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Abstract

The aim of this paper is to pursue the line of research
initiated by Prashant Parikh which gives content and rigour
to the intuitive idea that speaking a language is a rational
activity. He employs the most promising tool to that end,
namely game theory. I consider one of his examples as a
sample case, and the model I build is a slight modification
of that developed by him. I argue that my account has some
advantage, yet many of the key ideas employed are left un-
changed. I analyse this model in detail, describing some of
its formal features. I conclude raising a problem that has
not been yet, sketching a plausible solution.

1. Introduction

The case I want to analyse concerns sentences like

Every ten minutes a man gets mugged in (1)
New York.

This sentence has two readings, one is that there is a cer-
tain man in New York, either very unlucky, or reckless, or
masochist, that is mugged every ten minutes. The other
reading is that every ten minutes, some man or other, not
necessarily the same, gets mugged in New York. Imagine
an actual conversation where (1) is uttered, the problem is,
how can the hearer decide what is the reading originally in-
tended by the speaker? As for (1), we can hardly imagine
a situation where the reading intended by the speaker is the
first one – namely the unlucky, reckless, masochist interpre-
tation – and where this is the reading selected by the hearer.
A relevant feature of (1) is that one of the two possible read-
ings entails the other, in this case the second reading is a
logical consequence of the first. We can think of sentences
sharing this same feature with (1), but such that they can be
employed in a conversation where the intended reading is
the logically stronger one. Consider

All of my graduate students love a Finnish (2)
student in my Game-Theory class.

Suppose that (2) is uttered by a professor in Amsterdam.
I do not know how many Finnish students studying game
theory there are in Amsterdam. Assume there are very few
of them. My intuition is that in most situations the hearer
would infer that there is a unique Finnish student in the
speaker’s class that all graduate students love.

I will use game theory to analyse those conversations that
involve sentences that, like (1) and (2), can be interpreted in
two different ways, such that one reading is a logical con-
sequence of the other. My starting point will be the account
proposed by Prashant Parikh in several works [6, 7, 8].

If modelled in game-theoretic terms,1 conversations like
these involve two players, 1 and 2, where the set of 2’s
possible moves contains two elements, say A and B, cor-
responding to two alternative interpretations of some am-
biguous sentence φ. As is customary in game theory, I
will imagine that player 1 is male, and player 2 female.
In Parikh’s model, player 1 has some private information,
unknown to player 2. Parikh defines this basic unknown
as the speaker’s intended meaning. Player 2 has some be-
liefs about what this private information is, hence about
what message player 1 wants to convey, and these beliefs
can be expressed as subjective probabilities. Here lies the
main shortcoming of Parikh’s model. The hearer’s task in
a conversation is to guess the speaker’s intended meaning,
or, better, to select a set of possible alternatives, and as-
sess a probability value for these. Therefore, if we model
disambiguation as a game, the probability of the intended
meaning should not be one of the primitives of the game,
rather we have to explain how the hearer can infer this value
from the structure of the game. In other terms, if the task of
player 2 is to guess what the intended meaning is, and if she
already knows which alternative is more likely to be true,
then there is not much to be done anymore, she only needs
to multiply the subjective probability of each alternative by
the payoffs that the moves available to her would yield in
each of these alternatives. Suppose that p is the prior proba-
bility that player 2 assigns to the belief that player 1 wants to
convey the meaning corresponding to A; and that 1−p is the
probability of the belief that he wants to convey the meaning

1Most of the notation and terminology employed is borrowed from
Roger Myerson [4], chapters 2-5.
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B. Let ga be the gain for player 2 if she selects the interpre-
tation A when player 1 really wants to convey A, and let ma

be her gain if she selects A when 1’s intended meaning is B.
Similarly, let gb be her gain if she correctly selects B, and
mb her gain when she wrongly selects B. If we describe the
situation in this way, her task is very simple, she must select
A whenever p×ga+(1−p)×ma > p×mb+(1−p)×gb and
B whenever p×ga +(1−p)×ma < p×mb +(1−p)×gb.
Once we know that she is able to assign a probability value
to the belief that 1’s intended meaning is A – no matter how
she could accomplish this – there is nothing more to be ex-
plained, and hence no more need to appeal to game theory to
give an account of her behaviour. But, presumably, we need
game theory to explain how she could assess this probabil-
ity.

