponding ambigu-
ous one, that a cheap misunderstanding can be preferable
to an unambiguous but demanding speech act. We can also
imagine situations where the speakers choose ambiguous
and potentially misleading messages because they do not
want other people to acquire some confidential information.
Just think of two spies involved in a telephone conversation,
both knowing that their line has been tapped. Sometimes a
leak can do more harm than a misunderstanding. I will as-
sume that this is not the case in the conversation we are
considering, and that in this case the cost of an utterance
is relatively small when compared to the net value of in-
formation. Hence, the model employed here requires the
following ordering relations: gb > g′

b > ga > g′
a > mb,

g′
a −mb > gb − g′

b, g′
b − ga > ga − g′

a.
But maybe the set of moves available to player 1 is in-

complete. Perhaps we should also consider the possibility
of uttering µa in situation b, and µb in situation a. Of course
if player 1 uttered µa knowing that A is false, he would
be lying, and, under the assumption that we are trying to
analyse a case of patently honest communication this move
would yield a bad outcome for both. But the other case can-
not be dismissed so easily, remember that A is true in situ-
ation b. The payoff would actually be g′

a. The fact is that
whatever the choice of 2, the gain would be higher if player
1 chose µb or φ. This means that, according to the model
presented here, it is never rational for player 1 to choose
to utter µa in situation b. In technical terms, any strategy
where the speaker utters µa in situation b or µb in situa-
tion a is strongly dominated, and can be eliminated from
the game. In this case the model simply predicts the exis-
tence of a scalar implicature, to the effect that if 1 utters µa,
then 2 infers that it is not the case that 1 knows that B. Of
course the ordering among payoffs that was depicted above
presupposes that if 1 knew that B, then he would not con-

ceal this information to the hearer. In situations not covered
by this analysis, the speaker could utter µa knowing that B,
if he did not want 2 to know.

Similarly, we could include a pair of ‘don’t say anything’
moves for player 1. Of course, when he chooses one of
these additional moves, she has no possibility to move, and
the payoff should be equal to 0 for both players. I will as-
sume that both g′

a and g′
b are strictly positive. If this is the

case, then, again, any strategy involving one of these ad-
ditional moves is strongly dominated, hence I will ignore
this possible variant of the game. Yet, this shows that I have
not mentioned a fact which is implicitly presupposed by our
model, namely the fact that, for example, at node a, player
1 knows that A and also wants to convey this information.
Maybe this is what is meant by Parikh when he says that the
chance nodes ‘represent [player 1’s] intention to convey’ A
or B [7].2 If this is the case, the objections I raised in section
1 miss the mark. But, even in this case, his original mod-
els should be modified. As I have already said, with cases
like (1) or (2), the payoff obtained when player 2 rightly
chooses the stronger interpretation, should be higher than
that obtained when she rightly chooses the weaker one.

Now we have all the elements to build our game. I will
first construct it as a game of imperfect information in ex-
tensive form, which will be called Γe. It has the structure of
a tree, as is shown in Figure 1.

A

ma

g´a

ga

g´b

gb

ga
A

B

B

2.c

2.c

I

i

1.a

1.b

0

e

E

Figure 1. The game in extensive form

2P. 27.
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This is a deviation from Parikh’s path. In the model pre-
sented here, I imagine that the first event in the game is a
chance move made by ‘Nature’, which determines whether
1 knows that A and does not know that B, or knows that
A and B. At this point 1 can make his move. As usual, I
also imagine that the whole structure of the game is com-
mon knowledge. Parikh’s game in extensive form is not a
tree but a pair of trees, since he argues that player 2 cannot
construct anything before 1’s utterance [7],3 this is why he
proposes the notion of a game of partial information. I have
the impression that this is an unnecessary – but harmless –
deviation from more traditional notions, unless we want our
model to mirror the actual mental processes of speaker and
hearer. I observe that if Parikh is right in his claim that
these disambiguation games should not be treated as ordi-
nary games of imperfect information, the same would hold,
for example, for Spence’s ‘model of education’ [12].

Then, a and b are chance events with prior probability p
and 1−p, respectively, where 1 > p > 0, as usual. If player
1 is in situation a, he can utter either φ or µa, and we can
label these two moves ‘I’ and ‘E’, respectively – where
‘I’ stands for ‘implicit’ and ‘E’ for ‘explicit’. If he is in
situation b, he can choose between φ and µb, and we can call
these alternative moves ‘i’ and ‘e’. Player 2 has a chance to
move only if the game is in one of the states labelled ‘2.c’,
where the identucal labels and the ellipsis manifest the fact
that she is not able to distinguish them, technically speaking
they belong to the same information set. Her options are the
two moves A and B.

The fact that there are only two alternative states in 2’s
information set follows from the characteristic features of
the examples considered, namely the fact that one of the
two readings is entailed by the other. It is not even neces-
sary that this be a logical entailment – like it is in our exam-
ple – but the entailment has to be common knowledge. If
the two alternative interpretations were mutually exclusive,
we would build another game with two epistemic possibil-
ities, but there would be a difference in the ordering of the
outcomes. The choice of A when 1 means B, for example,
would lead to a bad result. If the two alternatives readings
were logically and conceptually unrelated, player 2 would
have an information set containing three elements. And of
course we can conceive of cases where an ambiguous sen-
tence admits of more than two readings.

3. Nash Equilibria in Strategic Form

The normal representation of our game is the set Γ =
{N, C1, C2, u}, where N = {1, 2} is the set of players,
C1 = {Ei,Ee, Ii, Ie} and C2 = {A, B} are the sets of
their pure strategies, and u is their payoff function, hence
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a function from C1 × C2 to the real line R. It satisfies the
pattern shown in Table 1.

A B
Ei p× g′

a + (1− p)× ga p× g′
a + (1− p)× gb

Ee p× g′
a + (1− p)× g′

b p× g′
a + (1− p)× g′

b

Ii ga p×mb + (1− p)× gb

Ie p× ga + (1− p)× g′
b p×mb + (1− p)× g′

b

Table 1. The game in strategic form

I will now establish a few properties of the model.

Theorem 3.1 Ii is strongly dominated in Γ

Proof. Ii is strongly dominated if and only if ∃σ1 ∈ ∆(C1)
such that

u(Ii, A) < σ1(Ei)u(Ei,A)+
σ1(Ee)u(Ee,A) + σ1(Ie)u(Ie, A)+ (3)
(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, A)

and

u(Ii, B) < σ1(Ei)u(Ei,B)+
σ1(Ee)u(Ee,B) + σ1(Ie)u(Ie, B)+ (4)
(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, B)

Inequalities (3) and (4) are equivalent to

σ1(Ei) + σ1(Ee)
σ1(Ie) + σ1(Ee)

<
(1− p)(g′

b − g′
a)

p(ga − g′
a)

(5)

and
σ1(Ei) + σ1(Ee)
σ1(Ie) + σ1(Ee)

>
(1− p)(gb − g′

b)
p(g′

a −mb)
(6)

respectively. Since g′
b > ga, we have that (g′

b − g′
a)/(ga −

g′
a) > 1. Moreover, we stated above that g′

a−mb > gb−g′
b,

therefore 1 > (gb − g′
b)/(g′

a −mb). This entails

g′
b − g′

a

ga − g′
a

>
gb − g′

b

g′
a −mb

and hence

(1− p)(g′
b − g′

a)
p(ga − g′

a)
>

(1− p)(gb − g′
b)

p(g′
a −mb)

At this point it is an easy task to find values for σ1(Ei),
σ1(Ie), and σ1(Ee) that satisfy inequalities (5) and (6).
QED

Observe that Theorem 3.1 entails that no strategy profile τ
where τ1(Ii) > 0 is a Nash equilibrium.
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Theorem 3.2 There is no equilibrium in Γ where both Ei
and Ie have strictly positive probability.

Proof. Assume that σ is such an equilibrium. Then the
following inequalities have to be true:

∑

c2∈C2

σ2(c2)u(Ei, c2) ≥
∑

c2∈C2

σ2(c2)u(Ee, c2)

∑

c2∈C2

σ2(c2)u(Ie, c2) ≥
∑

c2∈C2

σ2(c2)u(Ee, c2)

They are equivalent to

σ2(A) ≤ gb − g′b
gb − ga

σ2(A) ≥ g′a −mb

ga −mb

respectively. But this cannot be. In fact, given the ordering
among payoffs, (g′a −mb)(g′b − ga) > (gb − g′b)(ga − g′a),
(g′a−mb)(gb−g′b)+(g′a−mb)(g′b−ga) > (g′a−mb)(gb−
g′b) + (gb − g′b)(ga − g′a), (g′a − mb)(gb − ga) > (gb −
g′b)(ga −mb), and hence

g′a −mb

ga −mb
>

gb − g′b
gb − ga

(7)

QED

Theorem 3.3 There is no equilibrium Γ where both Ie and
Ee have strictly positive probability.

Proof. Assume that σ is such an equilibrium. Then the
following equation has to be true

∑

c2∈C2

σ2(c2)u(Ie, c2) =
∑

c2∈C2

σ2(c2)u(Ee, c2)

which amounts to

σ2(A) =
g′a −mb

ga −mb

This means that 1 > σ2(A) > 0, hence in this equilibrium
player 2 is indifferent between strategies A and B, and this
means

∑

c1∈C1

σ1(c1)u(c1, A) =
∑

c1∈C1

σ1(c1)u(c1, B) (8)

Since σ1(Ei) = 0 and σ1(Ii) = 0, (8) becomes ga = mb,
which is impossible. QED

Theorem 3.4 There is no equilibrium where both Ei and
Ee have strictly positive probability.

Proof. Analogous to the preceding one. QED

How many equilibria are there? Of course there are two
equilibria in pure strategies, namely η = ([Ie], [A]) and
θ = ([Ei], [B]), but there is also an infinite set of mixed
equilibria.

Theorem 3.5 If
π1(Ee) = 1 (9)

and
g′a −mb

ga −mb
≥ π2(A) ≥ gb − g′b

gb − ga
(10)

then π is a Nash equilibrium.

Proof. Consider a modified game Γ∗ = {N, C∗
1 , C2, u∗}

where C∗
1 = {Ei, Ie, Ee}, and u∗ is just u after its domain

has been restricted accordingly. Since Ii is strongly domi-
nated, 3.1, every equilibrium of Γ∗ is an equilibrium of Γ,
and vice versa. Suppose that π is a strategy profile that sat-
isfies conditions (9) and (10). Define ω as p(g′a − g′b) + g′b,
which is the expected payoff of both players under π. Since
player 2 is clearly indifferent between A and B when player
1’s strategy is [Ee], in order to show that π is an equilib-
rium, we only need to prove the following statements:

ω ≥
∑

c2∈C2

π2(c2)u(Ei, c2) (11)

ω ≥
∑

c2∈C2

π2(c2)u(Ie, c2) (12)

But the conjunction of conditions (11) and (12) is equivalent
to (10). Hence π is a Nash equilibrium of Γ∗ and therefore
of Γ as well. QED

Theorems 3.1, 3.2, 3.3, and 3.4 entail that there are no other
equilibria.

4. Efficiency

Summing up, there are two equilibria in pure strategies,
namely η and θ, and many mixed equilibria π. All these
mixed equilibria are somehow equivalent, since they yield
the same expected payoff, and they all amount to the fact
that player 1 goes for the costly but unambiguous option,
and player 2 has no opportunity to move. These mixed equi-
libria are the least efficient ones. As for the equilibria in
pure strategies, η is the unique Pareto efficient equilibrium
iff

p >
gb − g′b

gb − g′b + ga − g′a

and θ is the unique Pareto efficient equilibrium iff

p <
gb − g′b

gb − g′b + ga − g′a
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Parikh’s account predicts that the players will tend to
converge on the more efficient equilibrium. Robert Van
Rooij rejects this solution concept, claiming that it is ‘un-
usual’ [10]. This claim is quite odd. On the one hand, there
is some agreement among some scholars on the view that
we should expect rational players to converge on efficient
equilibria in cooperative games [3, 4]. And we should bear
in mind that a rational justification of a solution concept is
perhaps always desirable, but not strictly necessary, as long
as any included profile is (at least) a (Nash) equilibrium and
is empirically adequate [1].

Yet, even if I hold that Parikh’s relying on Pareto effi-
ciency is probably the most natural choice, I will propose
a line of defence which is rejected by him. Imagine that
the players were allowed some preplay communication [4],
before the beginning of the game, hence before player 1
has access to his private information. Since they are given
the opportunity to reach an agreement over the strategy to
adopt during the game, they will presumably agree to con-
verge on the equilibrium that is the most profitable one for
both, namely on the uniquely Pareto efficient one. Of course
an actual occurrence of this kind of communication is un-
realistic, but the players do not have to be really engaged
in it in order to know what would happen in such a coun-
terfactual situation, because this can be inferred from the
structure of the game, it is a feature of the game, which is
common knowledge. According to Parikh this argument is
untenable for two reasons. First, if you explain successful
communication in terms of preplay communication you fall
into an infinite regress. Second, ‘even if such an infinite
regress were avoidable, the solution would certainly require
a great deal of effort suggesting that languages aren’t quite
so efficient as they in fact are’ [7].4 I argue that both of these
tenets can be rejected. The model presented here is an ac-
count of disambiguation, which is a particular phenomenon
occurring in communication. I claimed that our two players
could converge on a unique equilibrium, if they considered
what would have happened if they had had the opportunity
to reach an agreement over a coordinated plan. If this imagi-
nary preplay communication is conceived as involving only
unambiguous sentences, there seems to be no danger of an
infinite regress, yet the response is the same: they would
have agreed to converge on the unique Pareto efficient equi-
librium. The second point is less clear to me, since the kind
of reasoning that we come to attribute to our players does
not seem to involve a great deal of computational effort,
compared to the construction of the model itself.

The main shortcoming the Pareto-Nash solution concept
that I borrowed from Parikh is that it does not explain what

4P. 39n.

should happen in the limit case where

p =
gb − g′

b

gb − g′
b + ga − g′

a

and therefore both η and θ are (weakly) Pareto efficient. Be-
ing uncertain over which course of action should be chosen,
our players could end up converging on one of the mixed
equilibria. The reasoning is as follows. Resume the argu-
ment from preplay communication of the preceding para-
graph. The upshot of a counterfactual conversation like the
one described would be indeterminate, in this case, they
cannot tell what they would have agreed on, just consider-
ing the structure of the game. They know for sure that they
would have agreed to converge on one of the two weakly ef-
ficient equilibria, but they do not know which one, they are
equally probable. Therefore, the beliefs that player 1 will
end up choosing [Ei] and that he will end up choosing [Ie]
are equally probable for player 2

player 2 deems to be equally probable the belief that
player 1 will end up choosing [Ei] and the belief that he
will end up choosing [Ie]. In other words, he comes to
believe that he will choose the mixed strategy σ where
σ1(Ei) = σ1(Ie) = 1

2 . But this expectation is self-refuting,
since, by theorem 3.2, it is not part of a Nash equilibrium.
But a similar reasoning would lead 1 to expect that 2 will
choose the mixed strategy τ2(A) = τ2(B) = 1

2 . This is
nothing more than the belief that 2 does not know what to
do, and hence that she will choose at random. This belief is
not self-refuting, since it belongs to one of the mixed equi-
libria by theorem 3.5, because

g′
a −mb

ga −mb
>

1
2

>
gb − g′

b

gb − ga

And the very same reasoning that can lead 1 to form this
belief can lead 2 to believe that 1 has this belief, and so
on. This argument is rather unorthodox, and I take it to bee
an interim solution to the problem I raised. Another line
of reasoning which was promising, at least a priori, proved
to be a dead end. I will present it anyway in the following
two sections, since it gives the occasion to analyze some
features of the model which are interesting in themselves,
and it will help to meet a possible objection.

5. Trembling Hand Perfect Equilibria

One might hope to select a unique equilibrium arguing
that in our analysis player 2 does not exploit all the evidence
she has at her disposal, since in order to make a rational
choice she must consider not the prior probability of a and
b, but the conditional probability of those events, given that
player 1 decided to utter φ. This suggests that we consider
this a sequential game.
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The multiagent representation [4] – also called agent-
normal form [11], and agent strategic [5] – is a way to rep-
resent games in extensive form as games in strategic form,
alternative to the normal representation. In the multiagent
representation, there is a player, called (temporary) agent,
for every information set of every player. Hence, as far
as our game is concerned, player 1 is represented by two
agents in the multiagent representation, say a and b. While
there is only one agent for player 2, say c.

A behavioural strategy profile of a game in extensive
form is a mixed strategy profile of its multiagent represen-
tation. A generic behavioural strategy profile of our game
is (σa, σb, σc), and it specifies a probability distribution for
every agent of every player. The behavioural strategy pro-
file ([I], [e], [A]) corresponds to our Nash equilibrium η in
an intuitive way, so that it can be called its behavioural rep-
resentation [4]. Since there should not be any danger of
misunderstanding, until the end of this section, I will use the
names of the strategy profiles of (the normal representation
of) our original game to refer to their behavioural represen-
tations. Hence, I will set η = (ηa, ηb, ηc) = ([I], [e], [A]),
and similarly for the other equilibria.

Definition 5.1 A trembling hand perfect equilibrium of a
game in extensive form is a trembling hand perfect equilib-
rium of its multiagent representation [4, 5]. #

Searching for trembling hand perfect equilibria of games in
extensive form, is precisely a way to search for strategy pro-
files that are coherent if we consider the sequential nature of
a game.

Theorem 5.2 η is a trembling hand perfect equilibrium of
Γe

Proof. Recall that η is a perfect equilibrium iff there ex-
ists a sequence (ηk)∞k=1 such that each ηk is a perturbed
behavioural strategy profile where every move gets positive
probability, and, moreover

(i)

lim
k→∞

ηk
s (ds) = ηs(ds) ∀s ∈ S ∀ds ∈ Ds

(ii)

ηs ∈ argmaxτs∈∆(Ds)

∑

d∈D

(
∏

r∈N−s

ηk
r (dr)

)
τs(ds)u(d)

∀s ∈ S

where S = (a, b, c) is the set of all information states of
all players, and, for each s ∈ S, Ds is the set of moves

available to the relevant player in state s, and D = ×s∈SDs.
It is not difficult to find a sequence satisfying these criteria.
Set

ξ =
(1− p)(gb − ga)

p(ga −mb)
Then ∀k ∈ (1, 2, 3, ...), if ξ ≥ 1,

ηk
a(I) =

2k − 1
2k

ηk
b (i) =

1
2kξ

ηk
c (A) = 1− ga − g′a

k(ga −mb)

If ξ < 1, instead, set

ηk
b (i) =

1
2k

and the rest as before. You can see at a glance that these
sequences satisfy condition (i). Consider now the expected
payoff for player 1 when he is in state a and is planning to
make move τa ∈ ∆(Da), and all moves at all other states
are made according to scenario ηk. It is equal to

∑

d−a∈D−a

(
∏

r∈N−a

ηk
r (dr)

)
× (13)

[τa(I)u(d−a, I) + (1− τa(I))u(d−a, E)]

We can consider (13) as a function of τa(I), and if we cal-
culate the derivative of this function we get

p[ηk
c (A)(ga −mb) + mb − g′a]

As you can easily verify, this value is either null or positive
for all k, and this means that, since ηa(I) = 1

ηa ∈ argmaxτa∈∆(Da)

∑

d∈D

(
∏

r∈N−a

ηk
r (dr)

)
τa(da)u(d)

Similarly, if you consider the corresponding expected pay-
off for player 1 when he is in state b, i.e.

∑

d−b∈D−b

(
∏

r∈N−b

ηk
r (dr)

)
×

[τb(i)u(d−b, i) + (1− τb(i))u(d−b, e)]

regard it as a function of τb(i), and calculate its derivative,
you get

(1− p)[ηk
c (A)(ga − gb) + gb − g′b]

which is either null or negative for all k, because of inequal-
ity (7), and this means that, since ηb(i) = 0,

ηb ∈ argmaxτb∈∆(Db)

∑

d∈D

(
∏

r∈N−b

ηk
r (dr)

)
τb(db)u(d)
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Finally, if you calculate the expected payoff for player 2,
you have

∑

d−c∈D−c

(
∏

r∈N−c

ηk
r (dr)

)
×

[τc(A)u(d−c, A) + (1− τc(A))u(d−c, B)]

whose derivative is

ηk
a(I)p(ga −mb) + ηk

b (i)(1− p)(ga − gb)

which is either null or positive for all k, and this entails

ηc ∈ argmaxτc∈∆(Dc)

∑

d∈D

(
∏

r∈N−c

ηk
r (dr)

)
τc(dc)u(d)

QED

The case of θ is completely analogous.

Theorem 5.3 θ is a trembling hand perfect equilibrium of
Γe

Proof. A suitable sequence is

θk
a(I) =

1
2k

θk
b (i) =

2k − 1
2k

θk
c (A) =

gb − g′b
k(gb − ga)

if ξ ≥ 1, and

θk
a(I) =

ξ

2k
θk

b (i) =
2k − 1

2k
θk

c (A) =
gb − g′b

k(gb − ga)

if ξ < 1. QED

As for the mixed equilibria the case is simpler.

Theorem 5.4 The mixed equilibria π are trembling hand
perfect in the extensive form of the game

Proof. Since 1 > π > 0, we can set πk
c (A) = πc(A), and

ηk
a(I) =

1
2k

ηk
b (i) =

1
2kξ

whenever ξ ≥ 1, and

ηk
a(I) =

ξ

2k
ηk

b (i) =
1
2k

otherwise. QED

Theorems 5.2, 5.3, and 5.4 show that all of the Nash
equilibria can be legitimately regarded as tenable, even if
take into account the fact that the players do not act simul-
taneously, and hence that player 2 must update her beliefs
upon the evidence that player 1 chose the ambiguous utter-
ance φ. This is indeed trivial for the pure equilibria, but not
for the mixed ones. The question is, what does 2 believe
when she sees that 1 has uttered φ? But an answer to this
question is relative to a strategy profile. For example, un-
der η, if 1 utters φ, she knows for sure that she is in her
upper node, since the conditional probability of this event,
upon the evidence that he has chosen either I or i, is equal
to 1. But what does she believe in the same situation un-
der one of the mixed equilibria, where all the nodes in her
information set have null prior probability, and hence the
traditional Bayesian theory leaves the corresponding condi-
tional probability undefined? Many of the refinements of
the Nash equilibrium concept are an attempt to give an an-
swer to this question. The reasoning behind the notion of
trembling hand perfect equilibrium in extensive games is
this: when a player comes to know that an event with null
prior probability has actually occurred, she believes that this
was due to a mistake made by one of the other players, when
performing his strategy. Then she updates her beliefs, as-
suming that all the possible mistakes had an infinitesimal
prior probability.

6. Proper Equilibria

Summing up, theorems 5.2, 5.3, and 5.4 strengthen the
overall strategy of this paper, which amounts to the claim
that the players will converge on the unique Pareto effi-
cient equilibrium, whenever there is one, and on one of the
mixed equilibria otherwise. For completeness, I will men-
tion another feature of the model which is less reassuring.
The concept of proper equilibrium builds on the idea behind
trembling hand perfect equilibrium, and adds the restriction
that less costly mistakes have a higher probability than more
dangerous ones [4].

Definition 6.1 A mixed strategy profile σ is an ε-proper
equilibrium iff all pure strategies get strictly positive prob-
ability and, for every player i and any pair of pure strategies
ci and ei in Ci,

if ui(σ−i, [ci]) < ui(σ−i, [ei]), then σi(ci) ≤ εσi(ei)

)

Definition 6.2 A mixed strategy profile σ is a proper equi-
librium iff there is a sequence (εk, σk)∞k=1 such that

lim
k→∞

εk = 0, lim
k→∞

σk
i (ci) = σi(ci), ∀i ∈ N,∀ci ∈ Ci,

and, for every k, σk is an εk-proper equilibrium. )
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Proper equilibria are usually applied to the normal repre-
sentation of games in extensive form. It is probably evident
that η and θ are proper equilibria, the interesting case is the
following one.

Theorem 6.3 A mixed strategy profile π such that
π1(Ee) = 1 is a proper equilibrium of Γiff

π2(A) =
p(g′

a −mb + g′
b − gb) + gb − g′

b

p(ga −mb + ga − gb) + gb − ga

I will not provide the proof here, I only remark that for ev-
ery game, there are three and only three equilibria, and that
the suitable value for π2(A) is always included in the open
interval (

gb − g′
b

gb − ga
,
g′

a −mb

ga −mb

)

I admit that this fact is not welcome, since it weakens the
strategy adopted so far. I just take it as a reason for not
adopting proper equilibrium as a solution concept in disam-
biguation games.

7. Conclusion

Summing up, the substance of this work is a new game-
theoretic analysis of the capacity humans have to communi-
cate using ambiguous expressions. The background hypoth-
esis is that these tasks are accomplished because humans are
rational creatures, and, when two people are involved in a
conversation, they crucially capitalize on this fact, assuming
that it is common knowledge. I built on ideas first developed
by Prashant Parikh, raising some objections that led me to
modify his models.

I built a game of imperfect information in extensive
form, where a hearer and a speaker are the two players,
the speaker has some private information, and his task is to
convey this piece of information to the hearer. Here lies the
main difference between my analysis and Parikh’s, since, in
his model, the relevant private information of the speaker
is the intended meaning of his speech act. I argued that
my reform renders the theory more natural and conceptu-
ally simpler.

The examples I chose as sample cases were simpler to
analyze than more general cases, because of the structural
features of the resulting model. In the end I retain Parikh’s
conclusion that speakers tend to focus on efficient equilib-
ria, but I also proposed a solution to a problem that had
been left open, namely, the strategy adopted by the speak-
ers when there is not a unique efficient equilibrium. I ar-
gued that, in this case, the speaker goes for the ambiguous
expression, which is costly, but safe. The argument I used
to back both of these tenets hinges on the idea that the play-
ers are able to guess the joint strategy they would agree on,

were they allowed some preplay communication before the
beginning of the game. This kind of argument is not new. It
is crucial that the players do not really need to entertain this
kind of communication in order to know what would ensue
from it. Yet, I acknowledged that my argument is partially
unorthodox, from the point of view of the existing literature.

I also showed that the relevant equilibria are plausible
even if we consider that a conversation is sequential in na-
ture, proving that they are trembling hand perfect. And I
ended stating, omitting the proof, that not all the equilibria
are proper, which I take to be an unwelcome result.

Now the task is to extend this analysis to other, more gen-
eral and more complex cases, and check whether the claims
that have been put forward here have a wider application.
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Abstract

In this paper we take a game-theoretic perspective to
study the effects of previously adopted intentions in ratio-
nal decision making. We investigate the question of how
agents transform the decision problems they face in the light
of what they intend, and provide conditions under which
such transformations, when iterated, leave room for delib-
eration, i.e. do not exclude all the options of the decision
maker.

1 Introduction

In this paper we take a game-theoretic perspective to
study the effects of previously adopted intentions in rational
decision making. We investigate the question of how agents
transform the decision problems they face in the light of
what they intend, and provide conditions under which such
transformations, when iterated, leave room for deliberation,
i.e. do not exclude all the options of the decision maker.

There is a broad consensus among philosophers of ac-
tion, e.g. [Bratman, 1987] and Velleman [2003], that pre-
viously adopted intentions, alongside beliefs and desires,
shape decision problems. This role, however, has until now
attracted little if no attention in game theory. The present
work attempts at (partially) filling this gap. This not only
results in a richer game-theoretic framework, but also sheds
new lights on the philosophical theory of intentions, es-
pecially concerning the interactive character of intention-
based transformations of decision problems.

The approach in this paper differs in important respects
from the one in “BDI” architectures, e.g. Georgeff et al.
[1998] and van der Hoek et al. [2007]. Studies in that
paradigm have mainly focused on the relation that inten-
tions can or should have with beliefs and desires, and on dif-
ferent policies of intention revision. Furthermore, these ap-
proaches do not directly use game-theoretic formalisms, but

∗This is an extended abstract of [Roy, 2008, chap.4]. Some results
presented here have been obtained in collaboration with Martin van Hees
(Rijksuniversiteit Groningen).

rather frameworks tailored for the analysis of multi-agent
systems. Here we use strategic form games, and focus on
how intentions transform them.

We consider two ways of transforming decision prob-
lems on the basis of the agents’ intentions. For each of
them we characterize the conditions under which they do
not remove all possible choices for the agents. Proofs of the
technical results can be found in the Appendix.

2 Strategic games with intentions

We use standard strategic form games, as in e.g. [Os-
borne and Rubinstein, 1994], except that preferences are
represented qualitatively. A decision problem or strategic
game G is a tuple 〈I, Si, X,π,≤i〉 such that :

• I is a finite set of agents.

• Si is a finite set of actions or strategies for i. A strategy
profile σ ∈ Πi∈ISi is a vector of strategies, one for
each agent in I . The strategy si which i plays in the
profile σ is noted σ(i).

• X is a finite set of outcomes.

• π : Πi∈ISi → X is an outcome function that assigns to
every strategy profile σ ∈ Πi∈ISi an outcome x ∈ X .
We use π(si) to denote the set of outcomes that can
result from the choice of si. Formally: π(si) = {x :
x = π(si,σj "=i) for some σj "=i ∈ Πj "=iSj}.

• ≤i is a reflexive, transitive and total preference relation
on X .

We study the effect of previously adopted intentions on
such decision problems, rather than the process by which
the agents form these intentions. Furthermore, we restrict
our attention to intentions to realize certain outcomes in the
game, in contrast with intentions to play certain strategy—
although there is an obvious connection between the two.
We thus assign to each agent i ∈ I an intention set ιi ⊆
X . The intention set ιi of agent i should be thought as the
intentions that i has formed some time before entering the
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game, and on the basis of which he now has to make his
decision. Following common assumption by philosophers
of action we suppose that ιi != ∅, which amounts to agents
not having inconsistent intentions. An intention profile ι is
a vector of intention sets, one for each agent.

Many philosophers of action have stressed that previ-
ously adopted intentions transform decision problems, a
phenomenon which is called the reasoning-centered com-
mitment of intentions. They imposes a “standard for rel-
evance for options considered in deliberation. And they
constrain solutions to these problems, providing a filter of
admissibility for options.” [Bratman, 1987, p.33, emphasis
in the original]. These are the two effects of intentions on
deliberation that we study in the next sections.

3 Filter of admissibility

We take “providing a filter of admissibility” to mean
ruling out options that are incompatible with the agents
achieving their intentions. Agents, in that sense, discard
some of their strategies because they are incompatible with
what they intend. We will study two different admissibil-
ity/compatibility criteria, depending on whether the agents
take each others’ intentions into account.

We start with a generic definition of the discarding pro-
cess, which we call cleaning, and in which the two notions
of admissibility will be plugged in. The cleaned version
cl(Si) of a strategy set Si is defined as:

cl(Si) = {si | si is admissible for deliberation for i}

The cleaned version of a game G with intention profile ι is
the tuple cl(G) = 〈I, Xcl, {cl(Si),≤cl

i }i∈I ,πcl〉 such that:

• Xcl = π(Πi∈Icl(Si)) = {x |x = π(σ) for some σ ∈
Πi∈Icl(Si)}.

• ≤cl
i is the restriction of ≤i to Xcl.

• πcl is π with the restricted domain Πi∈Icl(Si).

We do not study intention revision, and so we assume that
the agents adapt their intentions to the decision problem
they face after cleaning by giving up on achieving the out-
comes that are no longer achievable. We thus take the
cleaned version ιcl

i of the intention set ιi to be ιi ∩ Xcl,
reminding plain belief expansion in e.g. Rott [2001] and
Gärdenfors [2003].

The first criterion for admissibility we consider is indi-
vidualistic: we say that a strategy si of agent i is individ-
ualistically admissible for him when choosing it can yield
an outcome he intends. Formally, a strategy si of agent i is
individualistically admissible with respect to his intention
set ιi when π(si) ∩ ιi != ∅. Conversely, a strategy is not

admissible for i when choosing it would not realize any of
his intentions.

It can be that no strategy survive cleaning with individ-
ualistic admissibility, simply because some outcome x can
be unrealizable, i.e. it can happen that there is no profile
σ such that π(σ) = x. In such case we say that clean-
ing empties a decision problem for the agent. Intuitively
agents should avoid intentions which, once used for clean-
ing, empty the decision problem. This this leaves them no
strategy to choose. It is thus important to characterize the
intention sets that do not lead to empty cleaned games.

When there is only one agent, cleaning empties a deci-
sion problem if and only if ιi contains no realizable out-
comes. In interactive situations, however, agents who clean
individualistically can make intentions of others unrealiz-
able. Table 1 is an example, with the numbers in the cells
representing which outcomes are in ιi for the corresponding
agent, 1 being the row and 2 being the column player. When

G t1 t2
s1 1
s2 2
cl(G) t1

s1 1

Table 1. A game which an empty cleaning.

more than one agent is involved, to have realizable inten-
tions is thus not enough to avoid ending up with empty strat-
egy sets after cleaning. To pinpoint the conditions which
ensure such non-emptiness in the general case, we look at
iteration of cleaning, in a way that draws from van Benthem
[2003] and Apt [2007].

Given a strategic game G, let clk(G) =
〈I,Xclk , {clk(Si),≤clk

i }i∈I ,πclk〉 be the strategic game
that results after k iterations of the cleaning of G. That is,
cl1(G) = cl(G) and clk+1(G) = cl(clk(G)). The smallest
cleaning fixed-point cl#(G) of G is defined as clk(G)
for the smallest k such that clk(G) = clk+1(G). In what
follows we ignore the “smallest” and only write about the
fixed point.

Every game has a unique cleaning fixed point with indi-
vidualistic cleaning but, as just noted, it may be an empty
one. This is avoided only if the intentions of the agents are
sufficiently entangled with one another.

Let us call the cleaning core of a strategic game G is
the set of strategy profile S∗ inductively defined as follows,
with πSn

(si) = π(si) ∩ {π(σ′) : σ′ ∈ Sn}.

• S0 = Πi∈ISi.

• Sn+1 = Sn−{σ : there is an i such that πSn

(σ(i)) ∩
ιi = ∅}.
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• S∗ =
⋂

n<ω Sn.

For each strategy si and profile σ in the cleaning core
such that σ(i) = si, there is at least one agent j for whom
strategy σ(j) is admissible, by looking only at what can
result from the profiles in the core.

Fact 3.1 For any strategic game G and intention profile ι,
S∗ != ∅ iff cl#(G) is not empty.

From this we learn that the individualistic character of
admissibility must be compensated by an interlocking web
of intentions and strategies if cleaning is not to make the
game empty. Intentions which yield a non-empty cleaning
core closely fit the admissible strategies of all agents. By in-
tending outcomes that are realizable in the cleaning core, an
agent somehow acknowledges that he interacts with other
agents who, like him, clean inadmissible options from their
strategy set.

The following alternative form of admissibility empha-
sizes this interactive character. A strategy si of agent i is
altruistically admissible with respect to his intention set ιi
when there is a j ∈ I such that π(si) ∩ ιj != ∅. Follow-
ing this second criterion, a strategy of agent i is admissible
whenever it can yield an outcome that some agent, not nec-
essarily i, intends. When agents discard option on the basis
of this criterion, there is no risk of emptying the game, and
the process does not need to be iterated.

Fact 3.2 For G an arbitrary strategic game, cl#(G) =
cl(G) for cleaning with altruistic admissibility.

Fact 3.3 For any strategic game G, intention profile ι and
cleaning with altruistic admissibility, there is, for all i, a
realizable x ∈ ιi iff cl#(G) is not empty.

It is thus crucial for agents to take the others’ intentions
into account when ruling out options in strategic games. If,
on the one hand, agents rule out options without taking care
of what the others intend, they run the risk of ending up with
no strategy at all, unless their intentions are already attuned
to those of their co-players. If, on the other hand, their in-
tentions do not fit so well with those of others, then they
should at least take heed of what the others intend when
ruling out options. This aspect of the reason-centered com-
mitment of intentions has, up to now, been overlooked in
philosophical theories of intentions.

4 Standard of relevance

We now turn to the second aspect of the reason-centered
commitment of intentions: transformations of decision
problem based on the “standard of relevance”.

Here we take this idea to mean discarding options which
differences are not relevant in terms of what one intends.
We say that such options are redundant. Formally, two
strategies s1 and s2 in Si are redundant, noted s1 ≈ s2,
whenever π(s1,σj "=i) ∈ ιi iff π(s2,σj "=i) ∈ ιi for all com-
binations of actions of other agents σj "=i ∈ Πj "=iSj . Strate-
gies s1 and s2 in Table 2 are redundant for the row player
in that sense.

t1 t2 t3
s1 1, 2 2 1
s2 1 2 1
s3 1 2

Table 2. A game with redundant strategies for
the row player.

The relation ≈ clearly induces a partition of the set of
strategies Si into subsets [si]G≈ = {s′i ∈ Si|s′i ≈ si}, each
of which represents a distinct “means” for agent i to achieve
what he intends. We take the standard of relevance imposed
by intentions to induce such a means-oriented perspective
on decision problems.

To make a decision from that perspective agents have
to sort out these means according to some preference or-
dering. Here we assume that they “pick” a representative
strategy for each means, and collect them to form their new
strategy set. This allows to define preferences in the game
that result from this transformation from those in the origi-
nal game. Regarding the picking process itself, we take an
abstract point of view and leave implicit the criterion which
underlies it.

Given a strategic game G, a function θi : P(Si) → Si

such that θi(S) ∈ S for all S ⊆ Si is called i’s picking
function. A profile of picking functions Θ is a combination
of such θi, one for each agent i ∈ I . These functions return,
for each set of strategies—and in particular each equiva-
lence class [si]≈—the strategy that the agents picks in that
set. We define them over the whole power set of strategies
to facilitate the technical analysis.

The pruned version pr(Si) of a strategy set Si, with re-
spect to an intention set ιi and a picking function θi is de-
fined as:

pr(Si) = {θ([si]G≈) : si ∈ Si}

Pruned version of a strategic game G are defined similarly
as cleaned ones: given an intention profile ι and a profile
of picking function Θ, the pruned version of G is the tuple
pr(G) = 〈I,Xpr, {pr(Si),≤pr

i }i∈I ,πpr〉 such that:

• Xpr = π(Πi∈Ipr(Si)).

• ≤pr
i is the restriction of ≤i to Xpr.
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• πpr is π with the restricted domain Πi∈Ipr(Si).

The pruned version ιpr
i of an intention set ιi is ιi ∩ Xpr.

Agents, again, adapt their intentions in the process of prun-
ing.

We once again take a general point of view and an-
alyze iterations of pruning. Given a strategic game G,
let prk(G) be the strategic game that results after k iter-
ations of the pruning of G. That is, pr0(G) = G and
prk+1(G) = pr(prk(G)). The pruning fixed point pr#(G)
of G is defined as prk(G) for the smallest k such that
prk(G) = prk+1(G).

As for cleaning, it can happen that agents end up with
empty intentions after a few rounds of pruning, but no prun-
ing makes a game empty.

Fact 4.1 For all strategic game G and agent i ∈ I ,
pr#(Si) #= ∅.

Furthermore, the existence of pruning fixed points where
all agents have non-empty intentions depends on whether
they intend “safe” outcomes. Given a strategic game G, an
intention profile ι and a profile of picking functions Θ, the
outcome x = π(σ) is:

• Safe for pruning at stage 1 iff for all agents i,
θi([σ(i)]) = σ(i).

• Safe for pruning at stage n + 1 whenever it is
safe for pruning at stage n and for all agents i,
θi([σ(i)]pkn(G)) = σ(i).

• Safe for pruning when it is safe for pruning at all stages
n.

Safe outcomes are those which the picking functions re-
tain, whatever happens in the process of pruning. Intending
safe outcomes is necessary and sufficient for an agent to
keep his intention set non-empty in the process of pruning.

Fact 4.2 For any strategic game G, intention profile ι, pro-
file of picking function Θ and for all i ∈ I , ιpr#

i #= ∅ iff
there is a π(σ) ∈ ιi safe for pruning in G.

Agents are thus required to take the others’ intentions
and picking criteria into account if they wish to avoid end-
ing up with empty intentions after pruning. In single-agent
cases pruning never makes the intention set of the agent
empty, as long as the agent has realizable intentions. This
shows, once again, that reasoning-centered commitment re-
ally gains an interactive character in situations of strategic
interaction.

5 Putting the two transformations together

We now look at how the pruning and cleaning interact
with one another, in order to get a more general picture
of the reasoning-centered commitment of intentions. We
investigate sequential applications of these operations, and
consider individualistic admissibility only.

Given a strategic game G, let t(G) be either pr(G) or
cl(G). A sequence of transformation of length k is any
tk(G) for k ≥ 0, where t1(G) = t(G) and tk+1(G) =
t(tk(G)). A sequence of transformation tk(G) is a trans-
formation fixed point whenever both cl(tk(G)) = tk(G)
and pr(tk(G)) = tk(G).

The first notable fact about cleaning and pruning se-
quences is that these operations do not in general commute.
Table 3 is a counterexample, with θ2([t1]) = t1. They do
commute, however, in the single-agent case.

G t1 t2
s1 1
s2 1, 2 1, 2

pr(G) t1
s1

s2 1, 2
cl(pr(G)) t1

s2 1, 2

Table 3. Counter-example to commutativity.

Fact 5.1 pr(cl(G)) = cl(pr(G)) for any strategic game G
with only one agent, intention set ιi and picking function θi.

Sequential cleaning and pruning creates new possibili-
ties for empty fixed points. Neither the existence of a clean-
ing core nor of safe outcomes, and not even a combination
of the two criteria are sufficient to ensure non-emptiness.
Furthermore, there might not be a unique fixed point, as
revealed in Tables 4, 5 and 6, with θ1({s1, s2}) = s2,
θ1({s1, s2, s3}) = s1 and θ1({s2, s3}) = s2.

G t1 t2 t3
s1 1 2
s2 1, 2
s3 1 1

Table 4. A game with two different fixed-
points.

Ignoring redundant transformations, all sequences of clean-
ing and pruning reach a fixed point in a finite number of
steps, for every finite strategic games. Non-emptiness of
this fixed point is ensured by the following strengthening
of safety for pruning and cleaning core. The outcome x of
profile σ ∈ Πi∈ISi is:
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cl(G) t1 t2
s1 1 2
s2 1, 2
s3 1

pr(cl(G)) t1 t2
s1 1 2

cl(pr(cl(G))) t2
s1 2

Table 5. The route to the first (empty) fixed
point of the game in Table 4.

pr(G) t1 t2 t3
s2 1, 2
s3 1 1

cl(pr(G)) t1
s2 1, 2
s3 1

pr(cl(pr(G))) t2
s2 1, 2

Table 6. The second fixed point of the game
in Table 4.

• Safe for iterated transformations at stage 1 whenever,
for all i ∈ I:

1. π(σ(i)) ∩ ιi #= ∅.
2. θi[σ(i)]G≈ = σ(i).

• Safe for iterated transformations at stage n + 1 when-
ever it is safe for iterated transformation at stage n and
for all i ∈ I:

1. πtn(G)(σ(i)) ∩ ιt
n(G)

i #= ∅.

2. θi[σ(i)]t
n(G)
≈ = σ(i).

• Safe for iterated transformations whenever it is safe
for transformation at all n.

Fact 5.2 For any strategic game G, intention profile ι and
profile of consistent picking function Θ, if π(σ) is safe for
transformation in G then for all fixed points t#(G), σ ∈
Πit#(Si).

The presence of safe outcomes is thus sufficient not only
to ensure that a game has no empty fixed point, but also
that all fixed points have a non-empty intersection. Pre-
cisely because of that, this does not entail that any game
which has no empty fixed point contains safe outcomes. If it
can be shown that whenever a game has a non-empty fixed-
point then this fixed-point is unique, we would know that
safety for transformation exactly captures non-emptiness.
Whether this is the case is still open to us at the moment.
We do know, however, that the converse of Fact 5.2 holds if
we constraint the picking functions.

In the spirit of Sen’s [1970] “property α” , let a picking
function θi be called consistent if θi(X) = si whenever
θi(Y ) = si, X ⊆ Y and si ∈ X .

Fact 5.3 For any strategic game G, intention profile ι and
profile of consistent picking function Θ, if σ ∈ Πit#(Si) for
all fixed points t#(G), then π(σ) is safe for transformation
in G.

If all players intend safe outcomes we thus know that
all fixed-point are non-empty, and we can “track” safe out-
comes in the agents’ original intentions by looking at those
they keep intending in all fixed-points.

The existence of empty transformation fixed points and
the definition of safety for transformation once again high-
light the importance of taking each others’ intention into
account while simplifying decision problems. The fact that
the pruning and cleaning do commute when there is only
one agent is in that respect illuminating.

6 Conclusion

We have studied two aspects of the reason-centered com-
mitment of intentions, by extending game-theoretic for-
malisms with two new operations on strategic form games.
We characterized conditions under which these operations
keep the games or the intentions of the agents non-empty.
This has revealed an important interactive character to the
reason-centering commitment, one which went up to now
unnoticed in philosophical theories of intentions. This work
thus extends game-theoretic models and shew new lights on
the theory of intentions.

Taking a epistemic perspective, in the line of Aumann
[1999], van Benthem [2003], Brandenburger [2007] and
Bonanno [2007], would surely enhance the present work.
Mutual knowledge of each others’ intentions seems crucial
in the process of cleaning and pruning. It would also be in-
teresting to relate the current proposal with game-theoretic
work on intention formation and reconsideration, e.g. Mc-
Clennen [1990] and Gul and Pesendorfer [2001], and with
the BDI architectures cited in the introduction.
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7 Appendix

7.1 Proof of Fact 3.1

For any strategic game G and intention profile ι, S∗ != ∅
iff cl#(G) is not empty.

By Definition, S∗ != ∅ is the same as saying that we can
find a σ ∈ S∗ such that for all i, πS∗

(σ(i)) ∩ ιi != ∅.
We show by induction that π(Sk) = Xclk , for all k. This
is enough to show the equivalence, for then we know that
Xcl# ∩ ιi != ∅, which we know is the same as cl#(G) being
non-empty. The basic case of the induction, k = 0, is trivial.
For the induction step, assume the claim is proved for k. We
have that x ∈ π(Sk+1) iff there is a σ ∈ Sk+1 such that
π(σ) = x. This in turns happens iff πSk

(σ(i))∩ ιi != ∅, for
all i. But by the inductive hypothesis this is just to say that
π(σ(i)) ∩ Xclk ∩ ιi != ∅, which is just the definition of x
being in Xx+1.

7.2 Proof of Fact 3.2

For G an arbitrary strategic game, cl#(G) = cl(G) for
cleaning with altruistic admissibility.
We show that cl(cl(G)) = cl(G). Given the defini-
tion of the cleaning operation, it is enough to show that
cl(cl(Si)) = cl(Si) for all i. It should be clear that
cl(cl(Si)) ⊆ cl(Si). It remains to show the converse. So
assume that si ∈ cl(Si). Since cleaning is done with al-
truistic admissibility, this means that there is a σ such that
σ(i) = si and a j ∈ I such that π(σ) ∈ ιj . But then
σ(i′) ∈ cl(Si′) for all i′ ∈ I , and so σ ∈ Πi∈Icl(Si).
This means that π(σ) ∈ Xcl, which in turns implies that
πcl(σ) ∈ ιcl

j . We thus know that there is a σ ∈ Πi∈Icl(Si)
such that σ(i) = si and a j such that πcl(σ) ∈ ιcl

j , which
means that si ∈ cl(cl(Si)).

7.3 Proof of Fact 3.3

For any strategic game G, intention profile ι and clean-
ing with altruistic admissibility, there is, for all i, a realiz-
able x ∈ ιi iff cl#(G) is not empty.
There is a realizable x ∈ ιi for all i iff for all i there is a
σ such that π(σ) ∈ ιi. But this is this same as to say that
for all j there is a strategy sj such that σ(j) = sj and an i
such that π(σ) ∈ ιi which, by Facts 3.1 and 3.2, means that
cl#(G) is not empty.

7.4 Proof of Fact 4.1

For all strategic game G and agent i ∈ I , pr#(Si) != ∅.
This is shown by induction on prk(G). The basic case is
trivial. For the induction step, observe that the picking func-
tion θi is defined for the whole power set of Si. This means,
given the inductive hypothesis, that θi([si]

prk(G)
≈ ) is well-

defined and in [si]prk(G) for any si ∈ prk(Si), which is
enough to show that prk+1(Si) is also not empty.
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7.5 Proof of Fact 4.2

For any strategic game G, intention profile ι, profile of
picking function Θ and for all i ∈ I , ιpr#

i "= ∅ iff there is a
π(σ) ∈ ιi safe for pruning in G.
From right to left. Take any x ∈ ιpr#

i . By definition we
know that there is a σ ∈ Πi∈Ipr#(Si) such that π(σ) = x.
But this happens iff σ ∈ Πi∈Iprk(Si) for all k, and so that
θi([σ(i)]prk(G)

≈ ) = σ(i) also for all k, which in turns means
that x is safe for pruning in G. Left to right, take any such
π(σ) ∈ ιi. We show that π(σ) ∈ Xprk

for all k. The
basic case is trivial, so assume that π(σ) ∈ Xprk

. We know
by definition that π(σ) is safe for pruning at k, which gives
automatically that π(σ) ∈ Xprk+1

.

7.6 Proof of Fact 5.2

For any strategic game G, intention profile ι and profile
of consistent picking function Θ, if π(σ) is safe for transfor-
mation in G then for all fixed points t#(G), σ ∈ Πit#(Si).
This is shown by induction on k for an arbitrary fixed point
tk(Si). The proof is a direct application of the definition of
safety for transformation.

7.7 Proof of Fact 5.3

For any strategic game G, intention profile ι and profile
of consistent picking function Θ, if σ ∈ Πit#(Si) for all
fixed points t#(G), then π(σ) is safe for transformation in
G.
We show by “backward” induction that π(σ) is safe for
transformation at any k for all sequences tk(G). For the
basic case, take k to be the length of the longest, non-
redundant fixed point of G. I show that π(σ) is safe for
transformation at stage k for all sequences of that length.
Observe that by the choice of k all tk(G) are fixed points.
We thus know by assumption that σ ∈ Πi∈Itk(Si). But
then it must be safe for transformation at stage k. If clause
(1) was violated at one of these, say t′k(G), then we would
have cl(t′k(G)) "= t′k(G), against the fact that t′k(G) is
a fixed point. By the same reasoning we know that clause
(2) cannot be violated either. Furthermore, by the fact that
t′k+1(G) = t′k(G), we know that it is safe for transforma-
tion at all stages l > k.
For the induction step, take any 0 ≤ n < k and assume
that for all sequences tn+1(G) of length n + 1, π(σ) is
safe for transformation at stage n + 1. Take any tn(G).
By our induction hypothesis, that π(σ) is safe for trans-
formation at both cl(tn(G)) and pr(tn(G)). This secures
clause (2) of the definition of safety for transformation,
and also gives us that σ ∈ Πi∈Itn(Si). Now, because
it is safe for transformation in cl(tn(G)), we know that

πcl(tn(G))(σ(i)) ∩ ιcl(tn(G))
i "= ∅ for all i. But since

πcl(tn(G))(σ(i)) ⊆ πtn(G)(σ(i)), and the same for the in-
tention set, we know that πtn(G)(σ(i)) ∩ ιt

n(G)
i "= ∅ for all

i. For condition (2), we also know that θi[σ(i)]cl(tn(G))
≈ =

σ(i) for all i from the fact that π(σ) is safe for transfor-
mation at stage n + 1. By Lemma 7.1 (below) and the as-
sumption that θi is consistent for all i, we can conclude that
θi[σ(i)]t

n(G)
≈ = σ(i), which completes the proof because

we took an arbitrary tn(G).

Lemma 7.1 For any game strategic game G and intention
set ιi and strategy si ∈ cl(Si), [si]G≈ ⊆ [si]

cl(G)
≈ .

Proof. Take any s′i ∈ [si]G≈. Since si ∈ cl(Si), we know
that there is a σj $=i such that π(si,σj $=i) ∈ ιi. But because
s′i ≈ si, it must also be that π(s′i,σj $=i) ∈ ιi, and so that
s′i ∈ cl(Si). Now, observe that {σ ∈ Πi∈Icl(Si) : σ(i) =
si} ⊆{ σ ∈ Si : σ(i) = si}, and the same for s′i. But then,
because s′i ≈ si, it must also be that s′i ∈ [si]

cl(G)
≈ . QED
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Abstract

In this paper, a logic for reasoning about cooperation, ac-
tions and preferences of agents is developed. It is shown to
be sound and complete and the satisfiability problem of its
fragment that does not contain strict preferences is shown
to be NExpTime-complete.

1. Introduction

When analyzing interactive situations involving multiple
agents, we are interested in what results agents can achieve
– individually or together as groups. In many cases, agents
can have various plans for achieving some result. These
plans can differ significantly, e.g. with respect to their fea-
sibility, costs or side-effects. Hence, it is not only relevant
which results groups of agents can achieve but also how
exactly they can do so. In other words, plans and actions
also play a central role in interactive processes. Coopera-
tive ability of agents expressed only in terms of results and
actions that lead to these results does not tell us why agents
would actually decide to achieve a certain result. We also
need to take into account the preferences based on which
the agents decide what to do.

Summarizing, we can say that in interactive situations,
the following three questions are of interest and moreover
tightly connected:

• What results can groups of agents achieve?

• How can they achieve something?

• Why would they want to achieve a certain result?

The above considerations show that coalitional power, ac-
tions and preferences play a major role in interactive situ-
ations and are moreover tightly connected. Thus, a formal
theory for reasoning about agents’ cooperative abilities in
an explicit way should also take into account actions/plans
of agents and their preferences.

In logic, these aspects have mostly been addressed
separately. Coalitional power has mainly been investigated

within the frameworks of ATL [4], Coalition Logic [12] and
their extensions. These logics focus on what results groups
can achieve and do not represent explicitly how exactly
results can be achieved. Recently, there have been some
attempts to develop logics for reasoning about coalitional
power that also take into account either agents’ preferences
or actions. One group of such logics looks at cooperation
from the perspective of cooperative games [1, 2]. Another
path that has been taken in order to make coalitional power
more explicit is to combine cooperation logics with action
logics [14, 6, 7].

In this paper, a logic for reasoning about cooperation,
actions and preferences (CLA+P) is developed, which is
obtained by combining the cooperation logic with actions
CLA [14] with a preference logic [15, 16]. Soundness and
completeness are shown and the logics expressivity and
computational complexity are investigated.

The remainder of this paper is structured as follows. Sec-
tion 2 gives a brief overview of the cooperation logic with
actions CLA [14]. In Section 3, a cooperation logic with
actions and preferences (CLA+P) is developed and sound-
ness and completeness are shown. Also its expressivity is
discussed. Section 4 investigates the computational com-
plexity of CLA+P.

2. Cooperation Logic with Actions (CLA)

In this section, we briefly present the cooperation logic
with actions (CLA) developed by Sauro et al. [14], which
will be extended in the next section by combining it with a
preference logic. The idea of CLA is to make coalitional
power explicit by expressing it in terms of the ability to
perform actions instead of expressing it directly in terms
of the ability to achieve certain results. CLA is a modular
modal logic, consisting of an environment module for
reasoning about actions and their effects, and an agents
module for reasoning about agents’ abilities to perform
actions. By combining both modules, a framework is
obtained in which cooperative ability can be made more
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explicit.

The environment, which at a later step will be populated by
agents, is modelled as a labelled transition system whose
edges are labeled with sets of atomic actions.

Definition 2.1 [Environment Model [14]] An environment
model is a set-labelled transition system

E = 〈S, Ac, (→)A⊆Ac, V 〉.

S is a set of states, Ac is a finite set of atomic actions,→A⊆
S × S for each A ⊆ Ac and V is a propositional valuation.
→A is required to be serial for each A ⊆ Ac. !

Then a modal language is defined with modalities of the
form [α], for α being a propositional formula built from
atomic actions. The intended meaning of [α]ϕ is that ev-
ery transition →A such that A ! α (using the satisfaction
relation of propositional logic) leads to a state that satisfies
ϕ. Formally,

E, s ! [α]ϕ iff ∀A ⊆ Ac, s′ ∈ S : if A !
α and s →A s′ then E, s′ ! ϕ.

An environment logic ΛE is developed, which is sound and
complete with respect to the class of environment models
[14]. It contains seriality axioms and the K axiom for each
modality [α], for α being consistent. For the details, the
reader is referred to Sauro et al. [14]. The environment
logic, can then be used for reasoning about the effects of
concurrent actions.

Before agents are introduced into the environment, a sep-
arate agents module is developed for reasoning about the
ability of (groups of) agents to perform actions. Each agent
is assigned a set of atomic actions that he can perform and
a group is assigned the set of actions its members can per-
form.

Definition 2.2 [Agents Model [14]] An agents model is a
triple 〈Ag,Ac, act〉, where Ag is a set of agents, Ac is a set
of atomic actions and act is a function act : Ag → P(Ac)
such that

⋃
i∈Ag act(i) = Ac. For G ⊆ Ag, act(G) :=⋃

i∈G act(i). !

We are not only interested in what atomic actions agents
can perform but also in their abilities to enforce more
complex actions. An agent laguage is developed with
expressions 〈〈G〉〉α, meaning that the group G can force
that a concurrent action is performed that satisfies α. This
means that G can perform some set of atomic actions such
that no matter what the other agents do, the resulting set of
actions satisfies α.

〈Ag,Ac, act〉 ! 〈〈G〉〉α iff ∃A ⊆ act(G) : ∀B ⊆
act(Ag \G) : A∪B ! α.

Then a cooperation logic for actions is developed, which is
very much in the style of Coalition Logic [12] – the main
difference being that it is concerned with the cooperative
ability to force actions.

Definition 2.3 [Coalition Logic for Actions [14]] The
coalition logic for actions ΛA is defined to be the logic de-
rived from the following set of axioms.

1. 〈〈G〉〉*, for all G ⊆ Ag,

2. 〈〈G〉〉α → ¬〈〈Ag \ G〉〉¬α,

3. 〈〈G〉〉α → 〈〈G〉〉β if + α → β in propositional logic,

4. 〈〈G〉〉a →
∨

i∈G〈〈{i}〉〉a for all G ⊆ Ag and atomic
a ∈ Ac,

5. (〈〈G1〉〉α∧〈〈G2〉〉β) → 〈〈G1∪G2〉〉(α∧β), for G1∩
G2 = ∅,

6. (〈〈G〉〉α ∧ 〈〈G〉〉β) → 〈〈G〉〉(α ∧ β) if α and β have
no common atomic actions,

7. 〈〈G〉〉¬a → 〈〈G〉〉a for atomic a ∈ Ac,

8. 〈〈G〉〉α →
∨
{〈〈G〉〉

∧
Ψ|Ψ is a set of literals such that∧

Ψ → α}.

The rule of inference is modus ponens. !

Axiom 5 says how groups can join forces. The coalition
logic for actions is sound and complete with respect to the
class of agents models [14].

Next, agents are introduced as actors into the environment.
This is done by combining the environment models with
the agents models. In the resulting models, the agents can
perform actions which then have the effect of changing the
current state of the environment.

Definition 2.4 [Multi-agent System [14]] A multi-agent
system (MaS) is a tuple

M = 〈S, Ac, (→)A⊆Ac, V, Ag, act〉,

where 〈S, Ac, (→)A⊆Ac, V 〉 is an environment model and
〈Ac, Ag, act〉 an agents model. !

Now, we can reason about what states of affairs groups of
agents can achieve by performing certain actions. The cor-
responding language contains all expressions of the envi-
ronment logic and the cooperation logic for actions and ad-
ditionally expressions for saying that a group has the power
to achieve ϕ.
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Definition 2.5 [Language for MaS [14]] The language for
multi-agent systems Lcla is generated by the following
grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ [α]ϕ 〈〈G〉〉α 〈〈G〉〉ϕ

for G ⊆ Ac and α being an action expression. #

〈〈G〉〉ϕ means that G can force that the system moves into
a ϕ-state, i.e. G can perform some set of actions such that
no matter what the other agents do, the system will move
into a ϕ-state.

M, s ! 〈〈G〉〉ϕ iff ∃A ⊆ act(G) such that ∀B ⊆
act(Ag \ G), t ∈ S : if s →A∪B

t, then M, s ! ϕ.

The environment logic and the coalition logic for agents are
combined by adding two interaction axioms.

Definition 2.6 [Cooperation Logic with Actions [14]] The
cooperation logic with actions ΛCLA combines the envi-
ronment logic ΛE and the coalition logic for actions ΛA by
adding

1. (〈〈G〉〉α ∧ [α]ϕ) → 〈〈G〉〉ϕ,

2. 〈〈G〉〉ϕ →
∨
{〈〈G〉〉α∧ [α]ϕ|α is the conjunction of a

set of atomic actions or their negations}.

#

CLA provides us with a formal framework for reasoning
about what states of affairs groups of agents can achieve and
how they can do so. For a detailed discussion of CLA, the
reader is referred to Sauro et al. [14]. Now, we procede by
adding an explicit representation of the agents’ preferences
to CLA.

3. Cooperation Logic with Actions and Prefer-
ences (CLA+P)

In this section, a logic for reasoning about cooperation, ac-
tions and preferences is developed. This is done by adding
a preference logic to CLA. For a more detailed discussion
of what is covered in this section and detailed proofs, see
[8].

3.1. Preference Logic

There are various ways how preferences can be added to a
logic for cooperation and actions. We could for instance
let the preferences of each agent range over the actions that
he can perform. Alternatively, we can think of each agent
having preferences over the set of successor states of the
current state.

In the current work, we consider preferences of single
agents over the states of the environment. This is reason-
able since by performing actions the agents can change the
current state of the environment, and the preferences over
those states can be seen as the base of how the agents de-
cide how to act. Such a preference relation can also be lifted
to one over formulas [15, 16].

Definition 3.1 [Preference Model [16]] A preference
model is a tuple

MP = 〈S, Ag, {)i}i∈Ag, V 〉,

where S is a set of states, Ag is a set of agents, for each
i ∈ Ag,)i⊆ S×S is a reflexive and transitive relation and
V is a propositional valuation. #

As a language, we use a fragment of the basic preference
language developed by van Benthem et al. [15]. It has strict
and non-strict unary preference modalities for each agent.

Definition 3.2 [Preference Language] Given a set of propo-
sitional variables and a finite set of agents Ag, define the
preference language Lp to be the language generated by the
following syntax:

ϕ := p ¬ϕ ϕ ∨ ϕ !#iϕ !≺iϕ.

#

!#iϕ says that there is a state satisfying ϕ, and agent i
prefers this state over the current one, i.e.

MP , s ! !#iϕ iff ∃t : s )i t and MP , t ! ϕ.

!≺iϕ is interpreted analogously. The preference relation)
should be reflexive and transitive and≺ should be its largest
irreflexive subrelation. Thus, the following axiomatization
is chosen.

Definition 3.3 [Preference Logic ΛP ] For a given set of
agents Ag, let ΛP be the logic generated by the following
axioms for each agent i ∈ Ag:

For !#i and !≺i , we have duality axioms and K. For
!#i , we also have reflexivity and transitivity axioms. Ad-
ditionally, there are four axioms for the interaction between
the strict and non-strict modalities:

1. !≺iϕ → !#iϕ,

2. !#i!≺ϕ → !≺iϕ,

3. !≺i!#iϕ → !≺iϕ,

4. ϕ ∧!#iψ → (!≺iψ ∨!#i(ψ ∧!#iϕ)).

The inference rules are modus ponens, necessitation and
substitution of logical equivalents. #
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Note that transitivity for !≺i follows from the above ax-
ioms. We can show soundness and completeness of the
preference logic. The fact that ≺ is supposed to be the
greatest irreflexive subrelation of " can be dealt with by
using the bulldozing technique. For the details, the reader
is referred to van Benthem et al. [15].

Theorem 3.4 ΛP is sound and complete with respect to the
class of preference models.

Proof. Follows from Theorem 3.9 in [15]. QED

3.2. Environment Logic with Preferences

As an intermediate step towards a logic for reasoning about
cooperation, actions and preferences, we first combine the
preference logic and the environment logic. The two mod-
els are combined by identifying their sets of states. Then
the preferences of the agents range over the states of the en-
vironment. In such a system, the agents cannot act in the
environment, but they can rather be seen as observers that
observe the environment from the outside and have prefer-
ences over the states.

Definition 3.5 [Environment with Preferences] An envi-
ronment model with preferences is a tuple

E" = 〈S, Ac, (→)A⊆Ac, {"i}i∈Ag, V 〉,

where 〈S, Ac, (→)A⊆Ac, {"i}i∈Ag, V 〉 is an environment
model and 〈S, Ag, {"i}i∈Ag, V 〉 is a preference model. !

We combine the languages for the environment and the pref-
erences and add expressions for saying that “every state ac-
cessible by an α transition is (strictly) preferred by agent i
over the current state”.

Convention 3.6 In what follows, we write the symbol ! in
statements that hold for both " and ≺, each uniformly sub-
stituted for !.

Definition 3.7 The language Lep contains all expressions
of the environment language and the preference language
and additionally formulas of the forms [α]"i& and [α]≺i&,
for α being an action expression.
Boolean combinations and expressions of the previously de-
fined languages are interpreted in the standard way. For the
newly introduced expressions, we have:

E", s " [α]!i& iff ∀A ⊆ Ac, t ∈ S : if s →A

t and A " α then s !i t.

!

Expressions of the form [α]!i& cannot be defined using just
the preference language and the environment language. To
see this, note that [α]"i& says that for every state accessible
by an α-transition it holds that this same state is accessible
by ". Thus, we would have to be able to refer to particular
states. Therefore, we add two inference rules for deriving
the newly introduced expressions.

(PREF-ACT) !!iϕ→[α]ϕ
[α]!i&

(STRICT PREF-ACT) !≺iϕ→[α]ϕ
[α]≺i&

In order to obtain a complete axiomatization, two axioms
are added which correspond to the converse of the inference
rules.

Theorem 3.8 Let ΛEP be the logic generated by all axioms
of the environment logic ΛE , all axioms of the preference
logic ΛP , and

1. [α]"i& → (""iϕ → [α]ϕ),

2. [α]≺i& → ("≺iϕ → [α]ϕ).

The inference rules are modus ponens, substitution of logi-
cal equivalents, PREF-ACT and STRICT PREF-ACT. Then
ΛEP is sound and complete with respect to the class of en-
vironment models with preferences.

Proof. Completeness follows from completeness of the
sublogics and the closure under the new rules. QED

In the environment logic with preferences, the performance
of concurrent actions changes the current state of the system
also with respect to the ‘happiness’ of the agents: A transi-
tion from one state to another can also be a transition up or
down in the preference orderings of the agents.