This is why I claim that the content of player 1’s pri-
vate information has to be something more basic, and there-
fore that player 2’s prior probabilities have to concern
what player 1 actually knows. With this modelling of the
game, the speaker’s intention to convey a given message
can be derived from facts with a minor degree of intention-
ality, namely his knowledge. To paraphrase Willard Van
Quine [9], it reduces the grade of intentional involvement.
Just consider the questions ‘What does player 1 know?’ and
‘What does player 1 want to say?’. We are not always able
to provide definite answers to the questions of the first kind,
but, at least, we can assess the probability of the answers,
just considering what we know about the player’s sources
of information. Of course, we can also assess the probabil-
ity of the answers of the questions of the second kind, but
the data to be considered include all those relevant for the
first kind, and something else, at least this person’s goals. In
other words, any reasoning behind an answer to a question
of the first kind is conceptually simpler than that required
by the second kind.

2. Extensive Form

What is now the shape of our model? If A and B are the
only legitimate interpretations of an ambiguous utterance φ,
then either he believes that A or he believes that B. But in
the case we are examining, one of the two readings is a log-
ical consequence of the other, for example we can assume
that B logically entails A. If this is true, then if 1 believes
that B, he necessarily believes that A. Then, as far as player
2 knows, there are two possibilities:

alternative a: 1 knows that A and it is not the case that he
knows that B (either because he knows that not B, or
because he does not know whether B);

alternative b: he knows that A and B.

This imposes some restrictions on the payoffs of the game.
If a is the real situation, then, if 2 selects A when 1 utters

φ, she will acquire some new and reliable true knowledge,
let us name ‘ga’ the value that this outcome has for her.
But, if in the same situation she chooses B, instead, she
gets a false or at least unreliable new belief and hence some
bad result, let us name ‘mb’ the value of this outcome. If
b is the real situation, then the choice of B will yield some
new knowledge, and let be gb the value she puts on it. But
since in this situation the information corresponding to A
is true and reliable as well, if she chooses A she does not
get some bad payoff, her gain should again be ga. Let us
now use ‘p’ to refer to the prior probability of situation a,
so that 1− p is the prior probability of b. Which moves are
available to player 1? One of them is of course the uttering
of the ambiguous sentence φ. But, he could also choose
to convey the message he has in mind using some longer
but unambiguous sentence, µa if he is in situation a, µb

if he is in situation b. When player 1’s choice is one of
these two, player 2 does not have to consider alternative
interpretations, hence, in game-theoretic terms, she has no
opportunity to move. In this case, no misunderstanding is
possible.

We have to imagine that he is sincere and honest, that she
believes what he says, and that this is common knowledge.
For simplicity, imagine also that both of them are interested
exclusively in the pure flow of information and no further
aims. This is unrealistic, of course, but it is just an idealiza-
tion not more problematic than the physicist’s speculations
on frictionless planes. Following Parikh, I will construct
my model as a coordination game where the players have
the same payoffs, which are determined by the net value of
the information minus a ‘cost’ which is proportional to the
length of the sentence. Since the two players have iden-
tical payoffs, this is a game of ‘pure coordination’. The
rationale for this choice is that when honest and rational
agents communicate, they all aim at successful communi-
cation. Of course there are commonly cases where this is
not true, most notably when people lie. But we can legiti-
mately focus attention on those benign cases, especially be-
cause the very possibility of lying presupposes the existence
of honest communication.

The payoff ga has to be equal to the value of the true
information provided by A, call it va, minus the cost c in-
volved by φ. If player 1 utters µa in situation a, there is
no possibility of a misunderstanding, but its cost is higher.
Hence this combination yields a value g′

a = va − c′, where
c′ > c. Similarly, if we call ‘vb’ the net value of the true
information provided by B, we have that gb = vb − c. And
if player 1 utters µb in situation b, then the payoff will be
g′b = vb − c′, if, for the sake of simplicity, we assume
that the cost involved by µa and µb is analogous. Moreover,
since B logically entails A, while A does not entail B, we
should have that vb > va, and this entails that gb > ga, and
g′