3.3. Cooperation Logic with Actions and
Preferences

Now, agents are introduced as actors by combining the envi-
ronment models with preferences with agents models. The
resulting model is then called a multi-agent system with
preferences (henceforth MaSP).

Definition 3.9 [Multi-agent System with Preferences] A
multi-agent system with preferences (MaSP) M" is a tu-
ple

M" = 〈S, Ac, (→)A⊆Ac, Ag, act, {"i}i∈Ag, V 〉,

where 〈S, Ac, (→)A⊆Ac, V, Ag, act〉 is a MaS, 〈S, Ag, {"i

}i∈Ag, V 〉 is a preference model and 〈S, Ac, (→)A⊆Ac, {"i

}i∈Ag, V 〉 is an environment with preferences. !
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In order to get some intuitions about how MaSP’s are related
to other models of interaction, note that given a determinis-
tic MaSP in which each preference relation !i is total, we
can consider each state s as having a strategic game

Gs = 〈Ag, (P(act(i)))i∈Ag, (!i)i∈Ag〉

attached to it, where ×n
i=1Ai !i ×n

i=1A
′
i iff t !i

t′ for s →S
i∈Ag Ai

t and s →S
i∈Ag A′

i
t′.

For talking about the cooperative ability of agents with re-
spect to preferences, we introduce two expressions saying
that a group can force the system to move to a ϕ-state that
some agent (strictly) prefers over the current one.

Definition 3.10 [Language Lcla+p] The language Lcla+p

extends Lcla by formulas of the form

!#iϕ | !≺iϕ | [α]#i& | [α]≺i& | 〈〈G#i〉〉ϕ | 〈〈G≺i〉〉ϕ.

The first four expressions are interpreted as in the environ-
ment logic with preferences and for the last two we have
the following.

M#, s " 〈〈G!i〉〉ϕ iff ∃A ⊆ act(G) such that
∀B ⊆ act(Ag \ G), t ∈ S :
if s →A∪B t, then M#, t "
ϕ and s #i t.

#

Let us now look at how coalitional power to achieve an im-
provement for an agent is made explicit in CLA+P. We can
show that 〈〈G!i〉〉ϕ is equivalent to the existence of an ac-
tion expression α that G can force and that has the property
that all transitions of type α are guaranteed to lead to a ϕ-
state preferred by agent i.

Observation 3.11 Given a MaSP M# and a state s of its
environment,

M#, s " 〈〈G!i〉〉ϕ iff there exists an action expres-
sion α such that M#, s "
〈〈G〉〉α ∧ [α]ϕ ∧ [α]!i&.

Proof. Analogous to that of Observation 14
in [14]. For the left-to-right direction, use
the action expression

∧
Φ(A, G) :=

∧
(A ∪

{¬a|a ∈ (act(G) \ A), a /∈ act(Ag \ G)}). QED

Thus, formulas of the form 〈〈G!i〉〉ϕ can be reduced to ex-
pressions of the sublogics. We also need new axioms es-
tablishing a relationship between the newly added formulas
and the expressions of the sublogics.

Definition 3.12 [Cooperation Logic with Actions and Pref-
erences ΛCLA+P ] Define ΛCLA+P to be the smallest logic
generated by the axioms of the cooperation logic with ac-
tions, the environment logic with preferences and

1. (〈〈G〉〉α ∧ [α]ϕ ∧ [α]!i&) → 〈〈G!i〉〉ϕ,

2. 〈〈G#i〉〉ϕ →
∨
{〈〈G〉〉α ∧ [α]ϕ ∧ [α]#i&|α is a con-

junction of action literals},

3. 〈〈G≺i〉〉ϕ →
∨
{〈〈G〉〉α ∧ [α]ϕ ∧ [α]≺i&|α is a con-

junction of action literals}.

The inference rules are modus ponens, necessitation for
action modalities and preference modalities ("#i ,"≺i),
substitution of logical equivalents, PREF−ACT and
STRICT PREF−ACT. #

Soundness of the axioms is straightforward and complete-
ness follows from completeness of the sublogics.

Theorem 3.13 The logic ΛCLA+P is sound and complete
with respect to the class of MaSP’s.

3.4. Expressivity of CLA+P

The framework of CLA+P allows us to reason about coali-
tional power in an explicit way since we can express how
groups of agents can achieve the truth of some formula, and
moreover we can also express how coalitional power and
actions relate to the agents’ preferences.

In game theory, coalitional power has mostly been studied
within coalitional games [11]. One of the most important
solution concepts of coalitional games is the core, which
is the set of outcomes the grand coalition can achieve that
have the property that no coalition can achieve some other
outcome that is strictly better for all its members.

In the framework of CLA+P, we can characterize the
states in a model that have a very similar property: The
formula ψ̂ characterizes the set of states in which no group
has the power of making the system move into a state that
is strictly better for all its members:

ψ̂ :=
∧

G⊆Ag

∧
A⊆act(G)

(∨
i∈G ¬ [

∧
Φ(A, G)]≺i &

)
.

For the definition of
∧

Φ(A, G), see the proof of Observa-
tion 3.11.

In interactive situations, there can be different ways of how
agents can achieve some result. These ways can consist of
different plans that the agents can execute, and whereas all
the actions or plans might lead to the same result ϕ, exe-
cuting one plan might be better for the agents than execut-
ing another one. Being ‘better’ could be in the sense that
one plan leads to an improvement of the situation for more
agents than executing another plan does. In CLA+P, we can
express that a group G can achieve ϕ in such a way that the
situation improves for all its members:
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∨
A⊆act(G)

(
([

∧
Φ(A, G)]ϕ) ∧

∧
i∈G [

∧
Φ(A, G)]#i "

)
.

Thus, the explicit representation of actions and preferences
allows us to reason about how exactly a group would choose
to achieve some result, assuming that the members make
their decisions according to a certain solution concept.

Alternatively, executing one plan might be better than
another one in the sense that it is cheaper. By having
both actions and preferences in our framework, we can also
express how actions and preferences interact and thereby
our framework can also give rise to a formal model for
cost-benefit analysis. In cost-benefit-analysis, decisions are
made by comparing the expected cost of executing actions
and the expected benefit.

4. Complexity of CLA+P

In this section, we investigate the complexity of the satisfia-
bility problem of CLA+P. Let us start by trying to determine
an upper bound.

4.1. Upper Bound for CLA+P

In order to establish an upper bound, it has to be shown that
computing whether some formula is satisfiable can be done
using a certain amount of time or space. The first step is to
show that only a restricted class of models of CLA+P needs
to be checked.

For a formula ϕ, let Ag(ϕ) denote the set of agents oc-
curring in ϕ. Now, we ask: Is any satisfiable formula ϕ
also satisfiable in a MaSP whose set of agents is Ag(ϕ)?
In Coalition Logic, the answer is negative due to formulas
such as

ϕ′ = ¬〈〈{1}〉〉p ∧ ¬〈〈{1}〉〉q ∧ 〈〈{1}〉〉(p ∨ q),

which can only be satisfied in coalition models with at least
two agents [13]. However, as in CLA+P the underlying en-
vironment models can be nondeterministic, here ϕ′ can in-
deed be satisfied in a model with only one agent, as the
reader can check.

It can be shown that every satisfiable formula ϕ ∈
Lcla+p is satisfiable in a MaSP with set of agents Ag(ϕ) ∪
{k}, for k being a newly introduced agent. k takes the
role of all opponents of Ag(ϕ) collapsed into one. This
means that k gets the ability to perform exactly the ac-
tions that agents not occurring in ϕ can perform as a group.
When transforming a model satisfying ϕ into one with set of
agents Ag(ϕ) ∪ {k}, we do not need to change the effects
of actions or the abilities of agents in Ag(ϕ). This is the
main fact that makes the proof of Theorem 4.1 go through.
Moreover, note that the preferences of agent k do not have
any influence on the truth of ϕ since k does not occur in ϕ.

Theorem 4.1 Every satisfiable formula ϕ ∈ Lcla+p is sat-
isfiable in the class of MaSP’s with at most |Ag(ϕ)| + 1
many agents.

Proof. Assume that M# = 〈S, Ac, (→)A⊆Ac, Ag, act, {)i

}i∈Ag, V 〉 satisfies ϕ. If Ag ⊃ Ag(ϕ), we con-
struct M ′#′ = 〈S, Ac, (→)A⊆Ac, Ag(ϕ) ∪ {k}, act′, {)′

i

}i∈Ag(ϕ)∪{k}, V 〉, with act′(k) =
⋃

j∈Ag\Ag(ϕ) act(j) and
act′(i) = act(i) for i += k. The preferences are defined as
follows: )′

i=)i for i ∈ Ag(ϕ) and )′
k= S × S. By induc-

tion, it can be shown that M#, s ! ϕ iff M ′#′ , s ! ϕ. The
interesting case is the one where ϕ is of the form 〈〈G〉〉α.
Here, the claim follows from the definition of act′. The
other cases involving coalition modalities follow. QED

Next, we would like to know how many actions a model
needs in order to satisfy some formula. As an example,
consider the formula

ϕ′ = 〈〈G〉〉(p ∧ q) ∧ 〈〈G〉〉(¬p ∧ q) ∧ 〈〈G〉〉(¬p ∧ ¬q).

It can only be satisfied in models with |Ac| ≥ 2. The main
task is to find “witnesses” for formulas of the form 〈〈G〉〉ψ
in terms of concurrent actions that tell us how exactly G
can achieve ψ. We can show that every satisfiable formula
ϕ can be satisfied in a MaSP whose set of actions consists of
the actions occurring in ϕ, one additional atomic action, and
for every subformula of the forms 〈〈G〉〉ψ or 〈〈G!i〉〉ψ, one
atomic action for each of G’s members. The one additional
action is a dummy that serves for making sure that every
agent can perform some action.

The key step in transforming a model satisfying a for-
mula ϕ into one whose set of actions satisfies the above
condition is to define the action distribution and the acces-
sibility relations in an appropriate way. For every action ex-
pression α occuring in ϕ, we have to ensure that two states
are accessible by an α-transition in the new model iff they
were in the original one. Additionally, for any formula of
the forms 〈〈G〉〉ψ or 〈〈G!i〉〉ψ, the set of actions that we in-
troduced for that formula serves for making explicit how G
can force ϕ. Note that we do not need to introduce any addi-
tional actions for making explicit how a group can force an
action expression α. This results from the fact that in order
to force α, agents only need to perform actions that already
occur in α.

Theorem 4.2 Every satisfiabe formula ϕ ∈ Lcla+p

is satisfiable in a MaSP with at most |Ac(ϕ)| +
(
∑

〈〈G〉〉ψ∈Sub(ϕ) |G|) + (
∑

〈〈G"i 〉〉ψ∈Sub(ϕ) |G|) +
(
∑

〈〈G≺i 〉〉ψ∈Sub(ϕ) |G|) + 1 many actions.

Proof. Assume that M# = 〈S, Ac, (→)A⊆Ac, Ag, act, {)i

}i∈Ag, V 〉 satisfies ϕ. We construct a model M ′#′ =
〈S, Ac′, (→′)A′⊆Ac′ , Ag, act′, {)′

i}i∈Ag, V 〉 as follows.
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Ac′ := Ac(ϕ) ∪
⋃
〈〈G〉〉ψ∈Sub(ϕ) AGψ

∪
⋃
〈〈G!i 〉〉ψ∈Sub(ϕ) AG!iψ ∪⋃

〈〈G≺i 〉〉ψ∈Sub(ϕ) AG≺iψ ∪{â}.
AGψ and AG!iψ consist of newly introduced actions aGψj ,
and aG!iψj respectively, for each j ∈ G. Action abilities
are distributed as follows:

act′(i) := (act(i) ∩ Ac(ϕ)) ∪ {â} ∪ {aGi|〈〈G〉〉ψ ∈
Sub(ϕ) or 〈〈G!i〉〉ψ ∈ Sub(ϕ), for i ∈
G}.

For defining the accessibility relation →A′⊆Ac′ , we first
define for any state s its set of successors.

t ∈ T s
A′ iff 1. ∀[α]ψ ∈ Sub(ϕ) such that A′ ! α :

If M&, s ! [α]ψ, then M&, t ! ψ,

2. ∀[α]!i( ∈ Sub(ϕ) such that A′ !
α : If M&, s ! [α]!i(, then s "i t,

3. ∀〈〈G〉〉ψ ∈ Sub(ϕ) such that A′ !∧
Φ(AGψ, G), there is some Ā ⊆

act(G) such that s →A t for some
A ⊆ Ac such that A ! ∧

Φ(Ā, G),
and if M&, s ! 〈〈G〉〉ψ then
M&, s ! [

∧
Φ(Ā, G)]ψ,

4. ∀〈〈G!i〉〉ψ ∈ Sub(ϕ) such that
A′ ! ∧

Φ(AG!iψ, G), there is
some Ā ⊆ act(G) such that
s →A t for some A ⊆ Ac such
that A ! ∧

Φ(Ā, G), and if
M&, s ! 〈〈G!i〉〉ψ then M&, s !
[
∧

Φ(Ā, G)]ψ and M&, s !
[
∧

Φ(Ā, G)]!i(}.

For any t ∈ T s
A′ , we set s →′

A′ t.
Then we can show by induction on ψ ∈ Sub(ϕ) that

M&, s ! ψ iff M ′&′ , s ! ψ. QED

The next step is to show that every satisfiable formula ϕ is
also satisfiable in a model with a certain number of states.
Such results are usually obtained by transforming a model
into a smaller one using a transformation that preserves
the truth of subformulas of ϕ. Here, the irreflexivity of the
strict preferences is causing problems and thus we restrict
our investigations to formulas that do not involve strict
preferences. We denote this fragment of Lcla+p by L⊀

cla+p

and the corresponding fragment of CLA+P by CLA+P⊀.

Using the method of filtration [5], we show that any sat-
isfiable formula ϕ ∈ L⊀

cla+p is satisfiable in a model with
exponentially many states. Note that formulas of the form
〈〈G〉〉ψ and 〈〈G&i〉〉ψ correspond to formulas of the form∨

A⊆act(G)[
∧

Φ(A, G)]ψ and
∨

A⊆act(G)([
∧

Φ(A, G)]ψ ∧

[
∧

Φ(A, G)]&i(), respectively – for
∧

Φ(A, G) as in the
proof of Observation 3.11. During the filtration, the under-
lying agents model is not changed and therefore the truth of
formulas of the form 〈〈G〉〉α is preserved.

Theorem 4.3 Every satisfiable ϕ ∈ L⊀
cla+p is also satisfi-

able in a MaSP with ≤ 2|ϕ| many states.

Proof. Given that M&, s ! ϕ for some M& = 〈S, Ac, (→
)A⊆Ac, Ag, act, {,i}i∈Ag, V 〉, s ∈ S, we obtain
Mf&f

= 〈S, Ac, (→f )A⊆Ac, Ag, actf , {,f
i }i∈Ag, V f 〉

by filtrating M& through Sub(ϕ), where the accessibility
relations for actions and preferences are defined as follows:

|s|→f
A |t| iff 1. ∀[α]ψ ∈ Sub(ϕ) such that A !

α : if M&, s ! [α]ψ, then
M&, t ! ψ,

2. ∀[α]&i( ∈ Sub(ϕ) such that A !
α : if M&, s ! [α]&i(, then s ,i

t,

3. ∀〈〈G〉〉ψ ∈ Sub(ϕ) such that
A ! ∧

Φ(A′, G) for some
A′ ⊆ act(G) : if M&, s !
[
∧

Φ(A′, G)]ψ, then M&, t ! ψ,

4. ∀〈〈G&i〉〉ψ ∈ Sub(ϕ) such that
A ! ∧

Φ(A′, G) for some
A′ ⊆ act(G): if M&, s !
[
∧

Φ(A′, G)]ψ and M&, s !
[
∧

Φ(A′, G)]&i(, then M&, t !
ψ and s ,i t.

|s| ,f
i |t| iff 1. ∀!&iψ ∈ Sub(ϕ): if M&, t ! ψ∨

!&iψ then M&, s ! !&iψ,

2. If there is some [α]&i( ∈ Sub(ϕ),
then s ,i t,

3. If there is some 〈〈G&i〉〉ψ ∈
Sub(ϕ), then s ,i t.

V f (p) := {|s||M, s ! p}, for all propositional letters p ∈
Sub(ϕ). We show by induction that for all ψ ∈ Sub(ϕ)
and s ∈ S it holds that M&, s ! ψ iff M&f

, |s| ! ψ. This
follows from the definitions of (→f )A⊆Ac and ,f , and the
fact that the filtration does not change the underlying agents
model.

By definition of SSub(ϕ), |SSub(ϕ)| ≤ 2|ϕ|. QED

Applying the constructions in the proofs of Theorems 4.1,
4.2 and 4.3 successively, we obtain the following:

Corollary 4.4 Every satisfiable formula ϕ ∈ L⊀
cla+p is sat-

isfiable in a MaSP of size exponential in |ϕ| satisfying the
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conditions |Ag| ≤| Ag(ϕ)| + 1 and |Ac| ≤| Ac(ϕ)| +∑
〈〈G〉〉ψ∈Sub(ϕ) |G|+ (

∑
〈〈G!i 〉〉ψ∈Sub(ϕ) |G|) + 1.

Having non-deterministicly guessed a model of size ex-
ponential in |ϕ|, we can check in time exponential in |ϕ|
whether this model satisfies ϕ. This then gives us a NExp-
Time upper bound.

Theorem 4.5 The satisfiability problem of CLA+P⊀ is in
NExpTime.

Proof. Given ϕ, we non-deterministically choose a
model M$ of size exponential in |ϕ| satisfying the con-
ditions |Ag| ≤ |Ag(ϕ)| + 1 and |Ac| ≤ |Ac(ϕ)| +∑

〈〈G〉〉ψ∈Sub(ϕ) |G|+ (
∑

〈〈G!i 〉〉ψ∈Sub(ϕ) |G|) + 1. Then,
given this model, we can check in time O(|ϕ|||M$||), for
||M$|| being the size of M$, whether M$ satisfies ϕ.
Thus, given a model of size exponential in |ϕ| that also sat-
isfies the conditions on its sets of agents and actions ex-
plained earlier, it can be computed in time exponential in
|ϕ| whether it satisfies ϕ. Since it can be checked in time
linear in the size of the model whether it is a proper MaSP,
we conclude that the satisfiability problem of CLA+P⊀ is
in NExpTime. QED

This section has shown that the satisfiability problem of
CLA+P⊀ is in NExpTime. As the reader might expect, it
has however a rather high computational complexity caused
by the environment logic. The next section shows that the
satisfiability problem of the environment logic is already
NExpTime-hard and therefore adding agents as actors and
preferences does not increase the complexity significantly.

4.2. Lower Bound

Establishing a NExpTime lower bound for the satisfiability
problem of CLA+P can be done by reducing that of the
Boolean modal logic K¬∪

m [10] to it, which is known to be
NExpTime-complete [9].

Models of K¬∪
m have a set of accesibility relations

R1, . . . , Rm and the associated language L¬∪m that is used
for talking about the models contains corresponding basic
modal parameters R1, . . . ,Rm. Using the operations ¬
and ∪, more complex modal parameters can be built. The
modalities then run along the corresponding sets of accessi-
bility relations in the models.

Then a model M of K¬∪
m with set of states W can be

translated into an environment model τ1(M) with set of
states W ∪ {u} for some newly introduced state u and set
of actions Ac = {a1, . . . , am}. The accessibility relation
(→)A⊆Ac is defined as

w →A w′ iff A = {ai|(w, w′) ∈ Ri} or w′ = u.

Thus, u is accessible from everywhere by any transition
→A. This ensures that each →A is serial. Formulas ϕ ∈
L¬∪m can be translated into τ2(ϕ) ∈ Le in a straightfor-
ward way: Inside the modalities, modal parameters Ri are
translated into atomic actions ai and complex parameters
are translated into action expressions (¬ and ∪ correspond
to ¬ and ∨ respectively).

Theorem 4.6 For any formula ϕ ∈ L¬∪m and any model M
of K¬∪

m , for any state w in M :

M,w ! ϕ iff τ1(M), w ! τ2(ϕ).

The reduction is polynomial and hence the satisfiability
problems of CLA+P⊀ and CLA+P are NExpTime-hard.

Corollary 4.7 The satisfiability problem of CLA+P⊀ is
NExpTime-complete.

This section has shown that the satisfiability problem of
CLA+P without strict preferences is NExpTime-complete.
This rather high complexity is due to the environment logic
which itself is already NExpTime-complete. Adding agents
with nonstrict preferences as actors to the environment logic
does not increase the complexity significantly. Due to the
undefinability of irreflexivity extending the complexity re-
sults of CLA+P⊀ to full CLA+P cannot be done using stan-
dard techniques such as filtration as we did in Theorem 4.3.

5. Conclusions and Future Work

We developed a modular modal logic that allows for
reasoning about the coalitional power of agents, actions and
their effects, and agents’ preferences. The current approach
is based on the logic CLA [14] which is combined with
a preference logic [15, 16]. The resulting logic CLA+P,
which is shown to be sound and complete, allows us to
make explicit how groups of agents can achieve certain
results. Additionally, we can express how a group can
achieve that a transition takes place that is an improvement
for some agent. In the framework of CLA+P, it can be
expressed how the abilities to perform certain actions are
distributed among the agents, what are the effects of the
concurrent performance of these actions and what are
the agents’ preferences over those effects. Moreover, in
CLA+P, we can distinguish between different ways how
groups can achieve some result – not only with respect to
the actions that lead to some result, but also with respect
to the preferences. We can for instance express that a
group can achieve some result in a way that is ‘good’ for
its members in the sense that after the achievement all of
them are better off. Thus, CLA+P provides a framework
for reasoning about interactive situations in an explicit way
that gives us more insights into the cooperative abilities of
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agents.

The satisfiability problem of CLA+P without strict pref-
erences is shown to be NExpTime-complete. It remains
to be investigated whether the same holds for CLA+P.
From a computational viewpoint, it seems to be appealing
to change the environment logic in order to decrease
computational complexity.

There are two immediate ways to extend the logic devel-
oped in this paper. First of all, we can follow the ideas of
Ågotnes et al. [3] and add a restricted form of quantifica-
tion that allows statements of the form 〈〈P!i〉〉ψ saying that
there is some group G that has property P and 〈〈G!i〉〉ψ.

Moreover, it might be promising to develop a coopera-
tion logic with actions and preferences based on a logic for
reasoning about complex plans such as the the one devel-
oped by Gerbrandy and Sauro [7].
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Abstract

In this report we examine results pertaining to Karl
Abrahamson’s PDL‖, namely PDL with an interleaving op-
erator, ‖, with respect to an agent programming point of
view. We first establish its usefulness in such contexts, be-
fore defining a syntax and semantics for the logic, looking
at its relation to the regular expression shuffle operator and
to PDL itself. We also look at the practical implications of
this relation between PDL andPDL‖and of its PDL‖’s rela-
tion to BPDL another logic defined by Abrahamson over a
quarter of a century ago.

1. Introduction

Interleaved PDL, denoted as PDL‖, was first defined
by Karl Abrahamson in his 1980 PhD thesis, Decidabil-
ity and expressiveness of logics of processes[2], as an ex-
tension of PDL (propositional dynamic logic) with a new
operator, the interleaving operator ‖. In fact, the ‖ opera-
tor makes a useful addition to the regular four PDL opera-
tors1allowing the easy expression of the interleaving of two
or more PDL‖programs – and hence facilitating reasoning
about the effects of such interleavings. We give more de-
tails of the interleaving operator below, but in order to il-
lustrate why reasoning about the interleaving of representa-
tions of programs is of particular importance, at least from
an agent programming point of view, consider the exam-
ple of SimpleAPL, a programming language explored in A
logic of agent programs[3] and used to implement a partic-
ular model of basic agents with beliefs, goals, and plans2.
In SimpleAPL an agent has beliefs, whose role it is to

encode various aspects of its environment, and goals, which
encode representations towards the realisation of which the
agent works by adopting plans which are selected in turn

1Recall that regular PDL programs are built up using nondeterministic
union(∪), concatenation(;), iteration(∗ ) and query(?) operators.

2Note that SimpleAPL is, as the name suggests, a simplified fragment
of the more extensive agent programming language, 3APL. See [3] for
more details.

via planning goal rules. Both beliefs and goals are repre-
sented by literals; plans on the other hand are composites
built up from a set of basic actions via sequencing, con-
ditional choice and conditional iteration operators. In [3]
Alechina et al. detail two execution strategies for execut-
ing an agent program, the first of which allows either for an
agent with no plan to select a planning goal rule and choose
a single plan, or for an agent with a plan to execute the next
step in the single plan which it carries; in the second an
agent can amass a number of plans at any single juncture,
consequently interleaving the execution of these plans or
selecting another planning goal rule. So for example, with
the first strategy, an agent would have to carry out the plans
‘make coffee’ and ‘make toast’ one after the other – poten-
tially leaving it with a cold cup of coffee or piece of toast
– whereas the second strategy would allow for multitasking
as it were, allowing it to carry out actions associated with
either of these plans in their correct order within the plan,
but otherwise in whatever order was preferred.
Furthermore, Alechina et al., develop a sound and com-

plete variant of PDL with which they are able to reason
about the safety and liveness properties of agent programs
in SimpleAPL. Crucially it turns out that the interleaved
strategy admits of a straightforward formulation through
the use of the ‖ operator – which, as we will show, can
ultimately be eliminated, thereby allowing any formula of
PDL‖to be equivalently formulated in PDL.
It is clear, at least from the foregoing example, that the

usefulness of PDL‖in the context of agent programming
and modelling lies, among other things, in the fact that it
allows for the succint expression of agent program exe-
cution strategies that incorporate the interleaving of agent
plans (incidentally Abrahamson’s own original motivation
for defining PDL‖in [2] related to modelling and formally
verifying claims about the behaviour of concurrent com-
puter programs).
Given this agent based motivation, the purpose of this

report is to collect and elucidate some important relevant
technical results involving PDL‖. To summarise the rest of
the paper, we begin by elaborating on the syntax and seman-
tics of PDL‖as well as on the correspondence between the
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shuffle regular expression operator and the interleaving op-
erator and how we can use this equivalence to eliminate the
interleaving operator from PDL programs, before describ-
ing how we can improve on the size of the resulting formula
by using BPDL – another logic defined by Abrahamson in
[2]. Finally in the conclusion we briefly consider some of
the possible future directions for research suggested by the
preceeding results.

2. An Inductive Definition of PDL‖Syntax and
a PDL‖Semantics

The following series of definitions serve to define the
syntax and semantics of PDL‖.

Definition 2.1 Given a fixed set of proposition symbols,
Φ = {p, q, ...}, we can inductively define the set of
PDL‖formulae as follows:

• each proposition symbol p ∈ Φ is a formula,

• if φ and ψ are formulae, then so too are ¬φ, φ ∧ ψ and
〈ρ〉φ where ρ ∈ Ψ is a program.

Assuming a fixed set of basic programs Ψ0 = {a, b, ...}
we inductively construct the set of programs,Ψ, used in the
previous definition, in the following manner:

• each basic program a ∈ Ψ0 is a program,

• if α and β are programs, then so too are α∪β, α; β, α∗

and α ‖ β, where the latter is the interleaving operator,

• if φ is a formula of PDL‖then φ? is a program.

&

We now come to define models for PDL‖:

Definition 2.2 Let M be a structure,M = (W, τ, V ), then
M is a model for PDL‖if:

• W is a set of states,

• V (p) ⊆ W is a function that for each p ∈ Φ gives us
the set of states inW at which p holds. We can extend
this in the obvious way so that V (φ) gives us the set
of states where the PDL‖formula φ holds: given the
PDL‖formulaeφ, ψ and the program ρ, V (¬φ) = W−
V (φ), V (φ ∨ ψ) = V (φ) ∪ V (ψ) and V (〈ρ〉φ) equals
the set U ⊆ W consisting of all the states of u ∈ W
such that there exists a computation sequenceσ ∈ τ(ρ)
(we define τ below) where either (u, u1), ..., (un, v)
where v ∈ V (φ) and σ is a legal sequence, or where
σ = ε and u ∈ V (φ). Note that by legal computational
sequences we are referring to sequences ρ such that
whenever (s1, s2)(s3, s4) is a subword of ρ, then s2 =
s3,

• τ(a) ⊆ (W × W ) gives us the set of state transi-
tions for a. We can extend this inductively to give us a
set of paths τ(ρ) ⊆ (W × W )∗ corresponding to any
PDL‖program expression ρ inM :

– τ(φ?) = {(u, u) : u ∈ V (φ)},
– τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)},
– τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)},
where ◦ is a concatenation of paths operator,

– τ(ρ∗) is the set of all paths consisting of zero or
finitely many concatenations of paths in τ(ρ),

– τ(ρ1 ‖ ρ2) is the set of all paths obtained by
interleaving atomic actions and tests from τ(ρ1)
and τ(ρ2).

Note that the set of paths τ(ρ) ⊆ (W × W )∗ may
contain non-legal sequences – in fact, to do otherwise
would be to place a severe restriction on our ability to
interleave sets of paths.

&

3. Shuffling and Interleaving

From the foregoing series of definitions it is easy to see
that the program constructors ∪, ;, and ∗ correspond to the
regular expression (RE) operators +,·, and ∗, respectively.
However, given that under our definition of PDL‖basic pro-
grams are indivisible, we are in a position to define another
RE operator, shuffle, which corresponds to our interleaving
operator and which we will also denote using ‖.
Let x, y ∈ Σ∗, where Σ is a finite alphabet, and x, y are

strings overΣ. Then the shuffle of x and y, namely, the set
x ‖ y, is defined (in for example, [5]) as:

• ε ‖ y = {y},

• x ‖ ε = {x},

• xa ‖ yb = (x ‖ yb) · {a} ∪ (xa ‖ y) · {b}.

Furthermorewe define the shuffle of two languagesX, Y
as follows:

X ‖ Y =
⋃

x∈X
y∈Y

x ‖ y.

Since for any two RE’s α and β, we intend the language
L(α ‖ β) to accept all strings x such that x belongs to
the shuffle of the languages L(α) and L(β) – where L(α)
and L(β) are the languages of α, β respectively – we define
L(α ‖ β) as L(α) ‖ L(β).
As an example, take the shuffle of the two sets {ab}

and {cd}, namely {ab} ‖ {cd}, which gives us the set
{abcd, acbd, acdb, cabd, cadb, cdab} or the shuffle of the
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two RE’s a∗ and (b; c), a∗ ‖ (b; c), which results in the set of
strings of arbitrary length including the string bc in which
b and c are inserted within a series of one or more repeti-
tions of the character a: in other words the set of strings
satisfying the RE a∗(b)a∗(c)a∗.
Given the correspondence of shuffle with our interleav-

ing operator (indeed we will use the terms ‘shuffle operator’
and ‘interleaving operator’ interchangeably from hereon in)
and the fact, which we will presently demonstrate, that any
instance of the shuffle operator in a given regular expres-
sion can be eliminated, it is clear that we can translate any
PDL‖formula φ into a PDL formula φ′. And we do this
by simply replacing each program ρ that occurs in a subex-
pression 〈ρ〉χ of φ with its equivalent RE which we con-
sequently translate, using the method we summarise below,
from a shuffle RE into a shuffle free RE before translating
it back into a program ρ′ and replacing the subexpression
〈ρ〉χ with its equivalent 〈ρ′〉χ.
In fact, as we now show, we can directly translate any

formula of PDL‖containing no instances of the ∗ operator
into PDL using RE equivalences – the other method which
we detail below and which can be applied to any formula
of PDL‖involves a detour into automata theory. Along with
the usual RE equivalences this direct translation requires the
following regular expression equivalences (the proofs are
trivial and are therefore omitted):

Proposition 3.1 • (i) For all regular expressions α,β,
and γ, we have that α ‖ (β + γ) ≡ (α ‖ β) + (α ‖ γ)
and (α + β) ‖ γ ≡ (α ‖ γ) + (β ‖ γ).

• (ii) For all strings x, y ∈ Σ∗ and a, b ∈ Σ, where
Σ is some alphabet we have that xa ‖ yb ≡ (x ‖
yb)a + (xa ‖ y)b.

Now given a formula χ in ∗-free PDL‖we can use the
following algorithm to remove the instances of shuffle em-
bedded in χ:

• Step 1: list all of the subformulae φ of χ,

• Step 2: let φ′ be a maximal such subformula ofχ, max-
imal in that it does not contain a subformula of the
form λ1 ‖ λ2 and there is no shuffle free subformula
of χ of which it is a proper subformula,

• Step 3: rewrite φ′ in the form φ1 + φ2 + ... + φn,
where each φi is a concatenation of characters. We
can do this through repeated application of the regular
expression equivalences α(β + γ) ≡ αβ + αγ and
(α + β)γ ≡ αγ + βγ. Replace each such maximal
subfomula φ′ with its rewriting,

• Step 4: now we rewrite each subformula ψ of the
form ψ = x ‖ y where x and y are shuffle free

(and which thanks to our previous operations are in
the form we require) in terms of its equivalent of the
form ψ′ = ψ1 + ...ψk where each ψi is of the form
xi ‖ yi where xi, yi contain only concatenations of
symbols via repeated applications of the the equiva-
lences proved in Proposition 3.1 (i). Next we get rid of
shuffle from each ψi by rewriting ψi using the equiva-
lence proved in Proposition 3.1 (ii),

• we end up with a new formula χ′ with which we can
repeat the previous steps until we’ve gotten rid of all
instances of shuffle.