b > g′
a.
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What is the best choice for player 2? Can we say again
that she has only to check whether p× ga + (1− p)× ga >
p×mb+(1−p)×gb, i.e. whether p > (gb−ga)/(gb−mb),
or whether ga < p×mb + (1− p)× gb? Assume that this
is the case, and imagine, for example, that ga > p ×mb +
(1− p)× gb. What happens if b, not, a, is the real situation,
and 1 wants to convey message B? He would probably utter
the longer but unambiguous sentence µb. This behaviour is
not outright irrational, we shall see that it corresponds to
an equilibrium in our model, but it is not always the best
outcome that player 1 and player 2 can get, in other words
it might be inefficient. Moreover, from the mere fact that
there is a probability p that 1 knows that A and not that
B nothing follows, from a conceptual point of view, about
what he means when he says something. Now she really
needs to consider also his goals in order to be able to guess
which alternative he wants her to choose.

We can conceive of cases where an unambiguous sen-
tence is so much longer than the corresponding ambigu-
ous one, that a cheap misunderstanding can be preferable
to an unambiguous but demanding speech act. We can also
imagine situations where the speakers choose ambiguous
and potentially misleading messages because they do not
want other people to acquire some confidential information.
Just think of two spies involved in a telephone conversation,
both knowing that their line has been tapped. Sometimes a
leak can do more harm than a misunderstanding. I will as-
sume that this is not the case in the conversation we are
considering, and that in this case the cost of an utterance
is relatively small when compared to the net value of in-
formation. Hence, the model employed here requires the
following ordering relations: gb > g′

b > ga > g′
a > mb,

g′
a −mb > gb − g′

b, g′
b − ga > ga − g′

a.
But maybe the set of moves available to player 1 is in-

complete. Perhaps we should also consider the possibility
of uttering µa in situation b, and µb in situation a. Of course
if player 1 uttered µa knowing that A is false, he would
be lying, and, under the assumption that we are trying to
analyse a case of patently honest communication this move
would yield a bad outcome for both. But the other case can-
not be dismissed so easily, remember that A is true in situ-
ation b. The payoff would actually be g′

a. The fact is that
whatever the choice of 2, the gain would be higher if player
1 chose µb or φ. This means that, according to the model
presented here, it is never rational for player 1 to choose
to utter µa in situation b. In technical terms, any strategy
where the speaker utters µa in situation b or µb in situa-
tion a is strongly dominated, and can be eliminated from
the game. In this case the model simply predicts the exis-
tence of a scalar implicature, to the effect that if 1 utters µa,
then 2 infers that it is not the case that 1 knows that B. Of
course the ordering among payoffs that was depicted above
presupposes that if 1 knew that B, then he would not con-

ceal this information to the hearer. In situations not covered
by this analysis, the speaker could utter µa knowing that B,
if he did not want 2 to know.

Similarly, we could include a pair of ‘don’t say anything’
moves for player 1. Of course, when he chooses one of
these additional moves, she has no possibility to move, and
the payoff should be equal to 0 for both players. I will as-
sume that both g′

a and g′
b are strictly positive. If this is the

case, then, again, any strategy involving one of these ad-
ditional moves is strongly dominated, hence I will ignore
this possible variant of the game. Yet, this shows that I have
not mentioned a fact which is implicitly presupposed by our
model, namely the fact that, for example, at node a, player
1 knows that A and also wants to convey this information.
Maybe this is what is meant by Parikh when he says that the
chance nodes ‘represent [player 1’s] intention to convey’ A
or B [7].2 If this is the case, the objections I raised in section
1 miss the mark. But, even in this case, his original mod-
els should be modified. As I have already said, with cases
like (1) or (2), the payoff obtained when player 2 rightly
chooses the stronger interpretation, should be higher than
that obtained when she rightly chooses the weaker one.

Now we have all the elements to build our game. I will
first construct it as a game of imperfect information in ex-
tensive form, which will be called Γe. It has the structure of
a tree, as is shown in Figure 1.

A

ma

g´a

ga

g´b

gb

ga
A

B

B

2.c

2.c

I

i

1.a

1.b

0

e

E

Figure 1. The game in extensive form

2P. 27.
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This is a deviation from Parikh’s path. In the model pre-
sented here, I imagine that the first event in the game is a
chance move made by ‘Nature’, which determines whether
1 knows that A and does not know that B, or knows that
A and B. At this point 1 can make his move. As usual, I
also imagine that the whole structure of the game is com-
mon knowledge. Parikh’s game in extensive form is not a
tree but a pair of trees, since he argues that player 2 cannot
construct anything before 1’s utterance [7],3 this is why he
proposes the notion of a game of partial information. I have
the impression that this is an unnecessary – but harmless –
deviation from more traditional notions, unless we want our
model to mirror the actual mental processes of speaker and
hearer. I observe that if Parikh is right in his claim that
these disambiguation games should not be treated as ordi-
nary games of imperfect information, the same would hold,
for example, for Spence’s ‘model of education’ [12].

Then, a and b are chance events with prior probability p
and 1−p, respectively, where 1 > p > 0, as usual. If player
1 is in situation a, he can utter either φ or µa, and we can
label these two moves ‘I’ and ‘E’, respectively – where
‘I’ stands for ‘implicit’ and ‘E’ for ‘explicit’. If he is in
situation b, he can choose between φ and µb, and we can call
these alternative moves ‘i’ and ‘e’. Player 2 has a chance to
move only if the game is in one of the states labelled ‘2.c’,
where the identucal labels and the ellipsis manifest the fact
that she is not able to distinguish them, technically speaking
they belong to the same information set. Her options are the
two moves A and B.

The fact that there are only two alternative states in 2’s
information set follows from the characteristic features of
the examples considered, namely the fact that one of the
two readings is entailed by the other. It is not even neces-
sary that this be a logical entailment – like it is in our exam-
ple – but the entailment has to be common knowledge. If
the two alternative interpretations were mutually exclusive,
we would build another game with two epistemic possibil-
ities, but there would be a difference in the ordering of the
outcomes. The choice of A when 1 means B, for example,
would lead to a bad result. If the two alternatives readings
were logically and conceptually unrelated, player 2 would
have an information set containing three elements. And of
course we can conceive of cases where an ambiguous sen-
tence admits of more than two readings.

3. Nash Equilibria in Strategic Form

The normal representation of our game is the set Γ =
{N, C1, C2, u}, where N = {1, 2} is the set of players,
C1 = {Ei,Ee, Ii, Ie} and C2 = {A, B} are the sets of
their pure strategies, and u is their payoff function, hence

3P. 83.

a function from C1 × C2 to the real line R. It satisfies the
pattern shown in Table 1.

A B
Ei p× g′

a + (1− p)× ga p× g′
a + (1− p)× gb

Ee p× g′
a + (1− p)× g′

b p× g′
a + (1− p)× g′

b

Ii ga p×mb + (1− p)× gb

Ie p× ga + (1− p)× g′
b p×mb + (1− p)× g′

b

Table 1. The game in strategic form

I will now establish a few properties of the model.

Theorem 3.1 Ii is strongly dominated in Γ

Proof. Ii is strongly dominated if and only if ∃σ1 ∈ ∆(C1)
such that

u(Ii, A) < σ1(Ei)u(Ei,A)+
σ1(Ee)u(Ee,A) + σ1(Ie)u(Ie, A)+ (3)
(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, A)

and

u(Ii, B) < σ1(Ei)u(Ei,B)+
σ1(Ee)u(Ee,B) + σ1(Ie)u(Ie, B)+ (4)
(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, B)

Inequalities (3) and (4) are equivalent to

σ1(Ei) + σ1(Ee)
σ1(Ie) + σ1(Ee)

<
(1− p)(g′

b − g′
a)

p(ga − g′
a)

(5)

and
σ1(Ei) + σ1(Ee)
σ1(Ie) + σ1(Ee)

>
(1− p)(gb − g′

b)
p(g′

a −mb)
(6)

respectively. Since g′
b > ga, we have that (g′

b − g′
a)/(ga −

g′
a) > 1. Moreover, we stated above that g′

a−mb > gb−g′
b,

therefore 1 > (gb − g′
b)/(g′

a −mb). This entails

g′
b − g′

a

ga − g′
a

>
gb − g′

b

g′
a −mb

and hence

(1− p)(g′
b − g′

a)
p(ga − g′

a)
>

(1− p)(gb − g′
b)

p(g′
a −mb)

At this point it is an easy task to find values for σ1(Ei),
σ1(Ie), and σ1(Ee) that satisfy inequalities (5) and (6).
QED

Observe that Theorem 3.1 entails that no strategy profile τ
where τ1(Ii) > 0 is a Nash equilibrium.
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Theorem 3.2 There is no equilibrium in Γ where both Ei
and Ie have strictly positive probability.