Note that each rewriting of a subformula ψi of size n
using the equivalence proved in Proposition 3.1(ii) in Stage
4 results in a formula ψ′

i of size O(2p(n)) – meaning that
the method we will now detail for the elimination of shuffle
in any formula of PDL‖and which guarantees us a double
exponential bound on the size of the formula resulting from
the translation is preferable in most cases.
In fact this next method (also known as the “brute force”

method) seems to be the most straightforward means of
translating any regular expression, α, containing one or
more instances of the shuffle operator into an equivalent RE
constructed solely in terms of the RE operators ∪,∗ and ;,
and it proceeds in two steps. We begin by translating α
into a nondeterministic finite automaton (NFA) M using a
special cross-product construction, this is the first step; the
second step consists of translatingM back into an RE. Un-
fortunately the combination of these two operations entails,
in the worst case, a double exponential blowup in the size
of the resulting RE. We now describe in greater detail both
of the steps comprising this translation method.
For the first step, we proceed inductively starting with an

instance of a regular expression α = α1 ‖ α2 consisting of
a shuffle operator applied to two shuffle free RE’s α1 and
α2, as our base case.
Now, we can convert the two shuffle free RE’s α1 and

α2 into two NFA’s M1 = (Q1, Σ, δ1, s1, F1) and M2 =
(Q2, Σ, δ2, s2, F2), respectively where L(α1) = L(M1)
and L(α2) = L(M2). Note that each of these conversions
gives us an NFA that is linear in the size of our original
RE, since the conversion algorithm we will use – and which
can be found in, for example, Hopcroft and Ullman’s fa-
mous Automata textbook [4], and in Kozen’s textbook on
the subject [5] – will only add 2 states for each subexpres-
sion of our original RE.
The important thing for us now is to be able to show that

the set L(M1) ‖ L(M2)(= L(α1) ‖ L(α2)) can be con-
verted into an NFA M such that L(M) = (M1) ‖ L(M2)
which we will then convert back into an RE. Obviously it
would be simpler – though perhaps not preferable in terms
of the size of the resulting formula – if we had a way of gen-
eratingL(α1) ‖ L(α2) directly via an RE as we did with the
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translation of the ∗−free fragment of PDL‖, rather than by
taking this circuitous route.
To generate a machine whose language is

L(M1) ‖ L(M2) we use the following cross-product
construction onM1 and M2, the result of which is an NFA
M3 which accepts a string x if and only if x = x1 ‖ x2,
where x1 ∈ L(M1), x2 ∈ L(M2):

M3 = (Q1 × Q2, Σ, δ, (s1, s2), F ), where the transition
function δ is defined as δ((q1, q2), a) = (δ1(q1, a) ×
{q2})∪({q1}×δ2(q2, a)), and the set of accepting states F
is defined as F = {(q1, q2) ∈ Q1×Q2 : q1 ∈ F1, q2 ∈ F2}.

A proof of the correctness of the construction can be eas-
ily produced on the template of the proofs given for the
equivalence of NFAs and DFAs in terms of the class of lan-
guages accepted by either, in for example Kozen [5].
Now, given an RE α containing a number of nested ‖ op-

erators, we can iterate through the subexpressions of α until
we reach subexpressionsαi that match our base case, build-
ing up a series of NFA’s which we can combine either using
our cross product constructor or via the rules for building
NFA’s inductively from RE’s – again as set out in for exam-
ple [4] in the algorithm for converting an RE into an NFA.
The upshot is that we have defined an NFA M3 such that
L(M3) = L(M1) ‖ L(M2) = L(α1) ‖ L(α2) = L(α1 ‖
α2).
Sadly in the worst case this means our NFA M is ex-

ponential in the size of our original RE α, i.e., the size of
M3 is 2(O|r|) where r = |α|. To understand why this is so
consider that each basic program constituent, a of α can be
translated into an NFA of size 2 and given r = |α| where by
necessity r > 3, we may potentially need to use the cross
product construction kr times, where 1 ≤ k ≤ r

2 . (Meyer
and Stockmeyer use this fact to prove an upper bound for
the complexity of PDL‖’s satisfiability problem [6]).
Worse is to come. It seems that the best known algo-

rithms we have for translating an n state NFA into an RE
entail, in the worst case, an exponential blow up in the size
of the resulting RE, e.g., the algorithm given in [4] gives us
an RE of size O(n34n). This means that after having trans-
lated our original RE α of size r into an NFA of size O(2r)
we then end up with an RE of size O(22r

).

4. BPDL

Abrahamson, who first defined PDL‖in his PhD thesis
[2], writes in the self same that “[a]ny axiom system for
PDL‖which ultimately relies on reducing away concurrency
by expressing it in terms of ∪,;, or ∗... is misguided.” He
suggests introducing auxiliary variables into PDL in order
to improve on the double exponential size of the formula
that results from the brute force method. In fact, it is rela-

tively simple to see how we can do this in relation to BPDL,
an extension of normal PDL that incorporates boolean vari-
ables and which is also defined by Abrahamson in his PhD
thesis.
BPDL structures feature an additional set, Q, of boolean

variables, which we refer to when defining the set of well-
defined BPDL formulae – and note that these boolean vari-
ables are treated completely separately from the proposi-
tional symbols. The definition of the syntax of BPDL is
similar to that for PDL‖.

Definition 4.1 Given a fixed set of proposition symbols,
Ψ0 = {p, q, ...} and a fixed set of boolean variables Q =
{x, y, ...}, we can construct the set of BPDL programs as
follows:

• each basic program a ∈ Ψ0 is a program,

• for each variable x ∈ Q, ↑ x and ↓ x are programs,

• if α and β are programs, then so too are α ∪ β,α;β,
and α∗,

• if φ is a formula of BPDL then φ? is a program.

%

The set of formulae of BPDL are defined as for PDL‖,
again with reference to a set Φ of propositional variables.
We can now define models for BPDL.

Definition 4.2 Let M be a structure such that M =
(W, VB , τB, Q), thenM is a model for BPDL if

• W is a set of states,

• Q is a set of boolean variables,

• VB(p) ⊆ ℘(W × ℘(Q)), where ℘(Q) denotes the
power set of Q, is a function that gives us, for each
p ∈ Φ, the cross product with the power set of Q of
the set of states in W at which p holds, namely, the
set V (p) as defined in Definition 2.2, i.e., VB(p) =
V (p)×℘(Q). Additionally, for each x ∈ Q, VB(x) =
W × {S ⊆ Q : x ∈ S}.

We extend this function to all formulae of BPDL in-
ductively: given the formulae φ,ψ and the program
ρ with VB(φ), VB(ψ) ⊆ W × ℘(Q) and τB(ρ) ⊆
(W × ℘(Q))2 (we will define τB below), the defini-
tion runs as follows:

– VB(¬φ) = (W × ℘(Q)) − VB(φ),
– VB(φ ∨ ψ) = VB(φ) ∪ VB(ψ),
– VB(〈ρ〉)φ = {(u, S) ∈ (W × ℘(Q)) : there ex-
ists v ∈ W, T ⊆ Q such that ((u, S), (w, T )) ∈
τB(ρ) and (w, T ) ∈ VB(φ)}
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• τB(a) ⊆ ℘((W ×℘(Q))2), is a function that gives us,
for each a ∈ Ψ0, the set {((u, S), (w, S)) : (u, w) ∈
τ(a), S ⊆ W} where τ(a) ⊆ (W × W )∗, the set of
state transitions of a is defined similarly to the function
τ of Definition 2.2.
Additionally, for each x ∈ Q we have that τB(↑ x) =
{(u, S), (u, S′) ∈ (W × ℘(Q))2 : S′ = S ∪ {x}}
and τB(↓ x) = {(u, S), (u, S′) ∈ (W × ℘(Q))2 :
S′ = S − {x}}. For programs α and β we define
α∪ β, α; β and α∗ as in Definition 2.2. For any BPDL
formula φ we define τB(φ?) as {((u, S), (u, S)) ∈
(W × ℘(Q))2 : (u, S) ∈ VB(φ)}.

&

It turns out that adding Boolean variables to PDL gives
a strong boost to the expressiveness of the resulting lan-
guage. For example, we can represent any integer in the
range 0, ..., 2(n−1) using just n Boolean variables. It is also
routine to write programs of length O(n) that add, subtract
or compare two such “n-bit” integers. However for our pur-
poses the most important consequence of adding Boolean
variables to PDL is that we are able to drastically improve
on the double exponential overhead incurred by the shuffle
translation method given above.
To see how this is possible note that any NFA M con-

sisting of n nodes can be converted to a BPDL program of
lengthO(n log n+ c)where c is the combined length of the
tests on the outgoing edges of each node inM 3. Obviously,
in many cases, this allows us to improve on the exponential
size of the PDL program resulting from the usual method of
translating NFA’s to RE’s. The translation proceeds by as-
signing a numbering to the states of the NFA and construct-
ing a program of the form S; (

⋃
i T )∗; F? where the sub-

program S sets a counter to the number of the initial state;
Ti performs the action associated with state numbered i if
the counter is in the state numbered i; and finally F? checks
whether the counter is in an accepting state.
The easiest way to see how this works is by recourse to

an example, here the NFAM illustrated below as Figure 1.

We can easily model the action of M via the following
program:

I := 1;

((I = 1)?; (a?; I := 2) ∪ (b?; I := 3);

(I = 2)?; (a?; I := 4) ∪ (b?; I := 2);

(I = 3)?; (a?; I := 3) ∪ (d?; I := 5);

(I = 4)?; (c?; I := 6))∗;

(I = 5)? ∪ (I = 6)?

3Note that we can exploit the nondeterminism of PDL (and hence
BPDL) to model the nondeterminism ofM .
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b

a

a

d

a

b

c

M

Figure 1. The NFA M

So given a program α, effectively an RE, of length n
containing one or more instances of the ‖ operator we can
generate, as detailed above, an NFA M whose size is ex-
ponential in n such that L(M) = L(α). If we’re willing
to translate M into BPDL instead of PDL we end up with
a formula of size O(n2n + d), where d is the length of all
the tests inM . Usually this will offer a substantial improve-
ment on the double exponential size of the formula resulting
from the translation ofM into PDL. Sadly we can’t improve
on our previous translation of PDL‖formulae into PDL for-
mulae by inserting an intermediate stage in which we trans-
late our cross product NFA into a BPDL formula before fur-
ther translating this into a PDL formula: Abrahamson de-
termined in [1] that the translation of a formula from BPDL
into PDL has an double exponential lower bound.

4.1. Conclusion

So in summary, we have surveyed a number of the main
results concerning PDL‖, most notably the fact that the ad-
dition of the ‖ operator to PDL affords no increase in the
expressiveness of the resulting language – however it does
seem to give important, and indeed dramatic benefits in
terms of the succintness of the formulae we can devise to
describe the interleaving of two or more programs. We have
looked at a conceptually straightforward method of translat-
ing the ∗ free fragment of PDL‖into PDL – straightforward
in that it only makes use of regular expression equivalences
– the original contribution of this report; and we have de-
tailed the aptly named “brute force” method. However the
double exponential size of the formulae resulting from the
brute force method presents a substantial practical obstacle
to the application of the interleaving operator in, for exam-
ple, an agent programming context as described in the intro-
duction. Abrahamson’s BPDL – PDL enriched with binary
variables – seems to provide one solution to this blow up in
complexity, and indeed a further direction for investigation
here is the possible use and development of BPDL tools for
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the verification of agent programs.
In fact we could go further and keep the interleaving op-

erator as a primitive: future work could investigate the ef-
fects of different axiomatisations of PDL‖, or the creation of
efficient PDL‖tools for verification purposes. An investiga-
tion into the kinds of regular expression featuring instances
of the interleaving operator that admit of a more compact
translation into a shuffle free regular expression would also
yield useful practical results (it would be also interesting to
see if there were other means of translating PDL‖into PDL
than those we have described) . Of course further investi-
gations could also centre on other kinds of agent execution
strategies and the various logics which could be developed
to describe them, including other extensions of PDL.
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Abstract

The aim of the work is to provide a deontic language to
regulate closed-world interaction. To do so we use Coali-
tion Logic enriched with a preference order over the out-
comes of agents’ choices. We take the perspective of a
deontic language being agent-oriented, that is mandating
choices that only belong to agents or coalitions. We formal-
ize this intuition by identifying those interactions in which
Nature does not play an active role. We apply the formal
tools to games.

1 Introduction

Pauly’s Coalition Logic has shown to be a sound formal
tool to analyze the properties of strategic interactions. One
issue left is to define in that language what the interesting
properties of an interaction are, as possible for instance with
regularity (it is never the case that a group of agents can
determine that some variable p is true, while all the other
agents can at the same time determine that p is false) or
outcome monotonicity (if a coalition can force an outcome
to lie in a set X , can also force an outcome to lie in all
supersets of X).

If we think of a deontic logic as obligating agents to
choose what it should ideally be the case, an intuitive prop-
erty is that of coherence, a property of interaction that en-
sures players’ abilities non to contradict one other and the
empty coalition not to make active choices. With this prop-
erty we can model a closed world interaction, such as those
of a Coordination Game or of a Prisoner Dilemma, where
all the outcomes are determined only by the choices of the
agents that are present.

Our aim is to regulate multiagent interaction, mandat-
ing the optimal outcomes that result from the choices of the
coalitions. By mandating we mean the introduction of a
normative constraint on individual and collective choices
in a multiagent system.

!!!!!!!!!!Row
Column White Dress Black Dress

White Dress (3, 3) (0, 0)
Black Dress (0, 0) (3, 3)

Table 1. Clothing Conformity

We are specifically concerned with cases where the col-
lective perspective is at odds with the individual perspec-
tive. That is, cases where we think that letting everybody
pick their own best action regardless of other’s interest gives
a non-optimal result. The main question we are dealing with
is then: how do we determine which norms, if any, are to be
imposed?

To answer this question, the paper presents a language
to talk about the conflict between coalitionally optimal and
socially optimal choices in coherent interaction, and it ex-
presses deontic notions referring to such circumstances.

1.0.1 Example

The toy example we would like to start with concerns con-
ventional norms. Noms of this type are those in which play-
ers should conform to each other. In this situation (see Table
1), a legislator that wants to achieve the socially optimal
state (players coordinate), should declare that discordant
choices are forbidden, thereby labeling the combinations of
moves (black, white), (white, black) as violations. As easy
to see, these moves belong only to the set of agents taken
together. A norm helping both players to reach an optimal
outcome would be one that labels as violations combina-
tions of discordant choices. However, in this kind of games
Row will never know what is the best thing to choose, since
the choice of Column is independent from his. In order to
solve the problem a legislation should go beyond individual
choice, by forcing the coalition made of Row and Column
together to form and choose an efficient outcome.
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!!!!!!!!!!Row
Column White Dress

White Dress (3, 3)
Black Dress (0, 0)

Table 2. Clothing Conformity Modified

1.1 Motivation

Provided the aim of regulating interactions, we ask our-
selves whether it makes sense to construct a deontic logic
for any type of game.

Suppose the environment (the coalition made by an
empty set of agents) were active part of the game, and it
could decide to transform the game of table 1 in the one of
table 2.

What should then a legislator do? It is quite clear that
imposing the agents to choose something should depend on
the moves that are available to the players. But in a game
in which Nature plays an active role, taking this statement
serious would boil down to mentioning the environment in
the deontic language, saying for instance “Nature should
allow row to play only white” or “Nature should make it
convenient for the grand coalition to form”. If we think of a
deontic language as a sort of “agent-oriented” language and
as nature as a uncontrollable agent, the above mentioned
statements do not make sense.

No legislator though would be in the condition of deter-
mining what moves Nature would play. Nature, unlike all
the other players, does not have explicit preferences over
the outcomes of the interaction and intuitively does not fol-
low proper man made norms or orders. In order to have
a regulation of the Multi Agent System, we need a proper
agent-oriented deontic language and we should then avoid
deontic statements that concern proper choices (i.e. those
able to really modify the outcome of the game) to be car-
ried out by Nature. This translates into ruling out all those
interactions in which Nature plays an active role. In this
paper we will pursue this idea formally, identifying all such
interactions and axiomatizing their logic.

The paper is structured as follows: In the first part we
introduce Coherent Coalition Logic, proving that Inability
Of the Empty Coalition (IOEC) is not entailed by Pauly
playable effectivity functions and it cannot even be defined
in Coalition Logic. In the second part we discuss the axiom-
atization of the logic, giving a characterization of coherence
in terms of global modality. In the third part we give appli-
cation of the logic to the regulation of closed-world strategic
interaction, constructing a deontic logic that tells coalitions
how to behave in order to achieve socially desirable out-
comes.

2 Coherent Interactions

We begin by defining the strategic abilities of agents and
coalitions, introducing the concept of a dynamic Effectivity
Function, adopted from [7]. Later on in the paper we will
move from game forms to real games, by introducing the
notion of preference.

Definition 2.1 [Dynamic Effectivity Function]
Given a finite set of agents Agt and a set of states W ,

a dynamic Effectivity Function is a function E : W →
(2Agt → 22W

).
!

Any subset of Agt will henceforth be called a coalition.
For elements of W we use variables u, v, w, . . .; for

subsets of W we use variables X, Y, Z, . . .; and for sets
of subsets of W (i.e., elements of 22W

) we use variables
X ,Y,Z, . . .. The elements of W are called ‘states’ or
‘worlds’; the subsets of Agt are called ‘coalitions’; the sets
of states X ∈ E(w)(C) are called the ‘choices’ of coalition
C in state w. The set E(w)(C) is called the ‘choice set’ of
C in w. The complement of a set X or of a choice set X are
calculated from the obvious domains.

A dynamic Effectivity Function assigns, in each world,
to every coalition a set of sets of states. Intuitively, if
X ∈ E(w)(C) the coalition is said to be able to force or
determine that the next state after w will be some member
of the set X . If the coalition has this power, it can thus
prevent that any state not in X will be the next state, but
it might not be able to determine which state in X will be
the next state. Possibly, some other coalition will have the
power to refine the choice of C.

For studying closed-world interaction we isolate a set of
minimally required properties, that constitute the class of
coherent Effectivity Functions.

Definition 2.2 [Coherence]
For any world w, coalitions C,D and choice X , an Effec-

tivity Function is coherent if it has the following properties:

1. coalition monotonicity: if X ∈ E(w)(C) and C ⊆ D
then X ∈ E(w)(D);

2. regularity: if X ∈ E(w)(C) then X $∈ E(w)(C);

3. outcome monotonicity: if X ∈ E(w)(C) and X ⊆ Y
then Y ∈ E(w)(C);

4. inability of the empty coalition (IOEC): E(w)(∅) =
{W}.

!
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The first property says that the ability of a coalition is
preserved by enlarging the coalition. In this sense we do not
allow new members to interfere with the preexistent capac-
ities of a group of agents. The second property says that if a
coalition is able to force the outcome of an interaction to lie
in a particular set, then no possible combinations of moves
by the other agents can prevent this to happen. We think
that regularity is a key property to understand the meaning
of ability. If an agent is properly able to do something this
means that others have no means to prevent it. Outcome
monotonicity is a property of all Effectivity Functions in
CL, which is therefore a monotonic modal logic. It says
that if a coalition is able to force the outcome of the inter-
action to lie in a particular set, then is also able to force the
outcome to lie in all his supersets (see [7]). The last con-
dition is IOEC, that forces the empty coalition relation to
be universal. As noticed also in [2] with such a property
the empty coalition cannot force non-trivial outcomes of a
game.

One important class of Effectivity Functions are the
playable ones, to which we will refer throughout the paper.

Definition 2.3 [Playability]
For any world w an Effectivity Function is playable if it

has the following properties:
(1) ∅ /∈ E(w)(C), for any C; (2) W ∈ E(w)(C) for

any C. (3) E is Agt-maximal, that is for any X ⊆ W ,
s.t. W \ X $∈ E(w)(∅) implies X ∈ E(w)(Agt) (4) E is
superadditive, i.e. for C ∩ D = ∅, if X ∈ E(w)(C) and
Y ∈ E(w)(D) then X ∩ Y ∈ E(w)(C ∪D).

!

The first condition imposes that games are nonempty, the
second that coalitions can always choose the largest possi-
ble set, the third that the grand coalition of agents can do
whatever not blocked by Nature, the fourth that coalitions
can join their forces.

As proved in [7] [Theorem 2.27], nonempty strategic
games exactly correspond to playable Effectivity Functions
1.

2.0.1 Playability and Coherence

What kind of interactions are coherent Effectivity Functions
isolating?

1The proof involves the definition of strategic game as a tuple
〈N, {Σi|i ∈ N}, o, S〉 where N is a set of players, each i being endowed
with a set of strategies σi from Σi, an outcome function that returns the
result of playing individual strategies at each of the states in S; the defi-
nition of α-Effectivity Function for a nonempty strategic game G, Eα

G :
℘(N) → ℘℘(S) defined as follows: X ∈ Eα

G iff ∃σC∀σCo(σC ; σC) ∈
X . The above mentioned theorem establishes that Eα

G = E in case E is
playable and G is a nonempty strategic game.

In this respect, it is interesting to compare playable and
coherent Effectivity Function, in order to understand the
types of interactions we are considering.

Proposition 2.4 Not all playable EF are coherent, and not
all coherent EF are playable.

Proof.
For the first part, take W = {x, y}, Agt = {i, j} and the

following Effectivity Function E(∅)(k) = E({i})(k) =
E({j})(k) = E(Agt)(k) = {W,W\{x}} for k ∈ W .
Now it is just a matter of checking the conditions for playa-
bility.

For the second part take W = {x, y}, Agt = {i, j} with
E(∅)(k) = E({i})(k) = E({j})(k) = E(Agt)(k) =
{W} for k ∈ W .

QED

Proposition 2.5 Coherent Agt-maximal superadditive EF
are playable.

Proof.
It is a matter of checking the conditions of playability.

QED

3 On the axiomatization of Coherent Coali-
tion Logic

In order to fully understand what sort of interactions we
are investigating by using coherent effectivity functions we
need to provide an axiomatization of their logic.

To do so we exploit some results due to Pauly and we
adapt them to our framework. We recall first that Coalition
Logic uses a modality [C]φ (to be read as “Coalition C can
achieve φ”) and it is interpreted in neighbourhood models
with an outcome monotonic dynamic Effectivity Function
as neighbourhood relation. The axioms of Coalition Logic
extend propositional logic axiomatization with the Mono-
tonicity axiom (φ → ψ ⇒ [C]φ → [C]ψ).

Consider the coalitional canonical model C∗ =
((W ∗, E∗), V ∗) and take φ = {w ∈ W ∗|φ ∈ w}, as the
truth set of φ in the canonical model. The canonical rela-
tion (the rest is standard) is defined as

wE∗
CX iff ∃φ s.t φ ⊆ X and [C]φ ∈ w

The set of formulas are closed under Modus Ponens and
Monotonicity and the relation is easily proved to be mono-
tonic. Moreover in [7] the following theorem [3.10] is
proved: Every Coalition Logic Λ is sound and complete
with respect to its canonical model C∗.

What we look for now is the a set of axioms and rules
such that the corresponding maximally consistent sets gen-
erate a coherent Effectivity Function in the canonical mod-
els.
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Nevertheless IOEC is not definable in Coalition Logic.
To see this it is important to notice that Coalition Logic
is monotonic multimodal logic, and frame validity of for-
mulas of monotonic modal logics is closed under taking
disjoint unions. This is proven for modal satisfaction in
[4][Definition 4.1, Proposition 4.2].

Definition 3.1 [[4] 4.1]
Let Mi = (Wi, Ni, Vi), i ∈ I, be a collection of dis-

joint models. Then we define their disjoint union as the
model ⊕Mi = (W,N, V ) where W =

⋃
i∈I Wi, V (p) =⋃

i∈I Vi(p) and for X ⊆W,w ∈Wi,

X ∈ N(w) iff X ∩Wi ∈ Ni(w)

!

Without loss of generality, we can simply think of the
monotonic modal logic with only the box for the empty
coalition, and take frames instead of models.

Consider the following monotonic frames F0 =
(W0, N0) and F1 = (W1, N1), with a domain Wj and a
relation Nj ⊆ Wj × 2Wj (j ∈ {0, 1}). Take W0 = {w0},
W1 = {w1}, N0(w0) = {w0} and N1(w1) = {w1}.
Now suppose φ is some formula true at a world w in a
model M ′ = (W ′, N ′, V ′) of a monotonic frame F ′ iff
[[&]]M is neighbour of w (if wN ′[[&]]) and nothing else is
(wN ′X ⇒ X = [[&]]). We see that M0, w0 |= φ and
M1, w1 |= φ for arbitrary Mi inside Fi (i ∈ {0, 1}). From
[4] we construct the disjoint union ⊕(F0, F1) = (W,N) as
defined. We see clearly that our formula φ is not true in
the disjoint union, because the neighbourhoods of the sin-
gle models are copied in the disjoint union even if they are
smaller than the unit. We observe moreover that the disjoint
union is monotonic. The conclusion is that the formula ex-
pressing inability of the empty coalition is not definable is
monotonic modal language.

At this point it is clear why [∅]φ → [∅](φ ∨ ψ) or also
[∅]& would not be decent axioms for Coherent Coalition
Logic. They would both ensure the presence of the unit in
the neighbourhood of ∅, but they would not say anything
about the absence of all the other sets. We will give to this
intuition a formal characterization, stating that in fact the
ability of the empty coalition in Coherent Coalition Logic
is a global modality.

3.1 Inability of the Empty Coalition is a
global relation

We extend the language of Coalition Logic with a global
modality, defined as follows:

M,w |= Eφ⇔ ∃w′ ∈W s.t. M,w′ |= φ

The dual Aφ is defined as ¬E¬φ. We claim that in
Coalition Logic plus the global modality IOEC is definable.

Proposition 3.2 A(φ)↔ [∅]φ defines IOEC. That is,
|=C A(φ) ↔ [∅]φ ⇔ E(w)(∅) = {W} for every w in

the coalitional frames C.

Proof. (⇒) Assume that |=C Aφ ↔ [∅]φ while not
E(w)(∅) = {W} for every w in any frame F in the class
of Coalitional Frames C. Then there is an F in which there
is a w such that E(w)(∅) .= {W}. Notice that both W and
E(w)(∅) are nonempty. So there is a W ′ .= W s.t W ′ ∈
E(w)(∅) and W ′ ⊂ W . Take an atom p to be true in all
w′ ∈ W ′ and false in W \ W ′. Now we have model M
based on a coalitional frame C for which M .|= Ap↔ [∅]p.
Contradiction.

(⇐) Assume E(w)(∅) = {W} for a given w in an arbi-
trary model M of a coalition frame in C, and that w |= Aφ.
Then [[φ]]M = W and w |= [∅]φ follows. Assume now
that w |= [∅]φ. It has to be the case that [[φ]]M = W by
assumption. So also that w |= Aφ, which concludes the
proof.

QED

3.2 Axiomatization for the Global Modal-
ity plus a new inclusion axiom

The global relation induces an equivalence class in the
models, therefore it is axiomatizable by an S5 modality in-
terpreted on a global relation.

However this does not ensure that the underlying relation
- that we indicate with R∃ - is globally connected. Global
connectedness is not definable in basic modal language [1]
2.

As suggested in [1][p.417-418], taken a set of maximally
consistent formulae Σ+ we can simply take a generated sub-
model of the canonical model in such a way that the for-
mulae in Σ+ are invariant and the relation is (it follows by
construction) a global relation.

Taken the canonical model M∗ = ((W ∗, E∗, R∗
∃), V

∗),
its submodel

M∗′
= ((W ∗′

, E∗′
, R∗′

∃ ), V ∗) generated by Σ+ using
the R∗

∃ relation should ensure that R∗′

∃ = W ∗′ ×W ∗′
.

Nevertheless in taking the generated submodel we
should ensure that the coalitional relation is not alterated.
One way to do it is to guarantee that the canonical coali-
tional relation is included in the global relation and that the
generated submodel for the second relation is also a gener-
ated submodel for the first.

We begin with some definitions:
2The reason is also the invariance under taking disjoint unions. This

fact sheds light on the relation between IOEC and Global Relation, in fact
now we see clearly that the ability of the empty coalition in Coherent Coali-
tion Logic is a global modality.
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Definition 3.3 [Generated Submodels for Basic Modal
Language, [1]]

Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two
models; we say that M ′ is a submodel of M if W ⊆ W ′, R′

is the restriction of R to W ′, that is R′ = R∩(W ′×W ′) and
V ′ is the restriction of V to M ′. We say that M ′ is a gener-
ated submodel of M (M ′ $→ M )if M ′ is a submodel of M
and for all points the following closure condition holds:

if w is in M ′ and Rwv, then v is in M ′

!

Modal satisfaction is invariant under taking generated
submodels [1].

Now the definition for monotonic modal logic.

Definition 3.4 [Generated Submodels for Monotonic
Modal Language, [4]] Given a monotonic model M , M ′ is
a submodel of M if W ′ ⊆ W,V ′(p) = V (p) ∩ W ′ for p
atomic, and N ′ = N ∩ (W ′ × 2W ′

), that is

∀s ∈ W ′ : N ′(s) = {X ⊆ W ′|X ∈ N(s)}

In neighbourhood semantics given M ′ submodel of M ,
M ′ is also a generated submodel of M if the identity map-
ping i : W → W ′ is a bounded morphism, that is, for all
w′ ∈ W ′ and all X ⊆ W

i−1[X] = X ∩W ′ ∈ N ′(w′) iff X ∈ N(w′)

!

For all states of the generated submodels, truth of modal
formulas is preserved [4].

Now the question is, is the submodel generated a max-
imally consistent set of formulas Σ+ using the existen-
tial global modality relation (making the canonical model
strongly connected with respect to this relation) also a gen-
erated submodel with respect to the coalitional relation?

The answer is: it depends on the extra axioms. Usually
when we have a K and a global modality it is sufficient to
include the diamond relation in the global modality relation.
But we cannot simply have:

[C]φ → Eφ

because the coalitional canonical relation may cross S5
equivalence classes. Instead the good candidate for our at-
tempt is just the following:

Aφ ↔ [∅]φ

We claim that taking a generated submodel with respect
to the global relation, given this axiom, ensures the condi-
tion of taking also a generated submodel with respect to the
neighbourhood modality.

This is easy to see, because all the neighbourhoods of all
coalitions are of the form X ⊆ W and W is covered by the
global modality.

Proposition 3.5 The axiom Aφ ↔ [∅]φ guarantees inclu-
sion of the canonical relation in the global relation

Proof.
Take a maximally consistent set of formulas Σ+ that ex-

tends a consistent set of formulas Σ according to the ax-
ioms and the rules that we have just defined (for the global
and the coalitional modality). Suppose now Aφ is in Σ+

for some φ. This means that W ∗ = [[φ]]C
∗
. Now take a

given [C]ψ in the same maximally consistent set of formu-
las. This means that [[φ]]C

∗ ∈ E∗(Σ+)(C). But by defi-
nition, [[φ]]C

∗ ⊆ W ∗ which proves that all neihbourhoods
are covered by the global modality relation.

QED

Now, let us take a generated submodel, as described in [1]
for basic modal logic, using the maximally consistent set
Σ+ looking only at the global modality.

Proposition 3.6 The generated canonical submodel under
Σ+ preserves both global modality and monotonic Coali-
tion Logic formulas satisfaction.

Proof.
It is just a matter of verifying that the generated sub-

model for the global relation is also a generated submodel
for the coalitional relation.

QED

It follows that we have an axiomatization for the Coherent
Coalition Logic.

3.3 A sound and complete axiomatization

Take now the maximally consistent sets w ∈ W ∗, closed
under the proof system depicted in the table.

We take the following conditions to describe coherence
of the Effectivity Function on the canonical relation.

• wE∗
CX iff ∃φ ⊆ X : [C]φ ∈ w and ∀ψ ⊆ (W ∗\X) :

[C]ψ +∈ w (for C += ∅)

• E∗
C ⊆ E∗

D (for C ⊆ D)

• wE∗
CX iff X = W ∗ (for C = ∅)

• wR∃v iff w, v ∈ W ∗
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Proposition 3.7 The canonical Coherent frame for Coali-
tion Logic with Aφ ↔ [∅]φ as axiom has the property that
E(w)(∅) = {W ∗} for any MCS w and Aφ ↔ [∅]φ is valid
in the class of frames with that property.

It is a consequence of the previous propositions and the
canonical relation definition.

Proposition 3.8 The set of axioms and rules in the table
are sound and complete with respect to Coherent Coalition
Frames

Proof.
We need just to check the statement with respect to M∗′

.
We omit the detailed proof.

QED

Proof System
A1 [C]φ→ [D]φ (for C ⊆ D)
A2 [C]φ→ ¬[C]¬φ
A3 Aφ↔ [∅]φ
A4 φ→ Eφ
A5 EEφ→ Eφ
A6 φ→ AEφ
A7 A(φ→ ψ)→ (Aφ→ Aψ)
R1 φ ∧ (φ→ ψ)⇒ ψ
R2 φ→ ψ ⇒ [C]φ→ [C]ψ
R3 φ⇒ Aφ

3.4 On Agt-Maximal Coherent Games

Notice that if we add Agt-maximality to Coherent
Games, the following holds:

M,w |= [Agt]φ↔ Eφ

This suggest, at the expressivity level, that Coherent
Coalition Logic is powerful enough to reason on global
properties of the models. These results are useful to apply
the language to the study of multiagent interactions.