Proof. Assume that σ is such an equilibrium. Then the
following inequalities have to be true:

∑

c2∈C2

σ2(c2)u(Ei, c2) ≥
∑

c2∈C2

σ2(c2)u(Ee, c2)

∑

c2∈C2

σ2(c2)u(Ie, c2) ≥
∑

c2∈C2

σ2(c2)u(Ee, c2)

They are equivalent to

σ2(A) ≤ gb − g′b
gb − ga

σ2(A) ≥ g′a −mb

ga −mb

respectively. But this cannot be. In fact, given the ordering
among payoffs, (g′a −mb)(g′b − ga) > (gb − g′b)(ga − g′a),
(g′a−mb)(gb−g′b)+(g′a−mb)(g′b−ga) > (g′a−mb)(gb−
g′b) + (gb − g′b)(ga − g′a), (g′a − mb)(gb − ga) > (gb −
g′b)(ga −mb), and hence

g′a −mb

ga −mb
>

gb − g′b
gb − ga

(7)

QED

Theorem 3.3 There is no equilibrium Γ where both Ie and
Ee have strictly positive probability.

Proof. Assume that σ is such an equilibrium. Then the
following equation has to be true

∑

c2∈C2

σ2(c2)u(Ie, c2) =
∑

c2∈C2

σ2(c2)u(Ee, c2)

which amounts to

σ2(A) =
g′a −mb

ga −mb

This means that 1 > σ2(A) > 0, hence in this equilibrium
player 2 is indifferent between strategies A and B, and this
means

∑

c1∈C1

σ1(c1)u(c1, A) =
∑

c1∈C1

σ1(c1)u(c1, B) (8)

Since σ1(Ei) = 0 and σ1(Ii) = 0, (8) becomes ga = mb,
which is impossible. QED

Theorem 3.4 There is no equilibrium where both Ei and
Ee have strictly positive probability.

Proof. Analogous to the preceding one. QED

How many equilibria are there? Of course there are two
equilibria in pure strategies, namely η = ([Ie], [A]) and
θ = ([Ei], [B]), but there is also an infinite set of mixed
equilibria.

Theorem 3.5 If
π1(Ee) = 1 (9)

and
g′a −mb

ga −mb
≥ π2(A) ≥ gb − g′b

gb − ga
(10)

then π is a Nash equilibrium.

Proof. Consider a modified game Γ∗ = {N, C∗
1 , C2, u∗}

where C∗
1 = {Ei, Ie, Ee}, and u∗ is just u after its domain

has been restricted accordingly. Since Ii is strongly domi-
nated, 3.1, every equilibrium of Γ∗ is an equilibrium of Γ,
and vice versa. Suppose that π is a strategy profile that sat-
isfies conditions (9) and (10). Define ω as p(g′a − g′b) + g′b,
which is the expected payoff of both players under π. Since
player 2 is clearly indifferent between A and B when player
1’s strategy is [Ee], in order to show that π is an equilib-
rium, we only need to prove the following statements:

ω ≥
∑

c2∈C2

π2(c2)u(Ei, c2) (11)

ω ≥
∑

c2∈C2

π2(c2)u(Ie, c2) (12)

But the conjunction of conditions (11) and (12) is equivalent
to (10). Hence π is a Nash equilibrium of Γ∗ and therefore
of Γ as well. QED

Theorems 3.1, 3.2, 3.3, and 3.4 entail that there are no other
equilibria.

4. Efficiency

Summing up, there are two equilibria in pure strategies,
namely η and θ, and many mixed equilibria π. All these
mixed equilibria are somehow equivalent, since they yield
the same expected payoff, and they all amount to the fact
that player 1 goes for the costly but unambiguous option,
and player 2 has no opportunity to move. These mixed equi-
libria are the least efficient ones. As for the equilibria in
pure strategies, η is the unique Pareto efficient equilibrium
iff

p >
gb − g′b

gb − g′b + ga − g′a

and θ is the unique Pareto efficient equilibrium iff

p <
gb − g′b

gb − g′b + ga − g′a
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Parikh’s account predicts that the players will tend to
converge on the more efficient equilibrium. Robert Van
Rooij rejects this solution concept, claiming that it is ‘un-
usual’ [10]. This claim is quite odd. On the one hand, there
is some agreement among some scholars on the view that
we should expect rational players to converge on efficient
equilibria in cooperative games [3, 4]. And we should bear
in mind that a rational justification of a solution concept is
perhaps always desirable, but not strictly necessary, as long
as any included profile is (at least) a (Nash) equilibrium and
is empirically adequate [1].

Yet, even if I hold that Parikh’s relying on Pareto effi-
ciency is probably the most natural choice, I will propose
a line of defence which is rejected by him. Imagine that
the players were allowed some preplay communication [4],
before the beginning of the game, hence before player 1
has access to his private information. Since they are given
the opportunity to reach an agreement over the strategy to
adopt during the game, they will presumably agree to con-
verge on the equilibrium that is the most profitable one for
both, namely on the uniquely Pareto efficient one. Of course
an actual occurrence of this kind of communication is un-
realistic, but the players do not have to be really engaged
in it in order to know what would happen in such a coun-
terfactual situation, because this can be inferred from the
structure of the game, it is a feature of the game, which is
common knowledge. According to Parikh this argument is
untenable for two reasons. First, if you explain successful
communication in terms of preplay communication you fall
into an infinite regress. Second, ‘even if such an infinite
regress were avoidable, the solution would certainly require
a great deal of effort suggesting that languages aren’t quite
so efficient as they in fact are’ [7].4 I argue that both of these
tenets can be rejected. The model presented here is an ac-
count of disambiguation, which is a particular phenomenon
occurring in communication. I claimed that our two players
could converge on a unique equilibrium, if they considered
what would have happened if they had had the opportunity
to reach an agreement over a coordinated plan. If this imagi-
nary preplay communication is conceived as involving only
unambiguous sentences, there seems to be no danger of an
infinite regress, yet the response is the same: they would
have agreed to converge on the unique Pareto efficient equi-
librium. The second point is less clear to me, since the kind
of reasoning that we come to attribute to our players does
not seem to involve a great deal of computational effort,
compared to the construction of the model itself.

The main shortcoming the Pareto-Nash solution concept
that I borrowed from Parikh is that it does not explain what

4P. 39n.

should happen in the limit case where

p =
gb − g′

b

gb − g′
b + ga − g′

a

and therefore both η and θ are (weakly) Pareto efficient. Be-
ing uncertain over which course of action should be chosen,
our players could end up converging on one of the mixed
equilibria. The reasoning is as follows. Resume the argu-
ment from preplay communication of the preceding para-
graph. The upshot of a counterfactual conversation like the
one described would be indeterminate, in this case, they
cannot tell what they would have agreed on, just consider-
ing the structure of the game. They know for sure that they
would have agreed to converge on one of the two weakly ef-
ficient equilibria, but they do not know which one, they are
equally probable. Therefore, the beliefs that player 1 will
end up choosing [Ei] and that he will end up choosing [Ie]
are equally probable for player 2

player 2 deems to be equally probable the belief that
player 1 will end up choosing [Ei] and the belief that he
will end up choosing [Ie]. In other words, he comes to
believe that he will choose the mixed strategy σ where
σ1(Ei) = σ1(Ie) = 1

2 . But this expectation is self-refuting,
since, by theorem 3.2, it is not part of a Nash equilibrium.
But a similar reasoning would lead 1 to expect that 2 will
choose the mixed strategy τ2(A) = τ2(B) = 1

2 . This is
nothing more than the belief that 2 does not know what to
do, and hence that she will choose at random. This belief is
not self-refuting, since it belongs to one of the mixed equi-
libria by theorem 3.5, because

g′
a −mb

ga −mb
>

1
2

>
gb − g′

b

gb − ga

And the very same reasoning that can lead 1 to form this
belief can lead 2 to believe that 1 has this belief, and so
on. This argument is rather unorthodox, and I take it to bee
an interim solution to the problem I raised. Another line
of reasoning which was promising, at least a priori, proved
to be a dead end. I will present it anyway in the following
two sections, since it gives the occasion to analyze some
features of the model which are interesting in themselves,
and it will help to meet a possible objection.