4 A Deontic Logic for Efficient Interactions

Any deontic language comes along with an idea of how
a certain world state should be.

Once we view a deontic language as regulating a Multi
Agent System, we can say that a set of commands promote a
certain interaction (or social state), prohibiting certain oth-
ers. Following this line of reasoning it is possible, given
a notion of optimality or efficiency, to construct a deontic
language that requires this notion to hold.

If we want to consider what it is socially optimal, as we
do here, we can see obligations and prohibitions as resulting
from one general norm saying that all actions of coalitions
that do not take into account the interests of the society as a
whole, are forbidden.

From the practical point of view, one way to view our
logic is to say that it can be used to derive obligations,
permission and prohibitions from conflicting group prefer-
ences, and use these as suggestions for norm introduction in
the society.

This last part of the paper is devoted to formalize this
derivation. Here we will introduce a notion of preference in
the strategic interaction scenario, to be lifted to coalitional
choice, in order to define what it is best for a society to
choose. We will then move to study the property of the
enriched language focusing on the regulation of coherent
interactions. We will show that Nature can be obliged to do
something when and only when it is not avoidable, that is it
will be assigned only trivial obligations.

4.1 Preference

As already noticed by von Wright, the notion of pref-
erence can be understood and modeled in many ways [9].
This is especially true in strategic interaction, in which play-
ers, in order to choose what is best to do, need to have pref-
erences over the possible outcomes of the game. Thus those
are the preferences that constitute our main concern.

The claim is thus that players do have a fixed order-
ing over the domain of discourse (what we call prefer-
ences), and that generate their strategic preference consid-
ering where the game may end (called choices domination,
or simply domination).

We start from a preference relation for individuals over
states working our way up to preferences for coalitions over
sets. A similar view is taken in [3].

Definition 4.1 [Individual preferences for states] A prefer-
ence ordering (≥i)i∈Agt consists of a partial order (reflex-
ive, transitive, antisymmentric) ≥i⊆ W ×W for all agents
i ∈ Agt, where v ≥i w means that v is ‘at least as nice’ as
w for agent i. The corresponding strict order is defined as
usual: v >i w if, and only if, v ≥i w and not w ≥i v. #

Definition 4.2 [Individual preferences for sets of states]
Given a preference ordering (≥i)i∈Agt, we lift it to an or-
dering on nonempty sets of states by means of the following
principles.

1. {v} ≥i {w} iff v ≥i w; (Singletons)

2. (X ∪ Y ) ≥i Z iff X ≥i Z and Y ≥i Z; (Left
weakening)
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3. X ≥i (Y ∪ Z) iff X ≥i Y and X ≥i Z. (Right
weakening)

!

These are some properties that seem minimally required
for calling some relation a preference relation. The first en-
sures that preferences are copied to possible choices. The
properties of left and right weakening ensure a lifting from
singletons to sets.

The lifting enables us to deal with preference under un-
certainty or indeterminacy. The idea is that if an agent were
ever confronted with two choices X, Y he would choose X
over Y provided X >i Y . preferences do not consider any
realizability condition, they are simply basic aspirations of
individual players, on which to construct a more realistic
order on the possible outcomes of the game, which are by
definition dependent on what all the agents can do together.

Out of agents’ preferences, we can redefine on choices
the classical notion of Pareto Efficiency.

Definition 4.3 [Strong Pareto efficiency] Given a choice set
X , a choice X ∈ X is Strongly Pareto efficient for coalition
C if, and only if, for no Y ∈ X , Y ≥i X for all i ∈ C,
and Y >i X for some. When C = Agt we speak of Strong
Pareto Optimality. !

We will use the characterization of Pareto Efficiency and
Optimality to refer to the notions we have just defined, even
though the classical definitions (compare [5]) are weaker 3.

We now construct a preference relation on choices. To
do so we first need to look at the interaction that agents’
choices have with one another.

Definition 4.4 [Subchoice] If E is an Effectivity Function,
and X ∈ E(w)(C), then the X-subchoice set for C in w is
given by EX(w)(C) = {X ∩ Y | Y ∈ E(w)(C)}. !

Considering subchoices allows to reason on a restriction
of the game and to consider possible moves looking from a
coalitional point of view, i.e. what is best for a coalition to
do provided the others have already moved.

When agents interact therefore they make choices on the
grounds of their own preferences. Nevertheless the moves
at their disposal need not be all those that the grand coalition
has. We can reasonably assume that preferences are filtered
through a given coalitional Effectivity Function. That is we
are going to consider what agents prefer among the things
they can do.

Definition 4.5 [Domination] Given an Effectivity Function
E, X is undominated for C in w (abbr. X!C,w ) if, and

3The last definition is clearer when we consider the case X =
E(w)(C). But it is formulated in a more abstract way in order to smoothen
the next two definitions.

only if, (i) X ∈ E(w)(C) and (ii) for all Y ∈ E(w)(C),
(X ∩ Y ) is Pareto efficient in EY (w)(C) for C. !

The idea behind the notion of domination is that if X ′

and X ′′ are both members of E(w)(C) then, in principle,
C will not choose X ′′, if X ′ dominates X ′′. This prop-
erty ensures that a preference takes into account the possi-
ble moves of the other players. This resembles the notion
of Individual Rationality in Nash solutions [5], according to
which an action is chosen reasoning on the possible moves
of the others.

If we take the Coordination Game previously discussed,
we have the following cases:

• (WhiteR,WhiteC)!Agt,w for any w.

• (BlackR, BlackC)!Agt,w for any w.

• not (BlackC)!C,w

The preceding three definitions capture the idea that
‘inwardly’ coalitions reason Pareto-like, and ‘outwardly’
coalitions reason strategically, in terms of strict domination.
A coalition will choose its best option given all possible
moves of the opponents. Looking at the definition of Op-
timality we gave, we can see that undomination collapses
to individual rationality when we only consider individual
agents, and to Pareto efficiency when we consider the grand
coalition of agents.

Proposition 4.6
X!Agt,w iff X is a standard Pareto Optimal Choice in w.
X!i,w iff X is a standard Dominating Choice in w for i.

Proof For the first, notice that since E(w)(∅) = {W},
then X is undominated for Agt in w iff it is Pareto efficient
in E(w)(Agt) for Agt (i.e., it is Pareto optimal in w). The
second is due to the restriction of undomination to singleton
agents.Q.E.D.

4.1.1 Violation

A way to impose normative constraints in a Multi Agent
System is to look at the optimality of the strategic interac-
tion of such system. In particular the presence of possible
outcomes in which agents could not unanimously improve
(Pareto Efficient) can be a useful guide line for designing a
new set of norms to be imposed.

Following this line we define a a set of violation sets
as the set of those choices that are not a Pareto Efficient
interaction.

Definition 4.7 [Violation] If E is an Effectivity Function
and C ⊆ C ′, then the choice X ∈ E(w)(C) is a C ′-
violation in w (X ∈ V IOLC,C′,w) iff there is a Y ∈
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E(w)(C ′ \ C), (X ∩ Y ) that is not undominated for C ′

in w. !

In words, X is a violation if it is not safe for the other
agents, in the sense that not all the moves at their disposal
yield an efficient outcome.

We indicate with V IOLC,w the set violations by C at w
towards Agt.

5 Logic

We now introduce the syntax of our logic, an extension
of the language of Coalition Logic [7] with modalities to
talk about ideal states in a closed-world interaction.

5.1 Language

Let Agt be a finite set of agents and Prop a countable
set of atomic formulas. The syntax of our Logic is defined
as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|Eφ|P (C, φ)|F (C, φ)|O(C, φ)|[rationalC ]φ

where p ranges over Prop and C ranges over the subsets
of Agt. The other boolean connectives are defined as usual.
The informal reading of the modalities is: “Coalition C can
choose φ”, “There is a state that satisfies φ”,“It is permitted
(/forbidden/obligated) for coalition C to choose φ”, “It is
rational for coalition C to choose φ”.

5.2 Structures

Definition 5.1 [Models] A model for our logic is a tuple

(W,E,R∃, {≥i}i∈Agt, V )

where:

• W is a nonempty set of states;

• E : W −→ (2Agt −→ 22W

) is a Coherent Effectivity
Function.

• R∃ = W ×W is a global relation.

• ≥i⊆ W ×W for each i ∈ Agt, is the preference re-
lation. Out of this relation we define the undomination
relation ! ⊆ 2Agt × W × 2W × 22W

as previously
specified.

• V : W −→ 2Prop is a valuation function.

!

5.3 Semantics

The satisfaction relation of modal formulas (the rest is
standard) with respect to a pointed model M,w is defined
as follows:

M, w |= [C]φ iff [[φ]]M ∈ E(w)(C)
M, w |= Eφ iff ∃v s.t. M, v |= φ

M, w |= [rationalC ]φ iff ∀X(X!C,w ⇒ X ⊆ [[φ]]M )
M, w |= P (C, φ) iff ∃X ∈ E(w)(C) s.t.

X ∈ V IOLC,w and X ⊆ [[φ]]M

M, w |= F (C, φ) iff ∀X ∈ E(w)(C)(X ⊆ [[φ]]M ⇒
X ∈ V IOLC,w)

M, w |= O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ V IOLC,w ⇒
X ⊆ [[φ]]M )

In this definition, [[φ]]M =def {w ∈ W | M,w |= φ}.
The modality for coalitional ability is standard from

Coalition Logic [7]. The modality for rational action re-
quires for a proposition φ to be rational (wrt a coalition C
in a given state w) that all undominated choices (for C in
w) be in the extension of φ. This means that there is no
safe choice for a coalition that does not make sure that φ
will hold. It is still possible for a coalition to pursue a ra-
tional choice that may be socially not rational. The deontic
modalities are defined in terms of the coalitional abilities
and preferences. A choice is permitted whenever is safe,
forbidden when it may be unsafe (i.e. when it contains an
inefficient choice), and obligated when it is the only safe.

6 Properties

It is now interesting to look at what we can say within
our system.

Some Validities
1 P (C,φ) → ¬O(C,¬φ)
2 F (C,φ) ↔ ¬P (C,φ)
3 P (C,φ) ∨ P (C,ψ) → P (C,φ ∨ ψ)
4 O(C,φ) → [C]φ → P (C,φ)
5 [rationalC ]φ ∧ [rationalAgt]¬φ → F (C,φ)
6 O(C,+)
7 O(∅,φ) ↔ [∅]φ

The first validity says that permissions are consistent
with obligations (the converse does not hold in general).
The second that prohibition and permission are interdefin-
able. The third says that permission is monotonic. The
fourth that the obligation to choose φ for an agent plus the
ability to do something entails the permission to carry out φ.
The validity number 5 says that the presence of a safe state
that is rational for the grand coalition of agents is a norm
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for every coalition, even in case of conflicting preferences,
i.e. in case of conflict the interest of the grand coalition
prevails. The sixt one that there are no empty normative
systems. The last validity says that obligations for Nature
coincides with its ability. Notice that in Coherent Coalition
Logic this means that obligation for Nature can only be a
trivial choice.

6.1 Back to the Game

Norms of Conformity Consider the model Mc of the
Game of Conformity described in Table 1.

Nature is obligated only a trivial choice:

Mc |= O(∅,φ) ↔ Aφ

What is interesting also is that also players are individu-
ally permitted only nontrivial choices:

Mc |= ¬P (R,whiteR) ∧ ¬P (R, blackR)
∧ ¬P (C, blackC) ∧ ¬P (C, blackC).

But as coalition they are:

Mc |= P ({R,C}, whiteR,C)∧Mc |= P ({R,C}, blackR,C)

No precise indication of the choices is given by the re-
sulting obligation:

Mc |= O({R,C}, (whiteR, C) ∨ (blackR,C))

This is revealing of the form of the game: no equilib-
rium can be achieved by the agents acting independently,
but only as a coalition 4. As a matter of fact, looking at the
obligations for this game tells us more than just a static fact
about coalitional choice. In Coordination games only the
grand coalition can make an optimal choice, which suggest
that the grand coalition is in fact obligated to form.

7 Conclusion and Future Work

In this paper we studied those interactions in which Na-
ture does not play an active role, and we proposed a deontic
logic to indicate their optimal solutions. We provided an
axiomatization of the resulting logic, switching from game-
form interactions to interactions with preferences in order to
analyze gametheoretical examples like Coordination Game.
The work here described allows for several developments.
Among the most interesting ones is the study of the relation
between imposed outcomes and steady states that describe
where the game will actually end up (i.e. Nash Solution,

4Notice that we have no way of detaching from this choice a more
precise command: O(C, φ ∨ ψ) → ((O(C, φ) ∨ O(C, ψ))) is not a
validity.

the Core etc...). As suggested by the last example, some
obligations say something about the convenient dynamics
to achieve a socially optimal outcome. One idea is to talk
explicitly about such dynamics. Conversely another feature
that is worth studying is those structures in which Pareto Ef-
ficiency is not always present. Agents will reckon some ac-
tions as optimal even though there is no social equilibrium
that can be ever reached. This can be achieved by talking
explicitly about preferences in the language as done for in-
stance in [8]. The study of the interaction between choices
and preferences has shown to have an interesting connection
with deontic logic that, viewed in a multiagent perspective,
allows to talk about those desirable properties that an in-
teraction should have. As system designers, our aim is at
last to construct efficient social procedures that can guaran-
tee a socially desirable property to be reached. We think
that normative system design is at last a proper part of the
Social Software enterprise [6].
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Abstract

We present a framework for verifying systems composed
of heterogeneous reasoning agents, in which each agent
may have differing knowledge and inferential capabilities,
and where the resources each agent is prepared to commit
to a goal (time, memory and communication bandwidth) are
bounded. The framework allows us to investigate, for exam-
ple, whether a goal can be achieved if a particular agent,
perhaps possessing key information or inferential capabili-
ties, is unable (or unwilling) to contribute more than a given
portion of its available computational resources or band-
width to the problem.

1. Introduction

A distributed approach to problem solving involves the
collective effort of multiple agents combine their knowl-
edge and information to solve problems which no single
agent could solve alone or to solve problems more effec-
tively. For a given problem, for different multi agent sys-
tems, different solution strategies will be preferred depend-
ing on the relative costs of computational and communi-
cation resources for each agent. These tradeoffs may be
different for different agents (e.g., reflecting their compu-
tational capabilities or network connection) and may reflect
the agent’s commitment to a particular problem. For a given
set of agents with specified inferential abilities and resource
bounds it may not be clear whether a particular problem
can be solved at all, or, if it can, what computational and
communication resources must be devoted to its solution by
each agent.

There has been considerable work in the agent literature
on distributed problem solving in general e.g., [15, 20, 22]
and on distributed reasoning in particular [1, 8]. Much of

∗An extended version of this paper will be presented at AAMAS 2008,
Estoril, Portugal.

this work analyses the time and communication complex-
ity of distributed reasoning algorithms. In this paper we
present a framework for reasoning about tradeoffs between
time, memory and communication in systems of distributed
reasoning agents. In contrast to previous work, e.g., [3]
which focused primarily on memory limitations of single
reasoners, our approach allows us to specify bounds on the
number of messages the agents can exchange, allowing the
investigation of tradeoffs between different resources. We
introduce a novel epistemic logic, BMCL, for specifying
resource-bounded reasoners. Critically, the logic allows up-
per bounds on the resource commitments (time, memory
and communication) of each agent in the system to be spec-
ified. The logic is sound and complete and admits effi-
cient model-checking. Using simple resolution examples,
we show how to encode systems of distributed reasoning
agents specified in the logic in a model checker, and verify
some example properties.

2 Distributed Reasoners

We define the ‘shape’ of a proof in terms of the max-
imum space requirement at any step in the proof and the
number of inference steps it contains. The lower bound on
space for a given problem is then the least maximum space
requirement of any proof, and the lower bound on time is
the least number of inference steps of any proof. In general,
a minimum space proof and a minimum time proof will be
different (have different shapes). Bounding the space avail-
able for a proof will typically increase the number of infer-
ence steps required and bounding the number of steps will
increase the space required.

We define the bounds on a reasoning agent in terms of its
available resources expressed in terms of memory, time and
communication. We assume that the memory required for
a particular proof can be taken to be its space requirement
(e.g., the number of formulas that must be simultaneously
held in memory) times some constant. For a single threaded
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agent, the number of inference steps executed times some
constant can be taken as a measure of the time necessary
to solve the problem. The communication requirement of
a proof is taken to be the number of messages exchanged
with other agents. In what follows, we ignore the constants
and assume that the units of problem size and resources are
the same.

In the distributed setting we distinguish between sym-
metric problem distributions, where all agents have the
same premises and the same rules of inference, and asym-
metric problem distributions where different premises may
be assigned to different agents and/or the agents use dif-
ferent rules of inference. Similarly, we can distinguish be-
tween symmetric resource distributions (when all agents
have the same resource bounds) and asymmetric resource
distributions, (when different agents have different resource
bounds).

Distribution does not necessarily change the shape (max-
imum space requirement and number of inference steps)
of a proof. However, in a distributed setting the tradeoffs
between memory and time bounds is complicated by com-
munication. Unlike memory and time, communication has
no direct counterpart in the proof. However like memory,
communication can be substituted for time (e.g., if part of
the proof is carried out by another agent), and, like time,
it can be substituted for memory (e.g., if a lemma is com-
municated by another agent rather than having to be remem-
bered). In the distributed setting, each agent has a minimum
memory bound which is determined by its inference rules
and which may be smaller than the minimum space require-
ment for the problem. If the memory bound for all agents
taken individually is less than the minimum space require-
ment for the problem, then the communication bound must
be greater than zero.

In the next section, we present measures of space, time
and communication for distributed reasoning agents which
allow us to make these tradeoffs precise.

3 Measuring Resources

We assume a set of n agents where each agent i has a set
of propositional inference rules Ri (for example, Ri could
contain conjunction introduction and modus ponens, or it
could contain just a single rule of resolution) and a set of
premises or a knowledge base Ki. The notion of a deriva-
tion, or a proof of a formula G from Ki is standard. We
view the process of producing a proof of G as a sequence
of configurations or states of a reasoner, starting from an
empty configuration, and producing the next configuration
by one of four operations: Read copies a formula from Ki

into the current configuration; Infer applies a rule from Ri

to formulas in the current configuration; Skip leaves the
configuration unchanged; and Copy copies a formula α into

the next configuration of agent j if α is in the current config-
uration of agent i, j != i. Note that Read, Infer and Copy
may overwrite a formula from the previous configuration.
The goal formula is derived if it occurs in the configuration
of one of the agents.

We take the time complexity of a derivation to be the
length of the sequence of configurations. Space complex-
ity is taken to be the size of configurations as in [6].1 The
size of a configuration can be measured either in terms of
the maximal number of formulas appearing in any configu-
ration or in terms of the number of symbols required to rep-
resent a configuration. Clearly, for some inference systems,
for example, where the set of inference rules contains both
conjunction introduction and conjunction elimination, the
first size measure results in constant space usage. However,
for other systems, such as resolution, counting formulas re-
sults in non-trivial space complexity [13]. In this paper, we
take the size of a configuration to be the maximal number of
formulas, since all the reasoning systems we consider have
a non-trivial space complexity for this measure.

# Configuration Operation
1 { }
2 {A1} Read
3 {A1, A2} Read
4 {A1, A1 ∧A2} Infer
5 {A1 ∧A2, A1 ∧A2 → B1} Read
6 {A1 ∧A2, B1} Infer

Figure 1. Example derivation using
∧

I and
MP

As an illustration, Figure 1 shows the space and time
complexity of the derivation of the formula B1 from
A1, A2, A1 ∧ A2 → B1 in an inference system which
contains only conjunction introduction and modus ponens.
The length of the proof is 6 and the space usage is 2 (at
most 2 formulas need to be present in the configuration
at any given time). It is worth observing that the infer-
ence system consisting of just conjunction introduction and
modus ponens does not have constant space complexity
when space is measured as the number of formulas; a se-
quence of derivation examples requiring (logarithmically)
growing space can easily be constructed starting from the
example above, and continuing with a derivation of C1 from
A1, A2, A3, A4, A1∧A2 → B1, A3∧A4 → B2, B1∧B2 →
C1, etc.

Most research in time and space complexity of proofs

1We deviate from [6] in that we do not have an explicit erase opera-
tion, preferring to incorporate erasing (overwriting) in the read and infer
operations. This obviously results in shorter proofs; however including an
explicit erase operation gives proofs which are no more than twice as long
as our proofs if we don’t require the last configuration to contain only the
goal formula.
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# Configuration Operation
1 { }
2 {A1 ∨A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read
4 {A1 ∨A2, A2} Infer
5 {A2, A1 ∨ ¬A2} Read
6 {A2, A1 ∨ ¬A2,¬A1 ∨ ¬A2} Read
7 {A2,¬A2,¬A1 ∨ ¬A2} Infer
8 {∅,¬A2,¬A1 ∨ ¬A2} Infer

Figure 2. Example derivation using resolu-
tion

has focused on the lower bounds for the inference system as
a whole. While we are interested in the lower bounds, we
are also interested in the trade-offs between time and space
usage for particular derivations. For example, consider a set
of premises A1, A2, A3, A4, A1∧A2 → B1, A3∧A4 → B2,
B1 ∧B2 → C1 and a goal formula A1 ∧A2 ∧ C. It is pos-
sible to derive the goal from the premises using conjunction
introduction and modus ponens and configurations of size
3 in 17 steps (deriving A1 ∧ A2 twice). On the other hand,
with configurations of size 4 the proof is 3 steps shorter.

Different inference systems have different complexity
and different tradeoffs. Figure 2 illustrates the (non-trivial)
space complexity of resolution proofs in terms of the num-
ber of formulas in a configuration. The example, which is
due to [13], shows the derivation of an empty clause by
resolution from the set of all possible clauses of the form

∼A1∨ ∼A2 ∨ . . .∨ ∼An

(where∼Ai is either Ai or ¬Ai), for n = 2. Its space usage
is 3 and the length of the proof is 8.

In the multiagent case, when several reasoners can com-
municate to derive a common goal, an additional resource
of interest is how many messages the reasoners must ex-
change in order to derive the goal. In the distributed setting,
we assume that each agent has its own set of premises and
inference rules and its own configuration, and that the rea-
soning of the agents proceeds in lock step.

The goal formula is derived if it occurs in the config-
uration of one of the agents. Our model of communica-
tion complexity is based on [25], except that we count the
number of formulas exchanged by the agents rather than the
number of bits exchanged. The communication complexity
of a joint derivation is then the (total) number of Copy op-
erations in the derivation.

In general, in a distributed setting, trade-offs are possible
between the number of messages exchanged and the space
(size of a single agent’s configuration) and time required for
a derivation. The total space use (the total number of formu-
las in all agent’s configurations) clearly cannot be less than
the minimal configuration size required by a single reasoner

Agent 1 Agent 2
# Configuration Op. Configuration Op.
1 {} {}
2 {A1 ∨A2} Read {A1 ∨ ¬A2} Read
3 {A1 ∨ A2,¬A1 ∨ A2} Read {¬A1 ∨ ¬A2, A1 ∨ ¬A2} Read
4 {A1 ∨A2, A2} Infer {¬A2, A1 ∨ ¬A2} Infer
5 {A1 ∨ ¬A2, A2} Read {¬A2, A2} Copy
6 {A1, A2} Infer {{}, A2} Infer

Figure 3. Example derivation using resolu-
tion with two agents

to derive the goal formula from the union of all knowledge
bases using all of the available inference rules, however this
can be distributed between the agents in different ways, re-
sulting in different numbers of exchanged messages. Sim-
ilarly, if parts of a derivation can be performed in paral-
lel, the total derivation will be shorter, though communica-
tion of the partial results will increase the communication
complexity. As an illustration, figure 3 shows one possible
distribution of the resolution example in figure 2. As can
be seen, two communicating agents can solve the problem
faster than a single agent.

4 A Bounded Memory and Communication
Logic BMCL

In this section we present a temporal epistemic logic
BMCL which allows us to describe a set of reasoning
agents with bounds on memory and on the number of mes-
sages they can exchange. In this logic, we can express state-
ments like ‘the agents will be able to derive the goal formula
in n inference steps’. The bounds on memory and commu-
nication ability are expressed as axioms in the logic. In this
paper, as an example, we have chosen to axiomatise a set
of agents reasoning using resolution. Other reasoning sys-
tems can be axiomatised in a similar way, and we briefly
sketch how to add model conditions and axioms for reason-
ers which reason using conjunction introduction and modus
ponens to our logic at the end of this section.

Let the set of agents be AG = {1, 2, .., nAG}. For sim-
plicity, we assume that they agree on a finite set PROP
of propositional variables (this assumption can easily be re-
laxed, so that only some propositional variables are shared).
Since each agent uses resolution for reasoning, we assume
that all formulas of the internal language of the agents are
in the form of clauses. For convenience, we define a clause
as a set of literals in which a literal is a propositional vari-
able or its negation. Then the set of literals is defined as
LPROP = {p,¬p|p ∈ PROP}. If L is a literal, then
¬L is ¬p if L is a propositional variable p, and p if L is of
the form ¬p. Let Ω be the set of all possible clauses over
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PROP , i.e., Ω = ℘(LPROP ). Note that Ω is finite.
The only rule of inference that each agent has is the res-

olution rule which is defined as follows:

α ! L β ! ¬L

(α \ {L}) ∪ (β \ {¬L}) Res

which states that if there are two clauses α and β such that
one contains a literal L and the other contains ¬L, then we
can derive a new clause (α \ {L}) ∪ (β \ {¬L}).

Each agent i has a memory of size nM (i) where one unit
of memory corresponds to the ability to store an arbitrary
clause. Agent i can read clauses from its set of premises
Ki. We assume that each Ki is finite. The communication
ability of the agents is expressed by the copy action which
copies a clause from another agent’s memory. The limit on
each agent’s communication ability is nC(i): in any valid
run of the system, agent i can perform at most nC(i) copy
actions.

4.1 Syntax of BMCL

The syntax of BMCL is defined inductively as follows.

• # is a well-formed formula (wff) of BMCL.

• If α is a clause, then Br
i α is a wff of BMCL, for all

i ∈ AG.

• If α is a clause, then Bc
i α is a wff of BMCL, for all

i ∈ AG.

• If φ and ψ are wff, then so are ¬φ, φ ∧ ψ.

• If φ and ψ are wff, then so are Xφ, φUψ, Y φ, φSψ
and Aφ.

Classical abbreviations for ∨, →, ↔ and ⊥ are defined as
usual.

The language contains both temporal and epistemic
modalities. For the temporal part of BMCL, we have
PCTL∗, a branching time temporal logic with the past op-
erator.2 Intuitively, PCTL∗ describes infinite trees, or all
possible runs of the system, over discrete time. In the tem-
poral logic part of the language, X stands for next step, U
for until, Y for previous step, S for since and A for ‘on
all paths’. We will also use abbreviations Fφ ≡ #Uφ for
some time in the future, Pφ ≡ #Sφ for some time in the
past, Eφ ≡ ¬A¬φ for on some path and start ≡ ¬Y# for
the starting state of the system. The epistemic part of the
language consists of belief modalities Br

i α, which means
that agent i has read α from its knowledge base or derived
it, and Bc

i α, which means that i has copied α from another
agent. We define Biα (agent i believes α) to be Br

i α∨Bc
i α.

2The reason we use PCTL∗ rather than CTL∗ is that we need the
past operator to express the bound on agent communication.

4.2 Semantics of BMCL

The semantics of BMCL is defined by BMCL tree-
like transition systems. A BMCL transition system M =
(S, R, V r, V c) is defined as follows.

• S is a non-empty set of states.

• R ⊆ S×S is a total binary relation, i.e. for any s ∈ S,
there exists t ∈ S such that (s, t) ∈ R. Moreover, it is
also required that (S, R) is a tree-frame. A branch σ is
an infinite sequence (s0, s1, ..) such that (si, si+1) ∈
R for all i ≥ 0, σi denotes the element si of σ and σ≤i

is the prefix (s0, s1, .., si) of σ. The set of all branches
is denoted as BR. Note that since (S, R) is a tree-
frame every state s has a unique past past(s) = σ≤i

where σi = s.

• V r : S × AG → ℘(Ω), is a mapping that defines
for each state which formulas an agent believes due to
reading or inference.

• V c : S × AG → ℘(Ω), is a mapping that defines for
each state which formulas an agent copied from the
memories of other agents.

The truth of a BMCL formula in a state at point n of a
path σ of M is defined inductively as follows:

• M,σ, n |= Br
i α iff α ∈ V r(σn, i),

• M,σ, n |= Bc
i α iff α ∈ V c(σn, i),

• M,σ, n |= ¬φ iff M,σ, n .|= φ,

• M,σ, n |= φ ∧ ψ iff M,σ, n |= φ and M,σ |= ψ,

• M,σ, n |= Xφ iff M,σ, n + 1 |= φ,

• M,σ, n |= φUψ iff ∃m ≥ n such that ∀k ∈ [n, m)
M,σ, k |= φ and M,σ,m |= ψ,

• M,σ, n |= Y φ iff n > 0 and M,σ, n− 1 |= φ,

• M,σ, n |= φSψ iff ∃m ≤ n such that ∀k ∈ (m, n]
M,σ,m |= φ and M, σ, k |= ψ,

• M,σ, n |= Aφ iff ∀σ′ ∈ BR such that σ′≤n = σ≤n,
M,σ′, n |= φ.

Now we describe conditions on the models. The first set
of conditions refers to the accessibility relation R. The in-
tuition behind the conditions is that R corresponds to the
agents executing actions 〈a1, . . . , anAG〉 in parallel, where
action ai is a possible action (transition) for the agent i
in a given state. Actions of each agent i are: Readi,α,β

(reading a clause α from the knowledge base and erasing
β), Resi,α1,α2,L,β (resolving α1 and α2 and erasing β),
Copyi,α,β (copying α from another agent and erasing β),
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Erasei,α (erasing α), and Nulli (doing nothing), where
α,α1, α2, β ∈ Ω and L ∈ LPROP .3 Intuitively, β is an
arbitrary clause which may or may not be in the agent’s
memory, which gets overwritten in this transition. If the
agent’s memory is full (|V r(s, i)| + |V c(s, i)| = nM (i)),
then β has to be in V r(s, i)∪V c(s, i), otherwise we cannot
add an extra formula to it (this would violate the condition
on memory defined below). Not all actions are possible in
any given state (for example, to perform a resolution step
from state s, the agent has to have two resolvable clauses
assigned in s). Let us denote the set of all possible actions
by agent i in state s by Ri(s).

Below is the definition of Ri(s):

Definition 4.1 [Available actions] For every state s and
agent i,

1. Readi,α,β ∈ Ri(s) iff α ∈ Ki and β ∈ Ω, or if
|V r(s, i)| + |V c(s, i)| = nM (i) then β ∈ V r(s, i) ∪
V c(s, i).

2. Resi,α1,α2,L,β ∈ Ri(s) iff α1, α2 ∈ Ω, α1 # L, α2 #
¬L, α1, α2 ∈ V r(s, i) ∪ V c(s, i), α = (α1 \ {L}) ∪
(α2 \ {¬L}) /∈ Ki and β is as before.

3. Copyi,α,β ∈ Ri(s) iff there exists j $= i such that
α ∈ V r(s, j) ∪ V c(s, j) and past(s) does not contain
more than nC(i) − 1 transitions of the form Copyi,β ,
and β is as before.4

4. Nulli is always in Ri(s).

5. There are no conditions on Erasei,α ∈ Ri(s).

#

Now we define effects of actions on the agent’s state (as-
signments V r(s, i) and V c(s, i)).

Definition 4.2 [Effects of actions] For each i ∈ AG, the
result of performing an action a in state s is defined if
a ∈ Ri(s) and has the following effect on the assignment
of clauses to i in the successor state t:

1. if a is Readi,α,β : V r(t, i) = (V r(s, i) \ {β}) ∪ {α}
and V c(t, i) = V c(s, i) \ {β}.

2. if a is Resi,α1,α2,L,β : V r(t, i) = (V r(s, i) \ {β}) ∪
{α} and V c(t, i) = V c(s, i) \ {β}, where α = (α1 \
{L}) ∪ (α2 \ {¬L}).

3The Erasei,α action is introduced for purely technical reasons, to
obtain a simpler axiomatisation of the system. The optimal sequences of
actions found by the system when verifying properties of agents will con-
tain no Erase actions so will not affect the verification process.

4Assume that the state contains a communication counter for each agent
i, which is set to 0 in the start state and is incremented every time i per-
forms a copy action. After the counter reaches nC(i), agent i cannot per-
form any more copy actions.

3. if a is Copyi,α,β : V c(t, i) = (V c(s, i) \ {β}) ∪ {α}
and V r(t, i) = V r(s, i) \ {β}.

4. if a is Nulli: V r(t, i) = V r(s, i) and V c(t, i) =
V c(s, i)

5. if a is Erasei,α then V r(t, i) = V r(s, i) \ {α} and
V c(t, i) = V c(s, i) \ {α}, where α ∈ Ω.

#

Definition 4.3 BMCM(K1, ..,KnAG , nM , nC) is the set
of models M = (S, R, V,C) such that:

1. For every s and t, R(s, t) iff for some tuple of actions
〈a1, . . . , anAG〉, ai ∈ Ri(s) and the assignment in t
satisfies the effects of ai for every i in {1, . . . , nAG}.

2. For every s and a tuple of actions 〈a1, . . . , anAG〉, if
ai ∈ Ri(s) for every i in {1, . . . , nAG}, then there
exists t ∈ S such that R(s, t) and t satisfies the effects
of ai for every i in {1, . . . , nAG}.