5. Trembling Hand Perfect Equilibria

One might hope to select a unique equilibrium arguing
that in our analysis player 2 does not exploit all the evidence
she has at her disposal, since in order to make a rational
choice she must consider not the prior probability of a and
b, but the conditional probability of those events, given that
player 1 decided to utter φ. This suggests that we consider
this a sequential game.
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The multiagent representation [4] – also called agent-
normal form [11], and agent strategic [5] – is a way to rep-
resent games in extensive form as games in strategic form,
alternative to the normal representation. In the multiagent
representation, there is a player, called (temporary) agent,
for every information set of every player. Hence, as far
as our game is concerned, player 1 is represented by two
agents in the multiagent representation, say a and b. While
there is only one agent for player 2, say c.

A behavioural strategy profile of a game in extensive
form is a mixed strategy profile of its multiagent represen-
tation. A generic behavioural strategy profile of our game
is (σa, σb, σc), and it specifies a probability distribution for
every agent of every player. The behavioural strategy pro-
file ([I], [e], [A]) corresponds to our Nash equilibrium η in
an intuitive way, so that it can be called its behavioural rep-
resentation [4]. Since there should not be any danger of
misunderstanding, until the end of this section, I will use the
names of the strategy profiles of (the normal representation
of) our original game to refer to their behavioural represen-
tations. Hence, I will set η = (ηa, ηb, ηc) = ([I], [e], [A]),
and similarly for the other equilibria.

Definition 5.1 A trembling hand perfect equilibrium of a
game in extensive form is a trembling hand perfect equilib-
rium of its multiagent representation [4, 5]. #

Searching for trembling hand perfect equilibria of games in
extensive form, is precisely a way to search for strategy pro-
files that are coherent if we consider the sequential nature of
a game.

Theorem 5.2 η is a trembling hand perfect equilibrium of
Γe

Proof. Recall that η is a perfect equilibrium iff there ex-
ists a sequence (ηk)∞k=1 such that each ηk is a perturbed
behavioural strategy profile where every move gets positive
probability, and, moreover

(i)

lim
k→∞

ηk
s (ds) = ηs(ds) ∀s ∈ S ∀ds ∈ Ds

(ii)

ηs ∈ argmaxτs∈∆(Ds)

∑

d∈D

(
∏

r∈N−s

ηk
r (dr)

)
τs(ds)u(d)

∀s ∈ S

where S = (a, b, c) is the set of all information states of
all players, and, for each s ∈ S, Ds is the set of moves

available to the relevant player in state s, and D = ×s∈SDs.
It is not difficult to find a sequence satisfying these criteria.
Set

ξ =
(1− p)(gb − ga)

p(ga −mb)
Then ∀k ∈ (1, 2, 3, ...), if ξ ≥ 1,

ηk
a(I) =

2k − 1
2k

ηk
b (i) =

1
2kξ

ηk
c (A) = 1− ga − g′a

k(ga −mb)

If ξ < 1, instead, set

ηk
b (i) =

1
2k

and the rest as before. You can see at a glance that these
sequences satisfy condition (i). Consider now the expected
payoff for player 1 when he is in state a and is planning to
make move τa ∈ ∆(Da), and all moves at all other states
are made according to scenario ηk. It is equal to

∑

d−a∈D−a

(
∏

r∈N−a

ηk
r (dr)

)
× (13)

[τa(I)u(d−a, I) + (1− τa(I))u(d−a, E)]

We can consider (13) as a function of τa(I), and if we cal-
culate the derivative of this function we get

p[ηk
c (A)(ga −mb) + mb − g′a]

As you can easily verify, this value is either null or positive
for all k, and this means that, since ηa(I) = 1

ηa ∈ argmaxτa∈∆(Da)

∑

d∈D

(
∏

r∈N−a

ηk
r (dr)

)
τa(da)u(d)

Similarly, if you consider the corresponding expected pay-
off for player 1 when he is in state b, i.e.