3. The bound on each agent’s memory is set by the fol-
lowing constraint on the mappings V r and V c:

|V r(s, i)|+|V c(s, i)| ≤ nM (i) for all s ∈ S and i ∈ AG

#

Note that the bound nC(i) on each agent i’s communication
ability (no branch contains more than nC(i) Copy actions
by agent i) follows from the fact that Copyi is only enabled
if i has performed fewer than nC(i) copy actions in the past.

4.3 Axiomatisation of BMCL

Before we give an axiomatisation for the set of models
defined above, we need the following abbreviations for ex-
pressing that i has performed at least k copy actions in the
past. A successful copying of a clause α by agent i from an
agent j is defined by the following formula:

copied(i, j, α) ≡ Bjα ∧ ¬Biα ∧XBc
i α

Copying of any clause from any agent by agent i is defined
as follows:

copiedi ≡
∨

j∈AG, α∈Ω

copied(i, j, α)

So to say that there are at least k copy actions in agent i’s
past, we can use

C≥i (k) = (Y P (copiedi ∧ Y P (copiedi ∧ . . . Y P (copiedi) . . .)︸ ︷︷ ︸
k times
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and to say that there are fewer than k copy actions in agent
i’s past, we can say

C≤
i (k) = ¬(Y P (copiedi ∧ Y P (copiedi ∧ . . . Y P (copiedi) . . .)︸ ︷︷ ︸

k+1 times

To define exactly k copies, we can use Ci(0) = C≤
i (0) and

Ci(k) = C≥
i (k) ∧ C≤

i (k) for k > 0.
Consider the following set of axiom schemata:

A1 Axioms and rules of PCTL∗ as given in [24].

A2
∧

αq∈Q Biαq ∧Ci(n) → EX(
∧

αq∈Q Biαq ∧Ci(n)∧
Br

i α) for all α ∈ Ki, i ∈ AG, Q ⊆ Ω with |Q| <
nM (i), and n ≥ 0.

A3
∧

αq∈Q Biαq ∧ Ci(n) ∧ Biα1 ∧ Biα2 →
EX(

∧
αq∈Q Biαq ∧ Ci(n) ∧ Biα) for any α1

and α2 such that α1 & L and α2 & ¬L for some literal
L, α = (α1 \ {L}) ∪ (α2 \ {¬L}) (∈ Ki, Q ⊆ Ω with
|Q| < nM (i), and n ≥ 0.

A4
∧

αq∈Q Biαq ∧ Ci(n) ∧ Bjα ∧ C≤
i (nC(i)) →

EX(
∧

αq∈Q Biαq ∧Ci(n + 1)∧Bc
i α) for all i (= j ∈

AG, Q ⊆ Ω with |Q| < nM (i), and n ≥ 0.

A5 EX(Biα1 ∧Biα2) → Biα1 ∨Biα2

A6 EX(¬Biα1 ∧ ¬Biα2) → (¬Biα1 ∨ ¬Biα2)

A7 EX(Br
i α ∧ Ci(n)) → Br

i α ∨ (¬Br
i α ∧ Ci(n)) for all

α ∈ Ki

A8 EX(Br
i α ∧ Ci(n)) → Br

i α ∨ (¬Br
i α ∧∨

(α1,α2)∈Res(α)(Biα1 ∧ Biα2 ∧ Ci(n))) for all
α /∈ Ki and Res(α) = {(α1, α2) ∈ Ω × Ω|α1 & L,
α2 & ¬L and α = (α1 \ {L}) ∪ (α2 \ {¬L})} for
some literal L and n ≥ 0

A9 EX(Bc
i α ∧ Ci(n)) → Bc

i α ∨ (¬Bc
i α ∧ Ci(n − 1) ∧

(
∨

j∈AG Bjα))

A10 Biα1 ∧ .. ∧ BiαnM → ¬BiαnM+1 where i =
1, .., nAG, and αi (= αj for all i (= j

A11 C≤
i (nC(i))

A12
∧

j∈J EX(
∧

q∈Q Bjαq ∧ Cj(kj)) →
EX

∧
j∈J(

∧
q∈Q Bjαq ∧Cj(kj)) where J ⊆ AG and

all indices j are distinct, and Q ⊆ Ω.

A13 φ → EXφ

Let BMCL(K1, ..,KnAG , nM , nC) be the logic defined
by the our axiomatization. Then we have the following re-
sult.

Theorem 4.4 BMCL(K1, ..,KnAG , nM , nC)
is sound and weakly complete with respect to
BMCM(K1, ..,KnAG , nM , nC).

Proof. The proof of soundness is standard. Due to lack of
space, we only prove validity of the first BMCL axiom.

Let us consider A2 and a model M = (S, R, V r, V c) of
BMCM
(K1, . . . ,KnAG , nM ). Let σ = (s0, s1, . . .) ∈ BR, it is re-
quired to prove for any m, that if M,σ,m |=

∧
αq∈Q Biαq∧

Ci(n), then M, σ, m |= EX(
∧

αq∈Q Biαq ∧Ci(n)∧Brα)
where α ∈ Ki, i ∈ AG, Q ⊆ Ω with |Q| < nM (i)
and n ≥ 0. Since α ∈ Ki, Readi,α,β ∈ Ri(σn) for
some β ∈ Ω \ Q. Therefore, there exists t ∈ S such
that R(s, t) and t satisfies the effects of Readi,α,β . In
other words, we obtain V r(t, i) = V r(s, i) ∪ {α} \ {β}
and V c(t, i) = V c(s, i) \ {β}, this shows V r(t, i) & α.
Since M, σ, m |=

∧
αq∈Q Biαq, V r(s, i) ∪ V c(s, i) & αq

for all q ∈ Q. Moreover, since |Q| < nM (i), we have
β ∈ Ω \ Q, therefore V r(t, i) ∪ V c(t, i) & αq. Then,
M, σ′, m + 1 |=

∧
αq∈Q Biαq ∧ Brα for some σ′ ∈ BR

such that σ′≤m+1 = (σ1, . . . ,σm, t).
Since M,σ, m |= Ci(n), we have that agent i has per-

formed exactly n copy actions on the prefix (σ1, . . . ,σm).
Moreover, the action that agent i performs between σm and
t is to read α from Ki, therefore it has still performed ex-
actly n copy actions on the prefix (σ1, . . . ,σm, t). Then,
it is straightforward that M,σ′, m + 1 |= Ci(n). That
gives us M, σ′, m + 1 |=

∧
αq∈Q Biαq ∧ Brα ∧ C(i, n).

Since σ′≤m = σ≤m and R(σm, t), we obtain M,σ, m |=
EX(

∧
αq∈Q Biαq ∧ Ci(n) ∧Brα).

To prove completeness, a satisfying model for a consis-
tent formula is constructed as in the completeness proof of
PCTL∗ from [24]. Then we use the axioms to show that
this model is in BMCM(K1, . . ., KnAG , nM , nC). QED

4.4 Systems of Heterogeneous Reasoners

Changing the logic to accommodate reasoners which
reason using a different set of inference rules rather than res-
olution is relatively straightforward. As an illustration, we
show how to add model conditions and axioms for reasoners
which use modus ponens and conjunction introduction. We
assume that the knowledge base of these reasoners contains
literals and implications of the form L1 ∧ . . . ∧ Ln → L.

First of all, we need to change the conditions on mod-
els so that instead of using the Res action, a reasoner could
change the state by performing MP and AND actions. Let
i be an (MP , AND) reasoner. Define Ωi as Ki closed
under subformulas and the following conjunction introduc-
tion: if Q is a set of distinct literals from Ki, then ∧Q ∈ Ωi.
An agent i has actions Readi,φ,β for any formula φ in Ki,
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Copyi,φ,β for any formula φ ∈ Ωi, Nulli, Erasei, and in-
stead of Res it has MPi,φ1,φ1→φ2,β and ANDi,φ1,φ2,β .

Definition 4.5 [Availability of MP and AND] For any
s ∈ S:

1. MPi,φ1,φ1→φ2,β ∈ Ri(s) iff φ1, φ1 → φ2 ∈
V r(s, i) ∪ V c(s, i) and β ∈ Ωi.

2. ANDi,φ1,φ2,β ∈ Ri(s) iff φ1, φ2 ∈ V r(s, i)∪V c(s, i)
and β ∈ Ωi.

#

Definition 4.6 [Effects of MP and AND] For every s ∈
S, the result of performing action a is defined if a ∈ Ri(s)
and has the following effect on the resulting state t:

1. if a is MPi,φ,φ→φ2,β then V r(t, i) = V r(s, i)∪{φ2}\
{β} and V c(s, i) = V c(t, i) \ {β}.

2. if a is ANDi,φ1,φ2,β iff V r(t, i) = V c(s, i) ∪ {φ1 ∧
φ2} \ {β} and V c(s, i) = V c(t, i) \ {β}.

#

The corresponding axioms for the (MP , AND) rea-
soner are as follows:
A13

∧
q∈Q Biφq ∧ Ci(n) ∧Biφ1 ∧Bi(φ1 → φ2) →

EX(
∧

q∈Q Biφq ∧Ci(n)∧Biφ2) where Q ⊆ Ωi with
|Q| < nM (i)

A14
∧

q∈Q Biφq ∧ Ci(n) ∧ Biφ1 ∧ Biφ2 →
EX(

∧
q∈Q Biφq ∧ Ci(n) ∧ Bi(φ1 ∧ φ2)) where

Q ⊆ Ωi with |Q| < nM (i), and φ1, φ2 ∈ Ωi.

A15 EX(Bi(φ1∧φ2)∧Ci(n)) → (Bi(φi∧φ2)∨(¬Bi(φi∧
φ2) ∧Biφ1 ∧Biφ2 ∧ Ci(n)))

A16 EX(Biφ2 ∧ Ci(n)) → (Biφ2 ∨ (¬Biφ2 ∧ Ci(n)∧∨
φ1→φ2∈Ki

(Biφ1 ∧Bi(φ1 → φ2))) for all φ2 '∈ Ki.
Now we can add the conditions and axioms for the (MP ,

AND) reasoner to the system for resolution reasoners and
obtain an axiomatisation for the heterogeneous system of
reasoners.

5 Verifying Resource Bounds

The logic BMCL allows us to express precisely how
beliefs of a set of resource-bounded agents change over
time, and, given a memory and communication bound
for each agent, to verify formulas which state that a cer-
tain belief will or will not be acquired within a certain
number of steps. For example, given a system of two
agents with premises K1 = {{p1, p2}, {¬p1, p2}} and
K2 = {{p1,¬p2}, {p1,¬p2}}, with bounds nM (1) = 2,

nM (2) = 2 (both agents have 2 memory cells) and nC(1) =
0, nC(2) = 1 (agent 1 cannot copy anything and agent 2 can
copy one clause), we can prove that start → EX5B2({})
(i.e., from the start state, the agents can derive the empty
clause in 5 steps).

However, rather than deriving such properties by hand,
it is more convenient to use an automatic method to ver-
ify them. In this section, we describe how the models in
BMCM(K1, ..,KnAG , nM , nC) can be encoded as an in-
put to a model-checker to allow the automatic verification
of the properties expressing resource bounds.

5.1 Model Checker Encoding

It is straightforward to encode a BMCM model of such
a system for a standard model checker, and to verify re-
source bounds using existing model checking techniques.
For the examples reported here, we have used the Mocha
model checker [7].

States of the BMCM models correspond to an assign-
ment of values to state variables in the model-checker. The
state variables representing an agent’s memory are organ-
ised as a collection of ‘cells’, each holding at most one
clause. For an agent i with memory bound nM (i), there are
nM (i) cells. Each cell is represented by a pair of bitvectors,
each of length k = |PROP |, representing the positive and
negative literals in the clause in some standard order (e.g.,
lexicographic order). For example, if PROP contains the
propositional variables A1, A2 and A3 with index positions
0, 1 and 2 respectively, the clause A1 ∨ ¬A3 would be rep-
resented by two bitvectors: “100” for the positive literals
and “001” for the negative literals. This gives reasonably
compact states.

Actions by each agent such as reading a premise, res-
olution and communication with other agents are repre-
sented by Mocha atoms which describe the initial con-
dition and transition relation for a group of related state
variables. Reading a premise (Readi,α,β) simply sets the
bitvectors representing an arbitrary cell in agent i’s mem-
ory to the appropriate values for the clause α. Resolution
(Resi,α1,α2,L,β) is implemented using simple bit operations
on cells containing values representing α1 and α2, with
the results being assigned to an arbitrary cell in agent i’s
memory. Communication (Copyi,α,β) is implemented by
copying the values representing α from a cell of agent j
to an arbitrary cell of agent i. To express the communica-
tion bound, we use a counter for each agent which is incre-
mented each time a copy action is performed by the agent.
After the counter for agent i reaches nC(i), the Copyi,α,β

action is disabled.
Mocha supports hierarchical modelling through compo-

sition of modules. A module is a collection of atoms and
a specification of which of the state variables updated by
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# agents Distrib. Memory Comm. Time
1 Symmetric 3 – 8
2 Symmetric 2, 2 1, 0 6
2 Symmetric 3, 3 1, 0 6
2 Symmetric 3, 3 0, 0 8
2 Symmetric 2, 1 1, 1 9
2 Asymmetric 2, 2 2, 1 7
2 Asymmetric 3, 3 2, 1 7
2 Asymmetric 3, 1 1, 0 8

Table 1. Tradeoffs between resource bounds

those atoms are visible from outside the module. In our en-
coding, each agent is represented by a module. A particular
distributed reasoning system is then simply a parallel com-
position of the appropriate agent modules.

The specification language of Mocha is ATL, which in-
cludes CTL. We can express properties such as ‘agent
i may derive belief φ in n steps’ as EF tr(Biα) where
tr(Biα) is a suitable encoding of the fact that a clause α
is present in the agent’s memory (either as a disjunction of
possible values of cell bitvectors, or as a special boolean
variable which becomes true when one of the cells contains
a particular value, for example all 0s for the empty clause).
To obtain the actual derivation we can verify the negation of
a formula, for example AG¬tr(Biα)—the counterexample
trace will show how the system reaches the state where α is
proved.

5.2 Examples

Consider a single agent (agent 1) whose knowledge base
contains all clauses of the form ∼A1∨ ∼A2 where ∼Ai is
either Ai or ¬Ai, and which has the goal of deriving the
empty clause. We can express the property that agent 1
will derive the empty clause at some point in the future as
EF B1{}.

Using the model checker, we can show that deriving the
empty clause requires a memory bound of 3 and 8 time steps
(see Figure 2).5 We can also show that these space and time
bounds are minimal for a single agent; i.e., increasing the
space bound does not result in a shorter proof.

With two agents and a symmetric problem distribution
(i.e., each agent has all the premises ∼ A1∨ ∼ A2), we
can show that a memory bound of 2 (i.e., the minimum
required for resolution) and a communication bound of 1
gives a proof of 6 steps (see Figure 3). Reducing the com-
munication bound to 0 results in no proof, as, with a mem-
ory bound of 2 for each agent, at least one clause must be
communicated from one agent to the other. Increasing the
space bound to 3 (for each agent) does not shorten the proof,

5The space required for problems of this form is known to be logarith-
mic in the number of premises [13].

though it does allow the communication bound to be re-
duced to 0 at the cost of increasing the proof length to 8
(i.e., the single agent case). Reducing the total space bound
to 3 (i.e., 2 for one agent and 1 for the other, equivalent to
the single agent case) increases the number of steps required
to find a proof to 9 and the communication bound to 1 for
each agent. In effect, one agent functions as a cache for a
clause required later in the proof, and this clause must be
copied in both directions.

If the problem distribution is asymmetric, e.g., if one
agent has premises A1 ∨ A2 and ¬A1 ∨ ¬A2 and the other
has premises ¬A1∨A2 and A1∨¬A2, then with a memory
bound of 2 for each agent, we can show that the time bound
is 7, and the communication bound is 2 for the first agent
and 1 for the second. Increasing the memory bound for each
agent to 3 does not reduce the time bound. However the
memory bound can be reduced to 1 and the communication
bound reduced to 1 for one agent and 0 for the other, if the
time bound is increased to 8 (again this is equivalent to the
single agent case, except that one agent copies the clause it
lacks from the other rather than reading it). These tradeoffs
are summarised in Table 1.

Increasing the size of the problem increases the number
of possible tradeoffs, but similar patterns can be seen to the
2-variable case. For example, if the agent’s knowledge base
contain all clauses of the form ∼A1∨ ∼A2∨ ∼A3, then
a single agent requires a memory bound of 4 and 16 steps
to achieve the goal. In comparison, two agents, each with
a memory bound of 2, require 13 steps and 4 messages to
derive the goal.

While extremely simple, these examples serve to illus-
trate the interaction between memory, time and communi-
cation bounds, and between the resource distribution and
the problem distribution.

6 Related Work

There exist several approaches to epistemic logic which
model reasoners as resource-bounded (not logically omni-
scient), including deduction model of belief [21], step logic
and active logic [12, 17], algorithmic knowledge [18, 14,
23], and other syntactic epistemic logics [11, 2, 5, 19]
where each inference step takes the agent into the next (or
some future) moment in time. A logic where the depth of
belief reasoning is limited is studied in [16].

A considerable amount of work has also been done in
the area of model-checking multi-agent systems (see, e.g.,
[10, 9]). However, this work lacks a clear connection be-
tween the way agent reasoning is modelled in agent theory
(which typically assumes that the agents are logically omni-
scient) and the formalisations used for model checking, and
emphasises correctness rather than the interplay between
time, memory, bounds on communications and the ability
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of agents to derive a certain belief.
The current paper extends the work of [3] which pro-

posed a method of verifying memory and time bounds in a
single reasoner which reasons in classical logic using nat-
ural deduction rather than resolution. We also extend the
work in [4] which analyses a system of communicating
rule-based reasoners and verifies time bounds for those sys-
tems, but assumes unlimited memory. As far as we are
aware, the logic we propose in this paper is the first attempt
to analyse time, space and communication bounds of rea-
soners in one logical system, and verify properties relating
to all three resources using a model-checker.

7 Conclusions and Future Works

In this paper, we analyse the time, space and communi-
cation resources required by a system of reasoning agents
to achieve a goal. We give a rigorous definition of the mea-
sures for each of those resources, and introduce an epis-
temic logic BMCL where we can express properties of a
system of resource-bounded reasoning agents. In particular,
we can express bounds on memory and communication re-
sources as axioms in the logic. We axiomatise a system
of agents which reason using resolution (other reasoning
systems can be axiomatised in a similar way), prove that
the resulting logic is sound and complete, and show how
to express properties of the system of reasoning agents in
BMCL. Finally, we show how BMCL transition systems
can be encoded as input to the Mocha model-checker and
how properties, such as existence of derivations with given
bounds on memory, communication, and the number of in-
ference steps, can be verified automatically.

In future work, we plan to consider logical languages
containing primitive operators which would allow us to
state the agents’ resource limitations as formulas in the lan-
guage rather than axioms, and consider agents reasoning
about each other’s resource limitations. We also would like
to consider agents reasoning in a simple epistemic or de-
scription logic.
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Abstract

[8] merges the semantic frameworks of Dynamic Epis-
temic Logic DEL ([1, 3]) and Epistemic Temporal Logic
ETL ([2, 6]). We consider the logic TDEL on the merged
semantic framework and its extension with the labeled
past-operator “Pε” (“The event ε has happened before
which...”). To axiomatize the extension, we introduce a
method to transform a given model into a normal form in
a suitable sense. These logics suggest further applications
of DEL in the theory of agency, the theory of learning, etc.

1. Introduction

[8] provides a framework for generating the models of
Epistemic Temporal Logic (ETL, [2, 6]) from the models of
Dynamic Epistemic Logic (DEL, [1, 3]). In the framework,
the temporal transitions in DEL are captured by sequences
of event models, called DEL-protocols, and each transition
made by a product update is encoded into the tree struc-
tures of ETL. This allows us to say that DEL-models gen-
erate ETL-models. The framework allows for a systematic
comparison between the two major trends, DEL and ETL,
in describing agents’ intelligent interactions, and suggests a
direction for the studies of new logics that are hybrids of the
two.

The main objective of the present paper is to push that
investigation further. [8] studies the logic TPAL of ETL-
models generated by protocols consisting of public an-
nouncements. However, public announcements are just one
kind of event model. Thus we might ask what the logic
would be like if we extend the setting of TPAL to the full
class of event models. In Section 2, we apply the basic
methods in TPAL and obtain an axiomatization of the class
of the ETL-models generated from the class of all DEL-
protocols. We call this extended system TDEL.

After axiomatizing TDEL, in Section 4 we will study the
extension of TDEL with the labeled past-operator Pε, where
Pε reads as “the event ε has occurred before which ϕ.” We

call the resulting system TDEL+P. This is a very natural
operator to add to the context of TDEL, where all succes-
sive updates by event models are encoded as tree structures.
A similar operator has been investigated in [12] in the orig-
inal DEL-context; our objective in the present paper can be
characterized as investigating that operator in the TDEL-
context.

The axiomatization of TDEL+P will be based on one
distinctive feature of the DEL-generated ETL-models.
Given a set X of event models, DEL-generated ETL-
models can be transformed into the models that consist only
of the event models in X or event models with trivial pre-
conditions, and this transformation preserves the truth of
formulas whose only event models are those in X . We call
this model transformation normalization. In Section 3, we
will show that DEL-generated ETL-models can be normal-
ized in this sense, and will apply this fact to the axiomatiza-
tion of TDEL+P.

TDEL and its extension TDEL+P suggest further inter-
esting applications in the theory of agency and the theory
of learning. In modeling agency, some systems model in-
tentionality in terms of agents’ goals to bring about certain
states. And, for instance in [7], for an agent to intend to
bring about a state at which ϕ holds, it is not sufficient for
her just to bring about that state. In the history leading up
to that state, she must also have believed that her actions
would lead to a ϕ state (so she does not bring it about by
accident). This seems exactly to call for a way to express
what an agent used to believe, about what was then her fu-
ture. Also, when expressing that an agent learned some-
thing from an event, we want to be able to say something
like, “After ε took place, i knew that ϕ. But before ε, i did
not know ϕ.” Expressing this sentence requires both a future
and a past modality. We will discuss these issues further in
Section 5.

2. TDEL

We start by generating ETL-models from DEL-models,
though a detailed exposition for ETL and DEL is omitted.
Readers who are not familiar with the systems are invited

132



to refer to e.g. [2, 6] for ETL and to e.g. [10] for DEL.
Below, we fix a finite set A of agents and a countable set At
of propositional letters.

2.1. DEL-Generated ETL-Models

Definition 2.1 An epistemic model M is a tuple 〈W,∼
, V 〉, where W is a nonempty set, ∼: A → W × W , and
V : At → 2W . The set W represents the set of possible
situations, ∼, the indistinguishability relation over the pos-
sible situations for an agent i, and V , the valuation func-
tion. We denote W , ∼ and V by Dom(M), Rel(M), and
V al(M) respectively. Also, we write ∼i for ∼ (i) by con-
vention. !

Definition 2.2 An event model E is a tuple 〈E,→, pre〉,
where E is a nonempty set, →: A → E × E, and pre :
E → LEL, where LEL is the set of epistemic formulas. E
represents the set of possible events,→i, the indistinguisha-
bility relation over the possible events for an agent i, and pre
assigns the preconditions for the possible events. We denote
the domain E of E by Dom(E), and write →i for → (i) by
convention. !

Let E be the class of pointed event models (E, e). Let E∗

be the class of finite sequences of pointed event models.

Definition 2.3 A DEL-protocol is a set P ⊆ E∗, which is
closed under finite prefix. Let ptcl(E) be the class of DEL-
protocols. Given an epistemic model M, a state-dependent
DEL-protocol is a function p : Dom(M) → ptcl(E). !

Given a sequence σ = ε1 . . . εn ∈ E∗, we write σ(n) for
the initial segment of σ of length n (n ≤ len(σ)), and σn

for the nth component of σ. When n > len(σ) or n = 0, σn

and σ(n) are empty. If σ = (E1, e1)(E2, e2) . . . (En, en) ∈
E∗, we write σL and σR for E1 · · · En and e1 · · · en respec-
tively. Thus, for example, if σ = (E1, e1) . . . (En, en), then
(σL)(3) = E1E2E3 and (σR)3 = e3. Clearly, (·)L, (·)R on
the one hand and (·)n, (·)(n) on the other commute. Thus,
we omit parentheses when there is no danger of ambiguity.

Definition 2.4 (σL-Generated Model) Let M = 〈W,∼
, V 〉 be an epistemic model and p, a state-dependant DEL-
protocol on M. Given a sequence σ ∈ E∗, the σL-
generated model, MσL,p = 〈W σL,p,∼σL,p

i , V σL,p〉, is de-
fined by induction on the initial segment of σL:

• W σL
(0),p := W , for each i ∈ A, ∼σL

(0),p

i :=∼i and
V σL

(0),p := V .

• wτ ∈ W σL
n ,p iff

1. w ∈ W ,

2. σL
(n) = τL,

3. wτ(n−1) ∈ W σL
(n−1),p,

4. τ ∈ p(w), and

5. MσL
(n−1),p, wτ(n−1) |= pre(τR

n )

• For each wτ, vτ ′ ∈ Hn (0 < n < len(σL)), wτ ∼σL
(n)

vτ ′ iff wτ(n−1) ∼
σL
(n−1),p

i vτ ′(n−1) and τR
n →i (τ ′)R

n

in τL
n .

• For each p ∈ At, V n+1,p(p) = {wσ ∈ Wn+1,p | w ∈
V (p)}.

Note that, in the definition of ∼i, τL = (τ ′)L = σL
n , and

thus σL = (σ′)L. !

Definition 2.5 (DEL-Generated ETL-Model) Let M =
〈W,∼, V 〉 be an epistemic model and p a state-dependent
DEL-protocol on M. An ETL-model Forest(M, p) =
〈H,∼, U〉 generated from M by p is defined as follows:

• H := {h | ∃w ∈ W , σ ∈
⋃

w∈W p(w) such that h =
wσ ∈ W σL,p}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ′, h ∼i h′

iff wσ ∼σL,p
i vσ′.

• For each p ∈ At and h = wσ ∈ H, h ∈ V ′(p) iff h ∈
V σL,p(p).

We define the class Fst(E) to be the class of all ETL-models
of the form Forest(M, p). !

Given X ⊆ E, we denote by Fsd(X) the class of
ETL-models generated from epistemic models M by state-
dependent protocols p consisting only of elements in X , i.e.,
for every w in M, if σ ∈ p(w), σ ⊆ X∗.

Example 2.6 (Public Announcements) We illustrate the
above construction in public announcement logic with each
event model denoting an announcement or observation of
some true formula. Let M be a model that consists of
w, v, u, each of which are indistinguishable (the ∼ rela-
tion in M is an equivalence relation on w, v, u), where
V (p) = {w, v} and V (q) = {v}. This model is represented
by the three points labeled with w, v, u, respectively at the
bottom of Figure 1. Consider the protocol p where p(w) =
{p, pq,¬q}, p = {p, pq,¬q} and p = {¬q,¬q*, p}. The
DEL-generated ETL-model Forest(M, p) can be visualized
as follows:
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Figure 1. A DEL-generated ETL model.

2.2. Axiomatization of TDEL

The language LTDEL of TDEL extends the language
LEL of epistemic logic by the operator 〈ε〉, where ε ∈ E.
The dual of 〈ε〉 is [ε] defined by ¬〈ε〉¬ as usual.

Let H ∈ Fsd(E) with

H = Forest(M, p) = 〈H, {∼i}i∈A, V 〉.

The semantics of the knowledge operator and the event
model operator are defined by:

• H, h |= Kϕ iff for all h′ such that h ∼i h′,H, h′ |= ϕ.

• H, h |= 〈ε〉ϕ iff hε ∈ H and H, hε |= ϕ.

The boolean cases are defined in the standard way.

Example 2.7 (Semantics in TDEL) Let H be the model
Forest(M, p) in Figure 1. For instance, we have H, w |=
〈p〉〈q〉K(p∧q) butH, w '|= 〈p∧q〉K(p∧q). This illustrates
the fact that in TDEL we cannot treat sequences of events
as single events, while in DEL we can. Also the fact that
we have H, w |= (p ∧ q) ∧ ¬〈p ∧ q〉! violates the schema
〈ε〉! ↔ pre(ε), which is valid in DEL. In TDEL, we only
have 〈ε〉! → pre(ε).

Definition 2.8 The axiomatization TDEL of Fsd(E) is
given by the following axiom schemes and inference rules.

Axioms

PC Propositional validities

Ki Ki(ϕ → ψ) → (Kiϕ → Kiψ)

F1 〈ε〉p ↔ 〈ε〉! ∧ p

F2 〈ε〉¬ϕ ↔ 〈ε〉! ∧ ¬〈ε〉ϕ

F3 〈ε〉(ϕ ∧ ψ) ↔ 〈ε〉ϕ ∧ 〈ε〉ψ

F4 〈ε〉Kiϕ ↔ 〈ε〉! ∧∧
{(ε′)R∈Dom(εL)|εR→i(e′)R} Ki(〈ε′〉! → 〈ε′〉ϕ)

A1 〈ε〉(ϕ → ψ) → (〈ε〉ϕ → 〈ε〉ψ)

A2 〈ε〉! → pre(εR)

Inference Rules

MP If * ϕ → ψ and * ϕ, then * ψ.

k-Nec If * ϕ, then * Kiϕ.

e-Nec If * ϕ, then * [ε]ϕ.

$

Readers are invited to verify that these are sound with re-
spect to Fsd(E).

2.3. Completeness Proof

The proof is given by a variant of the Henkin-style con-
struction. The basic construction is the same as the one in
[8] with minor modifications.

Definition 2.9 (Legal Histories) Let W0 be the set of all
TDEL-maximal consistent sets. We define λn and Hn (0 ≤
n ≤ d(Σ)) as follows:

• Define H0 = W0 and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {hε | h ∈ Hn and 〈ε〉! ∈ λn(h)}. For
each h = h′ε ∈ Hn+1, define λn+1(h) = {ϕ | 〈ε〉ϕ ∈
λn(h′)}.

Given h ∈ Hn, we write λ(h) for λn(h). $

The following can be straightforwardly verified by ap-
pealing to the construction and F2.

Lemma 2.10 For each n ≥ 0, for each σ ∈ Hn, λn(σ) is
a maximally consistent set.

Let Hcan
0 = (H0,∼0, V 0), where ∼0 and V 0 are defined

by

• w ∼0
i v iff {ϕ | Kiϕ ∈ w} ⊆ v.

• For each p ∈ At and w ∈ H0, p ∈ V (w) iff p ∈ w.

Definition 2.11 (Canonical Model) The canonical model
Hcan is a triple 〈Hcan, {∼can

i }i∈A, V can〉, where each item
is defined as follows:

• Hcan =def
⋃∞

i=0 Hi.

• For each wσ, w′σ′ ∈ Hcan, wσ ∼can
i w′σ′

iffdef wσ ∼σL

i w′σ′, where ∼σL

is defined by induc-
tion in the following way:
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– ∼σL
(0)

i =∼0
i

– For each wτ, vτ ′ ∈ Hn (0 < n < len(σL)),

wτ ∼σL
(n) vτ ′ iff wτ(n−1) ∼

σL
(n−1)

i vτ ′(n−1) and
τR
n →i (τ ′)R

n in τL
n .

• For every P ∈ At and h = wσ ∈ Hcan, wσ ∈
V can(P ) iff w ∈ V 0(P ).

#

Proposition 2.12 Let wσ ∼can
i vτ with w, v ∈ W 0, σ =

σ1 . . .σn and τ = τ1 . . . τn. If Kiϕ ∈ λ(wσ), then
Ki(〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(. . . (〈τn〉& →
〈τn〉ϕ) . . . ) ∈ λ(w).

Proof. By induction on n. When n = 0, σ, τ are empty
and thus the claim clearly holds. For the inductive step,
assume that Kiϕ ∈ λ(σ). Then, by the construction of
Hcan, 〈σn〉Kiϕ ∈ λ(wσn−1). By F4, for all events e in σL

n

such that σR
n →i e:

Ki(〈σL
n , e〉& → 〈σL

n , e〉ϕ) ∈ λ(wσ(n−1)).

Here, by the construction of Hcan, σn →i τn. By applying
the IH, we are done. QED

Lemma 2.13 (Truth Lemma) For every ϕ ∈ LTDEL and
h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

Proof. We show by induction on the structure of ϕ ∈ LTDEL

that for each h ∈ Hcan, ϕ ∈ λ(h) iff Hcan, h |= ϕ. The
base and the boolean cases are straightforward.

For the knowledge modality, let h ∈ Hcan with h =
wσ1 · · ·σn (w ∈ W0) and assume Kiψ ∈ λ(h). Suppose
h′ ∈ Hcan with h ∼can

i h′. By construction of the canonical
model, we know that h′ = vτ1 · · · τn for some v ∈ H0 and
τ1 . . . τn ∈ E∗ with w ∼0

i v. By Proposition 2.12, we have
Ki(〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& →
〈τn〉ψ) · · · )) ∈ λ(w).
Since w ∼0

i v, we have by the construction of Hcan,
〈τ1〉& → 〈τ1〉(〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& →
〈τn〉ψ) · · · ) ∈ λ(v).
Now note that
〈τ1〉& ∈ λ(v), 〈τ2〉& ∈ λ(vτ1), . . . , 〈τn〉& ∈
λ(vτ1...τn−1).
Thus, we have
〈τ2〉& → 〈τ2〉(· · · 〈τn−1〉(〈τn〉& → 〈τn〉ψ) · · · ) ∈ λ(vτ1)
〈τ3〉& → 〈τ3〉(· · · 〈τn−1〉(〈τn〉& → 〈τn〉ψ) · · · ) ∈
λ(vτ1τ2)
...
〈τn〉ψ ∈ λ(vτ1 · · · τn−1)

Therefore, ψ ∈ λ(vτ1 · · · τn) = λ(h′). By the induction
hypothesis, Hcan, h′ |= ψ. Therefore, Hcan, h |= Kiψ, as
desired.

For the other direction, let h ∈ Hcan and assume Kiψ '∈
λ(h). For simplicity, let h = wσ1 with w ∈ W0 and
σ1 ∈ E. The argument can easily be generalized to deal
with the general case along the lines of the argument above.
Since λ(h) is a maximally consistent set, we have ¬Kiψ ∈
λ(h). Thus, by Definition 2.9, 〈σ1〉¬Kiψ ∈ λ(w). Us-
ing axiom F2, ¬〈σ1〉Kiψ ∈ λ(w); and so, by Axiom
F4, ¬〈σ1〉& ∨ ¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈

λ(w). Since 〈σ1〉& ∈ λ(w) by construction, it follows that
¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈ λ(w).

Now consider the set v0 = {θ | Kiθ ∈
λ(w)} ∪ {¬

∧
{τ |σ1→iτ in σL

1 }
(〈τ〉& → 〈τ〉ψ)}. We

claim that this set is consistent. Suppose not. Then,
there are formulas θ1, . . . , θm such that *

∧m
j=1 θj →∧

{τ |σ1→iτ in σL
1 }

(〈τ〉& → 〈τ〉ψ) and for j = 1, . . . ,m,
Kiθj ∈ λ(w).

By standard modal reasoning, *
∧m

j=1 Kiθj →∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ). This im-

plies that
∧
{τ |σ1→iτ in σL

1 }
Ki(〈τ〉& → 〈τ〉ψ) ∈

λ(w). However, this contradicts the fact that
¬

∧
{τ |σ1→iτ in σL

1 }
Ki(〈A〉& → 〈A〉ψ) ∈ λ(w), since

λ(w) is a maximally consistent set.
Now using standard arguments (Lindenbaum’s

lemma), there exists a maximally consistent set v
with v0 ⊆ v. By the construction of v, we must
have w ∼0

i v. Also, since v is an mcs such that
¬

∧
{τ |σ1→iτ in σL

1 }
(〈A〉& → 〈A〉ψ) ∈ λ(v), there is

some τ1 such that ¬(〈τ1〉& → 〈τ1〉ψ ∈ λ(v). Other-
wise, v is inconsistent. Therefore, for such τ1, we have
〈τ1〉& ∈ λ(v),¬〈τ1〉ψ ∈ λ(v). Here, by axiom F2,
〈τ1〉¬ψ ∈ λ(v). Hence ¬ψ ∈ λ(vτ1) and therefore
ψ '∈ λ(vτ). By the induction hypothesis, Hcan, vτ1 '|= ψ.
This implies Hcan, wτ1 '|= Kiψ, as desired.

For the event model operator, assume that 〈ε〉ψ ∈ λ(h).
Since 〈ε〉& ∈ λ(h) (for ¬〈ε〉& ∈ λ(h) makes λ(h) incon-
sistent), ψ ∈ λ(hε). By the induction hypothesis, we have
Hcan, hε |= ψ, which implies Hcan, h |= 〈ε〉ψ.

For the other direction, assume Hcan, h |= 〈ε〉ψ. Then,
Hcan, hε |= ψ. By the inductive hypothesis, we have ψ ∈
λ(hε) and thus 〈ε〉ψ ∈ λ(h). QED

All that remains is to show is that Hcan is in the class of
intended models (i.e., is an element of Fsd(E)).

Lemma 2.14 The canonical modelHcan is in Fsd(E). That
is, there is an epistemic model M and local protocol p on
M such that Hcan = Forest(M, p).

Proof. Let Mcan = (W0, {∼0
i }i∈A, V 0) and define pcan :

W0 → E∗ so that pcan(w) = {σ | wσ ∈ Hcan}. Suppose
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thatHpcan = Forest(Mcan, pcan). We claim thatHcan and
Hpcan are the same model. For this, it suffices to show that
for all w ∈ W0 and σ ∈ E∗ we have wσ ∈ Hcan iff wσ ∈
W σ,pcan . For this implies Hcan = Hpcan , where Hpcan is
the domain of Hpcan . Then, by inspecting the construction
of Forest and Definition 2.11, we see that Hcan and Hpcan

are the same model .
We will show by induction on the length of σ ∈ E∗ that

for any w ∈ W0, wσ ∈ Hcan iff wσ ∈ W σ,pcan . The base
case (len(σ) = 0) is clear. Assume that the claim holds for
all σ with len(σ) = n.

Given any σ ∈ E∗ with len(σ) = n, we first show
by subinduction (on the structure of A) that, for all A ∈
LEL, Hcan, wσ |= A iff Mσ,pcan , wσ |= A. The
base and boolean cases are straightforward. Suppose that
Hcan, wσ |= KiB. We must show Mσ,pcan , wσ |= KiB.
Let vσ ∈ W σ,pcan with wσ ∼σ,p

i vσ. By the main induction
hypothesis, we have both vσ ∈ Hcan and wσ ∈ W σ,pcan .
By construction, since wσ ∼σ,pcan

i vτ , we have w ∼0
i v.

Furthermore, wσ ∼can
i vτ . Hence, Hcan, vσ |= B. By

the subinduction hypothesis,Mσ,pcan , vσ |= B. Therefore,
Mσ,pcan , wσ |= KiB.

Coming back to the main induction, as-
sume wσ(n)σn+1 ∈ Hcan. This implies that
〈σn+1〉% ∈ λ(wσ(n)). By truth lemma, we have
Hcan, wσ(n) |= 〈σn+1〉%. This, together with axiom A2,
implies Hcan, wσ |= pre(σR

n+1). From the above subin-
duction, it follows that Mσ(n),pcan , wσ(n) |= pre(σR

n+1)
(recall that pre(e) ∈ LEL for all events e by def-
inition). Thus, by the construction of pcan, we
have wσ(n)σn+1 ∈ W σ(n),pcan . This shows that if
wσ(n)σn+1 ∈ Hcan then wσ(n)σn+1 ∈ W σ(n)σn+1,pcan .
The other direction is similar. QED

The proof of the completeness theorem follows from
Lemma 2.13 and Lemma 2.14 using a standard argument.

Theorem 2.15 TDEL is sound and complete with respect
to Fsd(E).

2.4. TDEL Restricted to Some Class of Protocols

TDEL axiomatizes the class Fsd(E). However, note that
the completeness proof above does not depend on the fact
that E is the set of all pointed event models, but only the fact
that Fsd(E) contains the ETL-models generated from epis-
temic models M by the protocol p that allows all possible
finite sequences of E at each w in M, i.e p(w) = E∗.

Thus, even if we restrict our attention to some X ⊆ E,
the proof should work as well for the class Fsd(X). How-
ever, here we have to be careful that such an X must at
least contain all the “relevant” pointed event models: if
(E , e) ∈ X , then (E , f) ∈ X for all f such that e → f in

E . Otherwise the knowledge modality case of Lemma 2.13
since we need all the “relevant” histories in the present
sense must be included in the canonical model.

Let X ⊆ E. Call X e-closed if, for all E , if there is
ε ∈ X such that εL = E , then for every event e in E , (εL, e)
is in X . Denote by LTDEL(X) the fragment of LTDEL that
only allows the event model operators 〈ε〉 such that ε ∈ X .
Also, let TDEL(X) be the axiomatization as above except
that the axiom schema and the [ε]-necessitation rule can be
instantiated by the event models in X . The following is a
corollary of our completeness proof.

Corollary 2.16 For all e-closed subsets X of E, TDEL(X)
is complete with respect to Fsd(X).

Thus, by changing the parameter X , we could have ax-
iomatizations for various kinds of logic of protocols. In fact,
the logic of public announcement protocols, as is presented
in [8] is a particular version of TDEL(X). We could also
consider the logics of secret message protocols, etc.

3. Normalization of DEL-Generated ETL-
Models

Before we study the proposed extension, we need to turn
our attention to a distinctive property of DEL-generated
ETL-models. The rough idea is that, given a set X of event
models, DEL-generated ETL-models can be transformed
into the models that consist of the event models in X and
the event models with trivial preconditions in such a way
that the truth of the formulas expressed with event models
in X is preserved. We call this model transformation nor-
malization. To formulate this notion here, we need some
definitions.

Definition 3.1 We say that two event models (E,→, pre)
and (E′,→′, pre′) are isomorphic, if (E,→) and (E′,→′)
are isomorphic. Clearly, such an isomorphic relation parti-
tions the set of event models. Given an event model E , let
[E ] be the class of event models isomorphic to E . We call
[E ] the type of E . Also given a finite e-closed subset X of E,
we denote by PREX the conjunction of the preconditions
of the events that occur in X . %

Definition 3.2 (Normalization Function) Let X be a fi-
nite e-closed subset of E. The normalization function with
respect to X is a function fX : E → E such that, for
every pointed event model (E , e) with E = (E,→, pre),
fX((E , e)) = (E ′, e), where E ′ = (E′,→′, pre′) is defined
by:

• E′ = E

• →′ (i) =→ (i)
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• pre′(e) = pre(e) ∨ ¬pre(e) ∨ PREX .

!

The purpose of having this function is to replace cer-
tain pointed event models ε with isomorphic pointed mod-
els with tautologous preconditions. Therefore, this role of
the normalization function does not turn on the particular
form (pre(e) ∨ ¬pre(e)) of the tautology, as given in the
third clause of the definition. However, having the tautol-
ogy of such a form, we can guarantee that, if ε "= ε′, then
fX(ε) "= fX(ε′). Also the third disjunct in the third clause
guarantees that, for all ε ∈ E, fX(ε) "∈ X .

Definition 3.3 Given a finite e-closed subset X of E, a sub-
stitution function for X is a function σX : E → E such that,
for all ε ∈ E,

σX(ε) =

{
ε if ε ∈ X

fX(ε) otherwise

Given a DEL-generated ETL-model H and a history h =
wε1 . . . εn in H, we denote wσX(ε1) . . .σX(εn) by σX(h).
!

Definition 3.4 (Normalization) Let X be an e-closed sub-
set of E. The normalization HσX of a DEL-generated
ETL-model H = (H,∼, V ) with respect to X is a tuple
(H ′,∼′, V ′). σX that satisfies the following conditions:

H′ := {σ(h) | h ∈ H}

σ(h) ∼′
i σ(g) iff h ∼i g.

V ′(p) := {σ(h) | h ∈ V (p)}

!

Example 3.5 (Normalization) We can now illustrate the
manner in which a model can be normalized, and how that
process depends on the set of event models we are interested
in. The process uniformly replaces any event not in the set
with an event that has tautological preconditions. Let our
initial model be the one from Figure 1. If we normalized
this model with respect to the set {p, q,¬q,&}, the model
would not change, since this is the set of all events in the
model. For the other extreme case, if we normalized with
respect to the set ∅, indicating tautologous preconditions by
indexed &’s, we would obtain the following:

On the other hand, if we normalized with respect to some
subset of the expressions in the model, we would replace
some events and keep others.

Proposition 3.6 Let H be a DEL-generated ETL-model.
Then HσX is a DEL-generated ETL-model.

&1

&2

&1 &2 &3

&4

Figure 2. Normalizing Figure 1 with respect to
∅.

p

q

p &1 &1

&2

Figure 3. Normalizing Figure 1 with respect to
{p, q}.

Proof. Let H = Forest(M, p) = (H,∼, V ) and HσX =
(H ′,∼′, V ′)). Let pN

0 be such that for all w inM, p0(w) =
{σ | wσ ∈ H ′}. Then HσX = Forest(M, p0). The rest
of the proof goes by an argument similar to the proof of
Lemma 2.14. QED

Now it is straightforward to show that the normalization
with respect to a given X preserves the truth of the formulas
in which only the event operators from X occur.

Proposition 3.7 (Normalization) Let X be an e-closed
subset of E. Then, for every DEL-generated model H and
every formula ϕ in LDEL(X) (the fragment of LDEL+P

that only allows the event models in X),

H, h |= ϕ iff HσX ,σX(h) |= ϕ.

Proof. We proceed by induction on ϕ. The base and
boolean cases are clear. For the knowledge modality case,
assume H, h |= Kiψ. Then, for all h ∼ h′, H, h′ |= ψ.
By IH, HσX ,σX(h′) |= ψ. By Definition 3.4, we have
HσX ,σX(h) |= Kiϕ. The other direction is similar.

For the event modality, assume that H, h |= 〈ε〉ψ, where
ε ∈ X . Then H, hε |= ψ. By the IH, HσX ,σX(hε) |= ψ.
However, since ε ∈ X , we have HσX ,σ(h)ε |= ψ. This
gives HσX ,σX(h) |= 〈ε〉ψ, as desired. The other direction
is similar. QED

Note that, if we also replaced the pointed event models
in X that occur in the given model, the truth of the formulas
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might not be preserved, since the truth definitions of the
event model operator explicitly refer to given event models.
To see this, suppose H, hε |= 〈ε〉ϕ. If we replaced ε in the
model with the pointed event model ε′ of the same type, but
distinct from ε, 〈ε〉ϕ cannot be true by definition, simply
because ε #= ε′.

4. Extending TDEL with the Past Modality

One fact about TDEL is that it only has forward-looking
operators 〈ε〉. However, given that, in TDEL, we have the
forest structres that encodes all successive stages of update
by event models, we can naturally think about the operator
that states what was the case prior to a given temporal point.
In this section, we extend TDEL with a past-looking modal-
ity Pε with ε ∈ E. This extension will be called TDEL+P.
Also, given an e-closed subset X of E, we denote the cor-
responding fragment of TDEL+P by TDEL+P(X).

Let H = (H,∼, V ) be an ETL-model generated from
an epistemic model and a state-dependent protocol. The
semantics of the operator Pε is defined as follows:

H, h |= Pεϕ iff ∃h′ such that h = h′ε and H, h′ |= ϕ.

The dual of Pε is denoted by P̂ε. The reading of Pε is “the
event ε has happened, before which ϕ”. The dual P̂ε reads
as “Before the event ε, ϕ”.

Let tPAL be the type of event models consisting of single
reflexive events. Below we show that, given an e-closed
subset X of E such that X is a union of a finite number of
types including tPAL, TDEL+P(X) is axiomatizable. For
this, we first observe that the normalization results hold for
TDEL+P(X).

Proposition 4.1 Let Y be an e-closed subset of E. Then,
for every DEL-generated model H and every formula ϕ in
TDEL+P(X),

H, h |= ϕ iff HσY ,σY (h) |= ϕ.

Proof. We proceed by induction on ϕ. The cases other than
Pε are as in Lemma 3.7. Thus, assume H, h |= Pεψ. Then
there must be some h′ such that h′ε and H, h′ |= ψ. By the
IH, HσY ,σY (h′) |= ψ. Since ε ∈ Y , σY (h′ε) = σ(h′)ε.
Thus, HσY ,σY (h′ε) |= Pεψ. The other direction is similar.
QED

To present the axiomatization of TDEL+P, we need
some definitions.

Definition 4.2 Given a formula ϕ, the past depth d(ϕ) of
the formula ϕ is defined as follows:

• d(p) = 0 for p propositional.

• d(¬ϕ) = d(ϕ)

• d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

• d(Kiϕ) = d(ϕ)

• d(〈ε〉ϕ) = d(ϕ)− 1

• d(Pεϕ) = max(d(ϕ), 0) + 1

%

The intuition behind this definition is that if a formula
has a depth n, we would have to go n-steps into the past
from the current point of the ETL-tree in order to verify it.
Thus, the final clause reflects the intended meaning. Had the
definition instead been d(Pεϕ) = d(ϕ) + 1, this would not
have worked for, P(E1,e1)〈E2, e2〉〈E3, e3〉P . That definition
would mistakenly have set the past depth as -1 instead of 1.

Let X be a union of a finite number of types such that
tPAL ⊆ X , so X is a class of event models.

Definition 4.3 Given a finite set Σ of expressions in
LTDEL+P and a type t, define E(Σ) :=

⋃
ϕ∈Σ E(ϕ). Also

denote by PREΣ the conjunction of the preconditions of
the events in E(Σ). %

Definition 4.4 Given a type t ⊆ X , let Et
Σ be a distin-

guished event of the type t in which the precondition of each
event is the tautologous formula of the form PreΣ∨¬PreΣ.
The role of Et

Σ is to pick up one event model of the type t,
whose precondition is tautologous and whose pointed event
model is not in Σ. The form of the precondition is to pre-
vent the pointed event model formed by Et

Σ from being in
Σ. %

Definition 4.5 Further, define the set NX(Σ) by:

NX(Σ) := {(Et, e) | t ⊆ X is a type and e in Et
Σ}.

%

Here, given the definition of Et
Σ, there are infinitely many

event models that can be specified as Et
Σ, since there are

infinitely many event models of the type t in which the
preconditions of events are PreΣ ∨ ¬PreΣ. By defini-
tion, isomorphic event models are distinct when they con-
sist of distinct events. Therefore, clearly, there are infinitely
many pair-wise disjoint sets defined to be NX(Σ) as de-
fined above, depending on which event model will be taken
as Et

Σ.
Let A1, A2, . . . be an infinite sequence of such sets, i.e.

(1) Ai is of the form defined by NX(Σ) and (2) Ai, Aj

are disjoint for every i, j. Define Nn
X(Σ) be the union of

A1, . . . , An. Clearly, Nn
X(Σ) is finite, since Ai is finite for

all i and Nn
X(Σ) is a finite union of such sets.
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Definition 4.6 Also, given a finite set Σ of expressions and
a formula ϕ, define ε!Σ to be an pointed event model in
tPAL in which the precondition of the event in the model
is PREΣ ∨ PREΣ. Given the form of the precondition in
the definition, ε!Σ does not occur in Σ. #

Definition 4.7 The axiomatization of TDEL+P extends
that of epistemic logic with necessitation for [ε] and P̂ε and
the following axioms and inference rules:

F5 〈ε〉Pε′ϕ → ⊥ if ε &= ε′

F6 〈ε〉Pεϕ ↔ 〈ε〉( ∧ ϕ

A3 Pε(ϕ → ψ) → (Pεϕ → Pεψ)

R(X) If * [ε1] . . . [εd(ϕ)]ϕ for all ε1 . . . εd(ϕ) such that, for
all k (1 ≤ k ≤ d(ϕ)), εk ∈ E(ϕ) ∪ Nd(ϕ)

X (E(ϕ) ∪
{ε!E(ϕ)}, then * ϕ.

#

Note that E(ϕ) ∪ Nn
X(E(ϕ)) ∪ {ε!E(ϕ)} is finite. Also, to

show the soundness of R(X), it suffices to show the follow-
ing:

Lemma 4.8 If ϕ is satisfiable, then 〈ε1〉 . . . 〈εd(ϕ)〉ϕ is sat-
isfiable for some sequence ε1 . . . εd(ϕ) of the specified form
in R(X).

To show this lemma, we need some definitions. Let p be
a state-dependent protocol on M.

Definition 4.9 Given n ∈ N, we define a local pro-
tocol pn< on Mn,p so that pn<(wσ1 . . .σn) = {τ |
wσ1 . . .σnτ ∈ p(w) where w ∈ Dom(M)}. #

Given an ETL-model Forest(M, p), the model
Forest(Mn,p, pn<) can be seen as a submodel of
Forest(M, p) that describes what happens in Forest(M, p)
after the n+1-th stage, with the histories up to the n+1-th
stage taken as the elements of the base epistemic model.

Now we prove Lemma 4.8. The idea behind the proof is
as follows. Assuming H, h |= ϕ, we first apply the normal-
ization method based on Proposition 4.1. Then, if ϕ is sat-
isfied in the model at a sufficiently long history (i.e. strictly
longer than d(ϕ)), then we can satisfy 〈ε1〉 . . . 〈εd(ϕ)〉ϕ by
tracing the history using the truth definition of the future
operator. If any εi in the sequence is not of the form spec-
ified in R(X), then in the model H we can replace it with
an event model of the same type with tautologous precon-
ditions. Such a replacement does not affect the structure
of the model, and 〈ε1〉 . . . 〈εd(ϕ)〉ϕ will be satisfied at the
corresponding node in the resulted model.

However, if the history is not long enough, then we con-
struct a new model from the original, by lifting the roots of

the trees with a sequence of single reflexive event models
ε!E(ϕ) with the tautologous precondition. The new model
preserves the structures above the sequence of such events
and there is a sufficiently long history at which ϕ is sat-
isfied. The preservation result follows because iteratively
performing single reflexive events with tautologous precon-
ditions (uniformly at every world) keeps the structure of the
original model unchanged.

To illustrate this, consider the evaluation of the formula
ϕ = Pσ¬Pτ(, with past depth 2, in Figure 4. Notice that
we can satisfy this formula at world wσ in Figure 4, even
though len(wσ) = 2. To obtain a length of 3 for the history
at which the formula in question is satisfied, we add a public
announcement with a tautologous precondition, ε!ϕ . This is
represented in Figure 5. We now proceed to the proof.

w

wσ
σ

wτ
τ

Figure 4. A formula with depth 2 can be satis-
fied at wσ. This is a case in which we need to
extend the history.

σ τ

εϕ

Figure 5. Extending the history with εϕ.

Proof. Let H, h |= ϕ. Apply Proposition 4.1 by setting
Y := E(ϕ). Then we obtain HσY ,σY (h) |= ϕ.

Assume len(h) > d(ϕ). Then for some g, ε1, . . . εd(ϕ),
h = gε1 . . . εd(ϕ). In HσY , for every σY (εi) &∈ Y
(1 ≤ i ≤ d(ϕ)), replace σY (εi) with an isomorphic event
model ε ∈ NX(E(ϕ)). Given that the preconditions of
the event models are tautologous, such a model transfor-
mation does not affect the truth value of ϕ. That is, denot-
ing by H′ and h′ the model and the history (correspond-
ing to h) that are obtained by the replacements, we have
H′, h′ |= ϕ. By len(h) = len(h′) > d(ϕ) and the con-
struction of h′, we have some g′ and ε′1, . . . , ε

′
n such that

H′, g′ |=〉ε′1〉 . . . 〈ε′d(ϕ)〉ϕ, where ε′1, . . . , ε
′
d(ϕ) are of the

specified form in R(X).
Thus, assume that len(h) ≤ d(ϕ). Let k := d(ϕ) −

len(h) + 1 (the length that we want to add to the history).
Let ε0 be ε!E(ϕ). Also denote by εk

0 the sequence of k ε0’s.
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Now let M = (W,∼, V ). Construct a local protocol p+ on
M so that p+(w) is the set obtained by taking the closure
under finite prefix on {εk

0σ | σ ∈ p(w)}. Then, by these
constructions, it is the case that for all σ (possibly empty):
Forest(Mk, p+

ek
0<

), (wεk
0)σ |= ϕ iff

Forest(M, p), wσ |= ϕ
where w is in M. Thus, if we have, for all σ,
Forest(Mk, p+

ek
0<

), (wεk
0)σ |= ϕ iff

Forest(M, p+), wεk
0σ |= ϕ.

The desired claim follows. For we can proceed as in the
case of len(h) > d(ϕ), given that
len(wθτ) = len(w) + [d(ϕ) − len(wτ) + 1] + len(τ) =
d(ϕ) + 1 where h = wτ .

We prove this by showing that, for all σ and formulas ψ,
Forest(Mk, p+

ek
0<

), wεk
0σ |= ψ iff

Forest(M, p+), wεk
0σ |= ψ.

The proof is by a straightforward induction. We will only
do the past-modality case. The left-to-right direction fol-
lows immediately by the IH. So assume the RHS. If h is
non-empty, then by the IH we are done. If h is empty, then
since σ $= εϕ by definition, we have a contradiction with
the RHS. This completes the proof. QED

The completeness proof can be given based on the
Henkin-style construction given for TDEL above. LetHcan

be the ETL-model constructed from the set of TDEL+P
maximally consistent sets in the same way as in TDEL.
The lemma for the canonical model that corresponds to
Lemma 2.10 can be shown in the same way. Now, we show
the truth lemma stated as follows:

Lemma 4.10 (Truth Lemma) For every formula ϕ and
h ∈ Hcan such that len(h) > d(ϕ),

ϕ ∈ λ(h) iff Hcan, h |= ϕ

Proof. The boolean and knowledge modality cases are
given in the same way as Lemma 2.13 above, so we will
only consider the past modality case. Let h = h′σ for some
len(h) ≥ d(ϕ) + 1, where σ ∈ E. Let ϕ be Pτψ.

Assume then that Pτψ ∈ λ(h). By the definition of
canonical model, 〈σ〉Pτψ ∈ λ(h′). If σ $= τ , then by
F5, ⊥ ∈ λ(h′), which contradicts the consistency of λ(h′).
Thus, assume σ = τ . Then, by F6, we have ψ ∈ λ(h′).
By the IH, Hcan, h′ |= ψ (note len(h′) ≥ d(ψ) + 1). Since
h′σ ∈ Hcan and σ = τ , the truth definition implies that
Hcan, h |= Pτψ.

For the other direction, assume that Hcan, h |= Pτψ. By
the truth definition, we have σ = τ , and also H, h′ |= ψ.
By the IH, we have ψ ∈ λ(h′). And by the construction of
the canonical model, we have 〈σ〉) ∈ λ(h′). Thus, by F6,
we have 〈σ〉Pσψ ∈ λ(h′), which by construction implies
that Pσψ ∈ λ(h). QED

We can also prove the lemma corresponding to
Lemma 2.14 in the same way. Now, to conclude our proof
of the completeness result, we need to prove the following
theorem.

Theorem 4.11 TDEL+P is complete with respect to
Fsd(E).

Proof. Let ϕ be consistent. Then 〈σ1〉 . . . 〈σd(ϕ)〉ϕ is con-
sistent for some σ1 . . .σd(ϕ) ∈ E∗. For suppose otherwise.
Then for every σ1 . . .σd(ϕ) ∈ E∗, 〈σ1〉 . . . 〈σd(ϕ)〉 is incon-
sistent and thus * [σ1] . . . [σd(ϕ)]¬ϕ. By R, * ¬ϕ. This
contradicts the consistency of ϕ. Thus 〈σ1〉 . . . 〈σd(ϕ)〉ϕ is
consistent for some σ1 . . .σd(ϕ). Let θ = 〈τ1〉 . . . 〈τd(ϕ)〉ϕ
be one of those formulas. Since θ is consistent, by Linden-
baum’s Lemma, we have a maximally consistent set con-
taining it. Note that d(θ) = 0. Thus, by the truth lemma,
there is some history h of length 1 such that Hcan, h |= θ.
This gives us the result that Hcan, hτ1 . . . τd(ϕ) |= ϕ. QED

The reason that we cannot conclude the result immedi-
ately from the truth lemma and the analogue of Lemma 2.14
is that we are not sure that, given a formula of depth n, we
have a maximal consistent set that contains ϕ, which is as-
signed to a history long enough to apply truth lemma. This
fact is guaranteed by R, as is seen in the above argument.

5. Philosophical Connections and Applications

Although the addition of a past operator to the temporal
framework may seem trivial, it turns out that the resulting
increase in expressive power might have several significant
applications. The interaction between past and future in an
epistemic context can be found in thinking about agency—
more specifically, in trying to formulate a definition of an
agent’s intention—as well as in learning.

Both of these seem at first glance to be forward look-
ing ideas. For instance, intending seems to refer only to
something we plan to do in the future. And learning seems
to have to do with an update of our state of knowledge. But
notice that if we intend to bring something about, it can’t al-
ready have been the case (since we can’t intend to do some-
thing that’s already been done). And if we want to learn
something, we can’t already know it. Thus, expressing both
of these ideas requires talking about a change in our epis-
temic states. It is not too difficult to come up with a sentence
using only the future modality and the static language stat-
ing that I am about to learn that ϕ, or that I do not now know
ϕ, but will after it is announced:

〈!ϕ〉Kiϕ ∧ ¬Kiϕ

Alternately, we can use this formalism to capture our in-
tuitions about what is learned by a public announcement of
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a formula ϕ. For what we learn is not necessarily that ϕ is
now the case, but rather than ϕ was the case before the an-
nouncement. So our general formulation of what an agent
learns by a public announcement can be expressed by the
formula

[!ϕ]KiP!ϕϕ.

So in order to say that I have in fact learned ϕ, I need to
refer back to the past. Otherwise, all I will be able to say is
that I now know ϕ. But the fact that I now know ϕ tells me
nothing about whether or not I knew it in the past. Thus, in
order to claim that I have learned ϕ, because of some event
ε I really need to say that I now know ϕ, but did not know it
before ε took place:

Pε¬Kiϕ ∧Kiϕ.

The fact that a past modality is required to express that
a state of affairs has changed means that it is also related to
the idea of a successful update [11]. We can call a public
announcement successful when the formula announced is
true after the update, and unsuccessful when the formula an-
nounced becomes false. For instance, in the familiar Muddy
Children example, the announcement by all the children that
they do not know their state becomes false afterwards.

Another example of announcements which result in un-
successful updates are Moore sentences, such as p ∧ ¬Kip,
or “p is the case, but i doesn’t know it.” For after that is
announced, i will know that p is the case, and the original
formula will become false. So as above, all we know is that
p∧¬Kip was true before it was announced. So even though
the formula Ki(p∧¬Kip) remains inconsistent in epistemic
logic, the formula

KiP!(p∧¬Kip)(p ∧ ¬Kip)

is satisfiable in dynamic epistemic logic, for instance, in a
model like the one given in Figure 6.

p ¬p

i

!(p ∧ ¬Kip)

Figure 6. The public announcement of a
Moore sentence. At the updated world, it is
the case that KiP!(p∧¬Kip)(p ∧ ¬Kip).

So although an agent can never know that p is the case,
but she herself does not know it, she can know that it once
was true that p was the case and she then did not know it.

Now, we might think that the opposite of learning is for-
getting, and wonder if this too is something that can be

formalized by our models. After all, if we can express
that an agent learned that ϕ after ε took place by saying
Pε¬Kiϕ ∧ Kiϕ, perhaps we could express that after ε, an
agent forgot that ϕ by moving the negation:

PεKiϕ ∧ ¬Kiϕ.

But even though this sentence is expressible, the logic
itself does not yet allow for a general way to model agents
who can forget. For in the current models, such a sentence
would only be satisfiable for a limited class of ϕ. For in-
stance, it could never be true for a proposition letter. Since
we have persistence for proposition letters across updates,
once an agent knows that p, he can never forget it after an
event. The reason for this is the fact that updates only ever
erase uncertainties between worlds, or maintain existing un-
certainties. In order to model forgetting, we would require
an update mechanism that allowed for adding uncertainties
between worlds which were not previously present. There
are several different options for implementing such a mech-
anism, which are beyond the scope of this paper to discuss.
However, this avenue seems like another fruitful path to in-
vestigate in terms of dynamic epistemic systems with tem-
poral operators.

6. Conclusion

We have shown that, even if we extend the setting of
TPAL presented in [8] to the full class of event models, the
completeness proof can be given based on the proof given
for TPAL in [8]. Also the extension TDEL+P can be axiom-
atized by the method of normalization for DEL-generated
ETL-models.

But these are not the only extensions which suggest
themselves for investigation. For instance, in TDEL+P, we
only have labeled past and future operators. So natural fur-
ther steps would be to add in an un-indexed past operator,
expressing “yesterday”, and an un-indexed future operator,
expressing “tomorrow”. We can look at these operators as
quantifying over event models. It turns out that a system
TADEL with the “tomorrow” operator can be axiomatized
without too many problems, as it can be seen as a gener-
alization of the system TAPAL studied in [4], which has
an operator quantifying over public announcements. These
results will be presented in forthcoming work by Hoshi,
which will demonstrate the way in which the normalization
method can be applied to axiomatize TADEL.

Perhaps surprisingly, though, the addition of a “yester-
day” operator is not as straightforward, since the normal-
ization method would not work as given. In particular, the
method whereby we extend the history with εϕ as illustrated
in Figure 5 would not necessarily work for formulas in a
language with a “yesterday” operator. For where we can sat-
isfy Pσ¬Pτ" in a world with length 2, the formula P¬P"
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can only be satisfied in a world with length 1. So the history
could not be lengthened in a world in which the latter was
satisfied without changing its truth value.

Other natural extensions include iterated past modality
P ∗, where the ∗ is the Kleene star operator. In the case of
the iterated future modality of the kind, say ♦∗, “There is
some sequence of events after which...”, the result in [5]
suggests that such an operator results in incompleteness
when combined with the common knowledge operator. It
is interesting to see if this is also the case for the case of the
iterated past-modality P ∗.

There are distinct motivations also for considering an
extension of TDEL+P together with a common knowl-
edge operator. The considerations raised about learning in
the previous section apply just as well to agents’ common
knowledge after an announcement, since we can also ex-
press what becomes common knowledge by the following
formula:

[!ϕ]CGP!ϕϕ.

Further, the relativized common knowledge operator
from [9] CG(ϕ, ψ), which expresses that every G-path
which consists exclusively of ϕ worlds ends in a ψ world,
also has a very natural interpretation in past language. One
way to paraphrase this operator in natural language is “If
ϕ were announced, it would be common knowledge among
G that ψ was the case before the announcement.” This is
expressible in the past language.

CG(ϕ, ψ) ≡ [!ϕ]CGP!ϕψ

Thus, there are many potentially fruitful extensions of
the system considered here, which will certainly be the sub-
ject of future investigation.

References

[1] A. Baltag, L. Moss, and S. Solecki. The logic of public
announcements, common knowledge and private suspicions.
In I. Gilboa, editor, TARK 1998, number 43-56, 1998.

[2] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about Knowledge. Synthese Library. MIT Press, Boston,
1995.

[3] J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis,
ILLC, 1999.

[4] T. Hoshi. Logics of public announcement with constrained
protocols. LOFT, 2008.

[5] J. Miller and L. Moss. The undecidability of iterated modal
relativization. Studia Logica, 79:373–407, 2005.

[6] R. Parikh and R. Ramanujam. A knowledge based semantics
of messages. Journal of Logic, Language, and Information,
12:453–467, 2003.

[7] Y. Shoham and K. Leyton-Brown. Multiagent systems: Al-
gorithmic, game-theoretic, and logical foundations. 2008.

[8] J. van Benthem, J. Gerbrandy, T. Hoshi, and E. Pacuit.
Merging frameworks for interaction: DEL and ETL. 2007.

[9] J. van Benthem, J. van Eijck, and B. Kooi. Common knowl-
edge in update logics. In Proceedings of the 10th Conference
on Theoretical Aspects of Rationality and Knowledge. 2005.

[10] J. van Benthem, J. van Eijck, and B. J. Kooi. Logic of
communication and change. Information and Computation,
204(11):1620–1662, 2006.

[11] H. van Ditmarsch and B. Kooi. The secret of my success.
Synthese, 151(2):201–232, 2006.

[12] A. Yap. Dynamic epistemic logic and temporal modality.
University of Victoria, 2007.

142



Introspective forgetting

Hans van Ditmarsch Andreas Herzig Jérôme Lang Pierre Marquis

1. Introduction

1There are different ways of forgetting.

Completely forgetting In the movie ‘Men in Black’, Will
Smith makes you forget knowledge of extraterrestials by
flashing you with a light in the face. After that, you have
forgotten the green ooze flowing out of mock-humans and
such: you not remember that you previously had these ex-
periences. In other words, even though for some specific
forgotten fact p it is now the case that ¬Kp and ¬K¬p, the
flash victims have no memory that they previously knew the
value of p. Worse, they forgot that p is an atomic proposi-
tion at all. This sort of forgetting is dual to awareness—in
a logical setting it is uncommon that parameters of the lan-
guage, such as the set of atoms, shrink, although there are
ways to simulate that. We will leave this matter aside for
now.

Remembering prior knowledge A different sort of for-
getting is when you forgot which of two keys fits your office
door, because you have been away from town for a while.
In this case you remember that you knew which key it was,
and you currently don’t know which key it is. This is about
forgetting the value of a atomic proposition p. Previously,
either Kp or K¬p, but currently ¬Kp and ¬K¬p. This sort
of forgetting will be very central to our concerns.

Forgetting values Did it ever happen to you that you met
a person whose face you recognize but whose name you no
longer remember? Surely! Or that you no longer know the
pincode of your bankcard? Hopefully not. But such a thing
is very conceivable. This sort of forgetting means that you
forgot the value of a proposition, or the assignment of two
values from different sets of objects to each other. In the
case of a bankcard you the four-number code that you for-
got is just one one 10,000 options, so previous it was true

1Emails of the authors: hans@cs.otago.ac.nz,
herzig@irit.fr, lang@irit.fr,
marquis@cril.univ-artois.fr. Hans van Ditmarsch is
corresponding author. This document concerns work in progress. Hans
van Ditmarsch acknowledges the support of the Netherlands Institute of
Advanced Study where he was Lorentz Fellow in 2008.

that K0000 ∨ . . . ∨K9999 whereas currently we have that
¬(K0000 ∨ . . . ∨K9999). (Let 0000 stand for the propo-
sition that your pin number is 0000, etc.) Similarly, some-
what simplifying matters, the finite number of all humans
only have a finite, somewhat smaller, number of names. An
atomic proposition about your office keys is also a feature
namely with two values only, true and false. The multiple-
valued features can also be modelled as a number of atomic
propositions; this can be done in a very uneconomic fashion
as above, but also in a minimal way. We conclude that this
sort of forgetting is like the previous kind.

Defaulting on obligations But there are other kinds of
forgetting too. For example, say I forgot to pick you up
at the airport at 4:30 PM. Forgetting an action is very dif-
ferent from forgetting a proposition. Forgetting an action
amounts to defaulting on an obligation and the observation
of having forgotten it is not at all related to ignorance. It
points backwards in time to the moment when you were not
aware of the obligation. Obligations can be modelled with
deontic logics. We will not be concerned with this kind of
forgetting.

Multi-agent versions of forgetting In a multi-agent set-
ting additional, interactive, ways of forgetting crop up as
well. Some of the above have group versions. For exam-
ple, Will Smith only had to flash a whole group once, not
each of its members individually. And if you have been
flashed, although you don’t know that you knew about the
green ooze, Will Smith knows that you knew. So in a multi-
agent setting some aspects of ‘completely forgetting’ can
be modelled. When assuming standard notions of knowl-
edge, that is introspective, we now run straight into trouble
of another kind.

A group version for ‘remembering prior knowledge’ is
hard to justify, because its interpretation typically involves
introspection: you forgot something if you are aware of (in
the sense of ‘you know’) previous knowledge and present
ignorance of it. A setting wherein a group is collectively
aware of its prior (common) knowledge is somewhat harder
to imagine. It makes more sense to have a version of ‘re-
membering prior knowledge’ for individuals in a group, be-
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cause they can inform and are observed by others: here you
standing in front of your office door again now in company
of four freshmen students, “Ohmigod, I forgot again which
is my office key!”

For yet other multi-agent examples: I can notice that you
forgot to pick me up at the airport, or that you no longer ap-
pear to know the way around town. The last may even be
without me being aware of my ignorance. I may have for-
gotten whether you knew about a specific review result for
our jointly editored journal issue. In other words, previ-
ously KmeKyouaccept or KmeKyou¬accept but currently
¬KmeKyouaccept and ¬KmeKyou¬accept. Some mean-
ingful propositions that can be forgotten in a multi-modal
context are therefore modal.

1.1. Forgetting and progression

In theory change (belief revision) the operation of for-
getting is a form of belief contraction. Given prior belief in
p or its negation, we want to remove that from the set of be-
lieved formulas including all its dependencies. In artificial
intelligence this has become a search for efficient ways to
implement such a contraction. The following way to model
/ implement forgetting an atomic proposition has recently
been proposed [5]. Given a set of formulas (‘theory’) Φ, we
compute the effect of forgetting information about atom p
by a binary operation

Fg(Φ, p) := {ϕ(!/p) ∨ ϕ(⊥/p) | ϕ ∈ Φ}

Here, ϕ(ψ/p) is the replacement of all (possibly zero) oc-
currences of p in ϕ by ψ. This proposal can be called the
(syntactic) progression of Φ by the function Fg, relative to
the forgotten information about p. It is well-known that this
way to model forgetting as progression does not work for
modal formulas. For example, if the agent already does
not know whether p, surely that should remain the case af-
ter forgetting the value of p. But we now have that (write
Fg(ϕ, p) for Fg({ϕ}, p)):

Fg(¬Kp ∧ ¬K¬p, p)
=
(¬K! ∧ ¬K¬!) ∨ (¬K⊥ ∧ ¬K¬⊥)
⇔
(¬! ∧ ¬⊥) ∨ (¬⊥ ∧ ¬!)
⇔
⊥

For another example of an undesirable feature, it is also not
the case that knowledge of p is transformed into ignorance
about p by this procedure:

Fg(Kp, p) ↔ (K! ∨K⊥) ↔ !.

In other words, this approach does not lead anywhere for
modal formulas. Surely, one would like that ¬Kp ∧¬K¬p
is true after forgetting the value of p, even when this was
not true initially. For any theory Φ and atom p, the result of
forgetting p should entail ignorance about p:

Fg(Φ, p) |= ¬Kp ∧ ¬K¬p.

The difficulties in obtaining this result by theory revision
motivated us to model forgetting as an event in a dynamic
epistemic logic.

1.2. Forgetting or no-forgetting, that’s the
question

We model the action of forgetting an atomic proposi-
tion p as an event Fg(p) (in its sense of remembering prior
knowledge about p). We do this in a propositional logic
expanded with an epistemic modal operator K and a dy-
namic modal operator [Fg(p)] (including multi-agent ver-
sions). As usual, Kϕ describes that the agent knows ϕ. For-
mula [Fg(p)]ϕ means that after the agent forgets his knowl-
edge about p, ϕ is true.

The obvious precondition for event Fg(p) is prior knowl-
edge of the value of p: Kp ∨ K¬p. The obvious post-
condition for event Fg(p) is ignorance of the value of p:
¬Kp ∧ ¬K¬p. In other words

(Kp ∨K¬p) → 〈Fg(p)〉(¬Kp ∧ ¬K¬p)

should be valid in the information state prior to the event of
forgetting (〈Fg(p)〉 is the diamond version of [Fg(p)]). Or,
abstracting from that precondition, it should be valid that:

[Fg(p)](¬Kp ∧ ¬K¬p).

Wasn’t dynamic epistemic logic supposed to satisfy the
principle of ‘no forgetting’? So how on earth can one model
forgetting in this setting? We can, because we cheat. ‘No
forgetting’ (a.k.a. ‘perfect recall’) means that if states s and
t resulting from the execution of (possibly different) events
are indistinguishable, then the states before the execution of
these respective events are also indistinguishable. If after
the event of forgetting I am ignorant about p I cannot distin-
guish a p-state from a ¬p-state. Therefore, because of the
principle of ‘no forgetting’, I should already have been un-
able to distinguish these states before the execution of this
supposed event Fg(p)... I should have been already ignorant
about p before... We solve this dilemma by the standard ev-
eryday solution of forgetful people: blame others for your
forgetfulness. In this case, we blame the world, i.e., the
state of the world: we simulate forgetting by nondetermin-
istically changing the value of p in the actual or other states,
in a way unobservable by the agent. Thus resulting in his
ignorance about p. Note that this solution is different from
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how belief revision is modelled in dynamic epistemic logic:
prior belief in p that is revised with ¬p and results in belief
in ¬p is standardly modelled by considering this a ‘soft’
or defeasible form of belief (i.e., not knowledge) and im-
plemented by changing a preference relation between states
[11, 3].

Once we have the above, the relation with theory pro-
gression becomes clear. Let (M, s) be an information state
(pointed Kripke model with designated state) for the theory
Φ. Suppose we want to know if Fg(Φ, p) |= ψ. The artifi-
cial intelligence community is particularly interested in ef-
ficient ways to perform such computations. Well, if it is the
case, we then should also have M, s |= [Fg(p)]ψ. We pro-
pose a [Fg(p)]-operator that can be reduced (eliminated):
there is an epistemic formula χ such that [Fg(p)]ψ ↔ χ.
There are fast and efficient algorithms to determine the truth
of an epistemic formula in a given Kripke model: M, s |= χ
can be done quickly. This answers the question whether
Fg(Φ, p) |= ψ. There is one drawback: the reduction of
[Fg(p)]ψ to a formula without reference to an event that
should be initially true is known as regression. But in AI
we also want to do progression: compute some Φ′ from
Fg(Φ, p). This is harder, also in a dynamic epistemic logi-
cal context, and we have no answer to that, although a few
suggestions.

Expanding our perspective This contribution focusses
on a clean solution on how to model an event Fg(p) sat-
isfying (Kp ∨ K¬p) → 〈Fg(p)〉(¬Kp ∧ ¬K¬p). From
there on, the modelling desiderata diverge. There are many
interesting options.

Is our perspective that of a modelling observer, in which
case we might require that forgetting is an information-
changing event only, so that the value of p in the actual state
should not change? Or is our perspective that of an agent
in the system, so that we are only considering the value of
local propositions, i.e., formulas of the form Kϕ? Whether
we simulate the desiderata by factual change inducing in-
formational change does not matter in that case.

Are we talking about one or about all agents forgetting?
How about forgetting epistemic propositions?

Our solution presumes the interpretation of Kϕ as ‘the
agent knows ϕ’ and, correspondingly, even though our se-
mantics is general all our examples are of S5-structures.
There are obvious slightly weaker modellings of forgetting
to model introspective belief (to be interpreted on KD45-
structures.

From the perspective of the agent we also want to look
backwards. Let Fg(p)− be the converse of Fg(p) (e.g. in the
sense of [1, 15, 8]). All the time we are saying that an agent
that has forgotten about p remembers prior knowledge of p.
This we can now express as the validity of

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

in the information state after the event of forgetting. (Note
the different perspective from before, where our perspec-
tive was the information state before the act of forgetting.)
In other words: the agent is aware of its current ignorance
and its previous knowledge. We will indicate some ways to
address this in the further research section at the end of our
contribution. There is one main drawback of this approach:
there is no way to reduce expressions with converse events
to purely epistemic formulas. So, the advantage of dynamic
epistemic logic for regression questions in AI has not been
reached there (yet).

2. Language and semantics

Language Our language is

p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | FgB(p)

In the single-agent context write Kϕ for Kaϕ and Fg(p)
for Fga(p).

Later on, in a multi-agent context, we write Fg(p) for
FgA(p), and we also distinguish the converse (‘remember’)
operator FgB(p)−. For the forgetting of (not necessarily
atomic) formulas ϕ we write FgB(ϕ).

Structures Our structures are pointed Kripke models
(S, R, V ), s) (with R : A → P(S×S) and V : P → P(S))
and multiple-pointed event models (‘action models’). Our
typical example structures are S5 to model knowledge and
knowledge change and for KD45 to model belief and belief
change.

The dynamic structures are event models, i.e., action
models including assignments of atoms (a.k.a. substitu-
tions) [10, 13]. We follow notational conventions as in [13]:
if in event s the precondition is ϕ and the postcondition is
that the valuation of atom p becomes that of ψ, we write: in
s: if ϕ then p := ψ.

We visualize S5 models by linking states that are indis-
tinguishable for an agent, possibly labelling the link with
the agent name (not in the single-agent situation). Transi-
tivity is assumed. In pictures of event models: a formula
next to an event is its precondition, an assignment next to it
a postcondition.

Semantics Assume an epistemic model M = (S, R, V ).

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s )|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t ∈ S : (s, t) ∈ Ra

implies M, t |= ϕ
M, s |= [FgB(p)]ψ iff for all M ′, s′ : (M, s)[[FgB(p)]](M ′, s′)

implies M ′, s′ |= ϕ
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where [[FgB(p)]] is a binary relation between pointed epis-
temic states, as usual for the interpretation of events in dy-
namic epistemic logic. Of course, we model the execution
of an event FgB(p) as a restricted modal product and this
will be the relation induced by that. In the next section we
will define the event model FgB(p). The set of validities in
our logic is called FG.

3. Forgetting

In a single-agent setting we model forgetting as the non-
deterministic event where the (anonymous) agent is uncer-
tain which of two assignments have taken place: p be-
comes true, or p becomes false. Formally, this is a non-
deterministic event model consisting of two events 0 and
1 that are indistinguishable for the agent, and such that
pre(0) = pre(1) = Kp ∨ K¬p, post(0)(p) = ⊥, and
post(1)(p) = #. We can visualize this event model Fg(p)
as follows (postconditions above, preconditions below ac-
tions):

The dynamic structures are event models, i.e., action models including assignments of
atoms (a.k.a. substitutions) [10, 13]. We follow notational conventions as in [13]: if in event
s the precondition is ϕ and the postcondition is that the valuation of atom p becomes that
of ψ, we write: in s: if ϕ then p := ψ.

We visualize S5 models by linking states that are indistinguishable for an agent, possibly
labelling the link with the agent name (not in the single-agent situation). Transitivity is
assumed. In pictures of event models: a formula next to an event is its precondition, an
assignment next to it a postcondition.

Semantics Assume an epistemic model M = (S, R, V ).

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s "|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t ∈ S : (s, t) ∈ Ra implies M, t |= ϕ
M, s |= [FgB(p)]ψ iff for all M ′, s′ : (M, s)[[FgB(p)]](M ′, s′) implies M ′, s′ |= ϕ

where [[FgB(p)]] is a binary relation between pointed epistemic states, as usual for the
interpretation of events in dynamic epistemic logic. Of course, we model the execution of
an event FgB(p) as a restricted modal product and this will be the relation induced by
that. In the next section we will define the event model FgB(p). The set of validities in
our logic is called FG.

3 Forgetting

In a single-agent setting we model forgetting as the non-deterministic event where the
(anonymous) agent is uncertain which of two assignments have taken place: p becomes
true, or p becomes false. Formally, this is a non-deterministic event model consisting of
two events 0 and 1 that are indistinguishable for the agent, and such that pre(0) = pre(1) =
Kp ∨K¬p, post(0)(p) = ⊥, and post(1)(p) = &. We can visualize this event model Fg(p)
as follows (postconditions above, preconditions below actions):

p := & p := ⊥
1 0

Kp ∨K¬p Kp ∨K¬p

The event model Fg(p) is non-deterministic choice between two deterministic events (Fg(p), 1)
and (Fg(p), 0). For the interpretation of such a pointed event we use the standard se-
mantics of ‘action models’, for events/points i = 0, 1 (and we recall the equivalence
[Fg(p)]ψ ↔ ([Fg(p), 0]ψ ∧ [Fg(p), 1]ψ):

M, s |= [Fg(p), i]ϕ iff M, s |= Kp ∨K¬p implies M ⊗ Fg(p), (s, i) |= ϕ

6

The event model Fg(p) is non-deterministic choice between
two deterministic events (Fg(p), 1) and (Fg(p), 0). For the
interpretation of such a pointed event we use the standard
semantics of ‘action models’, for events/points i = 0, 1
(and we recall the equivalence [Fg(p)]ψ ↔ ([Fg(p), 0]ψ ∧
[Fg(p), 1]ψ):

M, s |= [Fg(p), i]ϕ iff M, s |= Kp ∨K¬p implies
M ⊗ Fg(p), (s, i) |= ϕ

In the language we’d like to avoid directly referring to
the pointed versions (out of some possibly mistaken sense
of minimalism), and therefore introduce the pointed ver-
sions of forgetting by abbreviation (and this amounts indeed
to the same):

〈Fg(p), 0〉ϕ = 〈Fg(p)〉(¬p ∧ ϕ)
〈Fg(p), 1〉ϕ = 〈Fg(p)〉(p ∧ ϕ)

To obtain a complete axiomatization for FG we can
simply apply the reduction axioms for event models, as
specified in [13]. This is the axiomatization FG in Ta-
ble 1. Note that from the above abbreviation also follows
that [Fg(p)](p → ϕ) is equivalent to [Fg(p), 1]ϕ, and that
[Fg(p)](¬p → ϕ) equals [Fg(p), 0]ϕ.

Proposition 3.1 Axiomatization FG is sound and com-
plete.

[Fg(p)]p ↔ ¬(Kp ∨K¬p)
[Fg(p)]q ↔ (Kp ∨K¬p) → q for q *= p
[Fg(p)]¬ϕ ↔ (Kp ∨K¬p) →

(¬[Fg(p)](¬p → ϕ) ∧ ¬[Fg(p)](p → ϕ))
[Fg(p)](ϕ ∧ ψ) ↔ [Fg(p)]ϕ ∧ [Fg(p)]ψ
[Fg(p)]Kϕ ↔ (Kp ∨K¬p) → K[Fg(p)]ϕ

Table 1. Axiomatization FG—only reduction
rules involving Fg are presented

Proof. We show that the axiomatization resulted from
application of the reduction axioms in action model logic
by Baltag et al. [2], by applying, case by case, the standard
reduction rules for event models. This kills two birds
(soundness and completeness) at one throw.

Case p.
[Fg(p)]p
⇔
[Fg(p), 0]p ∧ [Fg(p), 1]p
⇔
(pre(0) → post(0)(p)) ∧ (pre(1) → post(1)(p))
⇔
((Kp ∨K¬p) → ⊥) ∧ ((Kp ∨K¬p) → #)
⇔
(Kp ∨K¬p) → ⊥
⇔
¬(Kp ∨K¬p)

In other words, it is not the case that p is true after every
execution of Fg(p).

Case q.
[Fg(p)]q
⇔
[Fg(p), 0]q ∧ [Fg(p), 1]q
⇔
(pre(0) → post(0)(q)) ∧ (pre(1) → post(1)(q))
⇔ pre(0) = pre(1) = Kp ∨K¬p, post(0)(q) =
post(q)(1) = q
(Kp ∨K¬p) → q

This axiom expresses that, if Fg(p) is executable, the value
of atoms q other than p remains the same.

Case ¬ϕ.
[Fg(p)]¬ϕ
⇔
[Fg(p), 0]¬ϕ ∧ [Fg(p), 1]¬ϕ
⇔
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(pre(0)→ ¬[Fg(p), 0]ϕ) ∧ (pre(1)→ ¬[Fg(p), 1]ϕ)
⇔ pre(0) = pre(1) = Kp ∨K¬p
(Kp ∨K¬p)→ (¬[Fg(p), 0]ϕ ∧ ¬[Fg(p), 1]ϕ)
⇔
(Kp ∨K¬p)→ (¬[Fg(p)](¬p→ ϕ) ∧ ¬[Fg(p)](p→ ϕ))

Note that the expression on the right is not equivalent to
¬[Fg(p)]ϕ. It would be if the conjunction in the middle
had been a disjunction.

Case ϕ ∧ ψ.
[Fg(p)](ϕ ∧ ψ)
⇔
[Fg(p), 0](ϕ ∧ ψ) ∧ [Fg(p), 1](ϕ ∧ ψ)
⇔
[Fg(p), 0]ϕ ∧ [Fg(p), 0]ψ ∧ [Fg(p), 1]ϕ ∧ [Fg(p), 1]ψ
⇔
[Fg(p)]ϕ ∧ [Fg(p)]ψ

Case Kϕ.
[Fg(p)]Kϕ
⇔
[Fg(p), 0]Kϕ ∧ [Fg(p), 1]Kϕ
⇔
(pre(0)→ K[Fg(p)]ϕ) ∧ (pre(1)→ K[Fg(p)]ϕ)
⇔
(Kp ∨K¬p)→ K[Fg(p)]ϕ
QED

Proposition 3.2 The formula [Fg(p)](¬Kp ∧ ¬K¬p) is
valid and derivable.

Proof. Validity is trivial. Thus we have derivability. It
is instructive to see part of the derivation. We apply the
reduction rules in the axiomatization FG.

[Fg(p)](¬Kp ∧ ¬K¬p)
⇔
[Fg(p)]¬Kp ∧ [Fg(p)]¬K¬p

Left conjunct of previous line:
[Fg(p)]¬Kp
⇔
(Kp ∨K¬p)→ (¬[Fg(p), 0]Kp ∧ ¬[Fg(p), 1]Kp)
⇔
((Kp ∨ K¬p) → ¬[Fg(p), 0]Kp) ∧ ((Kp ∨ K¬p) →
¬[Fg(p), 1]Kp)

Again, left conjunct of previous line:
(Kp ∨K¬p)→ ¬[Fg(p), 0]Kp
⇔
(Kp ∨K¬p)→ ¬((Kp ∨K¬p)→ K[Fg(p)]p
⇔
(Kp ∨K¬p)→ ¬((Kp ∨K¬p)→ K¬(Kp ∨K¬p))

⇔
(Kp ∨K¬p)→ ¬⊥
⇔
&

All together we have four cases (conjuncts), of which have
now done one. The four cases are similar. QED

Proposition 3.3 [Fg(p)][Fg(p)]ϕ is valid.

Proof. Assume the first Fg(p) can be executed. Then the
precondition Kp ∨ K¬p was satisfied in the initial model.
After the execution of that Fg(p), we have ¬(Kp ∨K¬p).
Therefore the second Fg(p) cannot be executed. (So, triv-
ially, any postcondition ϕ of that is then true.) QED

Unlike in real life, you cannot forget something twice.
After you have forgotten it the first time, you have to be in-
formed again about p and only then you can forget it again.
Maybe that’s quite a bit like real life after all.

Progress towards seeing this modelling of forgetting as
progression in the AI sense would be made if we were to
prove that ψ → [Fg(p)]ψ is valid for all ψ that do not con-
tain occurrences of p. We think this is valid, and it may even
be trivial, but we haven’t given it sufficient attention yet.

4. Forgetting without changing the real world

An unfortunate side effect of our modelling of forgetting
is that the actual value of p gets lost in the process. This
is ‘somewhat strange’ if we only want to model that the
agents forget the value of p, but that ‘otherwise’ nothing
changes: the real value of p should then be unchanged. We
can overcome that deficiency in the alternative modelling
(Fg, n). It is very much like Fg(p) except that there is one
more alternative event in the model, indistinguishable from
the other two, that represents the event ‘nothing happens’
except that the truth of p should be known (its precondition
is Kp∨K¬p and there are no postconditions). Also, unlike
Fg(p), the alternative (Fg, n) is pointed: this event model
is deterministic, the real event is event n. This ensures that
the real value of p does not change. In the figure we have
not indicated the preconditions Kp ∨K¬p.

4 Forgetting without changing the real world

An unfortunate side effect of our modelling of forgetting is that the actual value of p gets
lost in the process. This is ‘somewhat strange’ if we only want to model that the agents
forget the value of p, but that ‘otherwise’ nothing changes: the real value of p should
then be unchanged. We can overcome that deficiency in the alternative modelling (Fg, n).
It is very much like Fg(p) except that there is one more alternative event in the model,
indistinguishable from the other two, that represents the event ‘nothing happens’ except
that the truth of p should be known (its precondition is Kp ∨ K¬p and there are no
postconditions). Also, unlike Fg(p), the alternative (Fg, n) is pointed: this event model
is deterministic, the real event is event n. This ensures that the real value of p does not
change. In the figure we have not indicated the preconditions Kp ∨K¬p.
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The reduction rules for (Fg, n) are the same as for Fg except for the atomic case p and
for negation, where:

[Fg(p), n]p ↔ (Kp ∨K¬p)→ p
[Fg(p), n]¬ϕ ↔ (Kp ∨K¬p)→ (¬[Fg(p), 0]ϕ ∧ ¬[Fg(p), 1]ϕ ∧ ¬[Fg(p), n]ϕ)

We can introduce (Fg(p), 0) and (Fg(p), 1) by abbreviation, somewhat different from before.
We now have the interesting results that

Proposition 4 Valid are (proof omitted):

ψ → [Fg, n]ψ for boolean ψ
[Fg, n]Kψ ↔ [Fg]Kψ for any ψ

In other words: from the perspective of the agent, the different modellings of forgetting
are indistinguishable. That makes the simpler modelling Fg(p) preferable over the slightly
more complex (Fg(p), n).

5 Further research and variations

In this section we present some less developed lines of research.
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The reduction rules for (Fg, n) are the same as for Fg
except for the atomic case p and for negation, where:

[Fg(p), n]p ↔ (Kp ∨K¬p) → p
[Fg(p), n]¬ϕ ↔ (Kp ∨K¬p) → (¬[Fg(p), 0]ϕ∧

¬[Fg(p), 1]ϕ ∧ ¬[Fg(p), n]ϕ)

We can introduce (Fg(p), 0) and (Fg(p), 1) by abbrevia-
tion, somewhat different from before. We now have the in-
teresting results that

Proposition 4.1 Valid are (proof omitted):

ψ → [Fg, n]ψ for boolean ψ
[Fg, n]Kψ ↔ [Fg]Kψ for any ψ

In other words: from the perspective of the agent, the dif-
ferent modellings of forgetting are indistinguishable. That
makes the simpler modelling Fg(p) preferable over the
slightly more complex (Fg(p), n).

5. Further research and variations

In this section we present some less developed lines of
research.

5.1. Forgetting by bisimulation quantifica-
tion

A not strictly modal way to model forgetting is to see
forgetting p as universal bisimulation quantification over p
(as in [Hollenberg] [Visser]), i.e.:

[Fg∀(p)]ϕ := ∀pϕ

where

M, s |= ∀pϕ
⇔
for all (M ′, s′) such that (M ′, s′)↔P−p(M, s) : (M ′, s′) |= ϕ

The notation (M ′, s′)↔P−p(M, s) means that epistemic
state (M ′, s′) is bisimilar to epistemic state (M, s) with re-
spect to the set P of all atoms except p. In other words
the valuation of p may vary ‘at random’. This includes the
models constructed by Fg(p) and by (Fg(p), n) from that
given M . That is, for any epistemic model M we have that

M ↔P−p M ⊗ Fg(p)
M ↔P−p M ⊗ Fg(p)

from which follow the validities

[Fg∀(p)]ψ → [Fg(p)]ψ
[Fg∀(p)]ψ → [Fg(p), n]ψ

The axiomatizations of such bisimulation quantified logics
are often complex; for S5 models they behave somewhat
better [4]. We treat a bisimulation quantification operation
non-standardly as ‘some sort of dynamic modal operator’
here. We justify this because it is a model changing opera-
tion. This perspective is also explored in [12].

Although theoretically an interesting alternative, the
much simpler Fg(p) and (Fg(p), n) seem to be preferable
for computational results. However, the bisimulation ver-
sion may have other advantages we are currently unaware
of.

5.2. Single agent forgetting in a multi-agent
context

Suppose a single agent says ‘I forgot p’ in the presence
of others. This can be modelled by the multi-agent event
model Fga(p), where, again, all preconditions are Kap ∨
Ka¬p.

5.1 Forgetting by bisimulation quantification

A not strictly modal way to model forgetting is to see forgetting p as universal bisimulation
quantification over p (as in [Hollenberg] [Visser]), i.e.:

[Fg∀(p)]ϕ := ∀pϕ

where

M, s |= ∀pϕ
⇔
for all (M ′, s′) such that (M ′, s′)↔P−p(M, s) : (M ′, s′) |= ϕ

The notation (M ′, s′)↔P−p(M, s) means that epistemic state (M ′, s′) is bisimilar to epis-
temic state (M, s) with respect to the set P of all atoms except p. In other words the
valuation of p may vary ‘at random’. This includes the models constructed by Fg(p) and
by (Fg(p), n) from that given M . That is, for any epistemic model M we have that

M ↔P−p M ⊗ Fg(p)
M ↔P−p M ⊗ Fg(p)

from which follow the validities

[Fg∀(p)]ψ → [Fg(p)]ψ
[Fg∀(p)]ψ → [Fg(p), n]ψ

The axiomatizations of such bisimulation quantified logics are often complex; for S5 models
they behave somewhat better [4]. We treat a bisimulation quantification operation non-
standardly as ‘some sort of dynamic modal operator’ here. We justify this because it is a
model changing operation. This perspective is also explored in [12].

Although theoretically an interesting alternative, the much simpler Fg(p) and (Fg(p), n)
seem to be preferable for computational results. However, the bisimulation version may
have other advantages we are currently unaware of.

5.2 Single agent forgetting in a multi-agent context

Suppose a single agent says ‘I forgot p’ in the presence of others. This can be modelled by
the multi-agent event model Fga(p), where, again, all preconditions are Kap ∨Ka¬p.
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The visualization means that all agents except a can dis-
tinguish between the three alternatives. (So for all agents
in A − a the accessibility relation is the identity on the do-
main.) In this case, a similar two-event model (as in the
single-agent approach) would not suffice (said to be irrele-
vant from agent a’s point of view), as we also have to take
the other agents into consideration: surely, we don’t want
them do doubt the value of p all of a sudden.

Again, there is an obvious complete axiomatization ap-
plying the reduction rules for event models, and we have the
validity

[Fga(p)]CA(¬Kap ∧ ¬Ka¬p)
where CA stands for ‘common knowledge among group A.’

5.3. Remembering that you have forgotten

To remember in the object language that you have for-
gotten something requires a language allowing

K(¬Kp ∧ ¬K¬p ∧ 〈Fg(p)−〉(Kp ∨K¬p))

By instead of pointed Kripke models taking what is known
as the ‘forest’ produced by the initial model and all possi-
ble sequences of all Fg(p) events (for all atoms) (see [9]
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and various other publications, this relates strongly to the
history-based approaches by Parikh & Ramanujam [7], and
later Pacuit [6], and others [14]), we get a model that al-
lows us to refer to past events (à la [15] and [8] — Sack’s
approach is also properly based on histories). We can now
combine this recent strand of research, with another strand
of adding assignments to the language, as we already did,
and additionally to that we can add theories for event mod-
els using converse actions, as done in [1] and also outlined
in, e.g. [9]. This not so grand but nevertheless not yet real-
ized scheme leads somewhere, namely to a complete axiom-
atization, but very likely not to the desirable result that ex-
pressions containing event operators (converse or not) can
be reduced to epistemic formulas. So from an AI point of
view, this is probably not a productive point of view. From
a cognitive modelling point of view, it is of course interest-
ing as we can refer to previous knowledge. (Also note that,
unlike the typical counterexamples in [15], in this case the
agent knows that prior to the current situation he/she had
knowledge of p—absence of that created the problems with
finding reduction axioms. So within this restricted setting
of specific events, maybe more useful can be done... To be
continued.

5.4. Other matters

Modeling the forgetting of features with multiple values
can be done by a simple adjustment of the above proposals.
This is easy. How to model the forgetting modal formulas
is a different piece of cake altogether; in this case we have
made no progress yet.
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