∑

d−b∈D−b

(
∏

r∈N−b

ηk
r (dr)

)
×

[τb(i)u(d−b, i) + (1− τb(i))u(d−b, e)]

regard it as a function of τb(i), and calculate its derivative,
you get

(1− p)[ηk
c (A)(ga − gb) + gb − g′b]

which is either null or negative for all k, because of inequal-
ity (7), and this means that, since ηb(i) = 0,

ηb ∈ argmaxτb∈∆(Db)

∑

d∈D

(
∏

r∈N−b

ηk
r (dr)

)
τb(db)u(d)

88



Finally, if you calculate the expected payoff for player 2,
you have

∑

d−c∈D−c

(
∏

r∈N−c

ηk
r (dr)

)
×

[τc(A)u(d−c, A) + (1− τc(A))u(d−c, B)]

whose derivative is

ηk
a(I)p(ga −mb) + ηk

b (i)(1− p)(ga − gb)

which is either null or positive for all k, and this entails

ηc ∈ argmaxτc∈∆(Dc)

∑

d∈D

(
∏

r∈N−c

ηk
r (dr)

)
τc(dc)u(d)

QED

The case of θ is completely analogous.

Theorem 5.3 θ is a trembling hand perfect equilibrium of
Γe

Proof. A suitable sequence is

θk
a(I) =

1
2k

θk
b (i) =

2k − 1
2k

θk
c (A) =

gb − g′b
k(gb − ga)

if ξ ≥ 1, and

θk
a(I) =

ξ

2k
θk

b (i) =
2k − 1

2k
θk

c (A) =
gb − g′b

k(gb − ga)

if ξ < 1. QED

As for the mixed equilibria the case is simpler.

Theorem 5.4 The mixed equilibria π are trembling hand
perfect in the extensive form of the game

Proof. Since 1 > π > 0, we can set πk
c (A) = πc(A), and

ηk
a(I) =

1
2k

ηk
b (i) =

1
2kξ

whenever ξ ≥ 1, and

ηk
a(I) =

ξ

2k
ηk

b (i) =
1
2k

otherwise. QED

Theorems 5.2, 5.3, and 5.4 show that all of the Nash
equilibria can be legitimately regarded as tenable, even if
take into account the fact that the players do not act simul-
taneously, and hence that player 2 must update her beliefs
upon the evidence that player 1 chose the ambiguous utter-
ance φ. This is indeed trivial for the pure equilibria, but not
for the mixed ones. The question is, what does 2 believe
when she sees that 1 has uttered φ? But an answer to this
question is relative to a strategy profile. For example, un-
der η, if 1 utters φ, she knows for sure that she is in her
upper node, since the conditional probability of this event,
upon the evidence that he has chosen either I or i, is equal
to 1. But what does she believe in the same situation un-
der one of the mixed equilibria, where all the nodes in her
information set have null prior probability, and hence the
traditional Bayesian theory leaves the corresponding condi-
tional probability undefined? Many of the refinements of
the Nash equilibrium concept are an attempt to give an an-
swer to this question. The reasoning behind the notion of
trembling hand perfect equilibrium in extensive games is
this: when a player comes to know that an event with null
prior probability has actually occurred, she believes that this
was due to a mistake made by one of the other players, when
performing his strategy. Then she updates her beliefs, as-
suming that all the possible mistakes had an infinitesimal
prior probability.

6. Proper Equilibria

Summing up, theorems 5.2, 5.3, and 5.4 strengthen the
overall strategy of this paper, which amounts to the claim
that the players will converge on the unique Pareto effi-
cient equilibrium, whenever there is one, and on one of the
mixed equilibria otherwise. For completeness, I will men-
tion another feature of the model which is less reassuring.
The concept of proper equilibrium builds on the idea behind
trembling hand perfect equilibrium, and adds the restriction
that less costly mistakes have a higher probability than more
dangerous ones [4].

Definition 6.1 A mixed strategy profile σ is an ε-proper
equilibrium iff all pure strategies get strictly positive prob-
ability and, for every player i and any pair of pure strategies
ci and ei in Ci,

if ui(σ−i, [ci]) < ui(σ−i, [ei]), then σi(ci) ≤ εσi(ei)

)

Definition 6.2 A mixed strategy profile σ is a proper equi-
librium iff there is a sequence (εk, σk)∞k=1 such that

lim
k→∞

εk = 0, lim
k→∞

σk
i (ci) = σi(ci), ∀i ∈ N,∀ci ∈ Ci,

and, for every k, σk is an εk-proper equilibrium. )
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Proper equilibria are usually applied to the normal repre-
sentation of games in extensive form. It is probably evident
that η and θ are proper equilibria, the interesting case is the
following one.

Theorem 6.3 A mixed strategy profile π such that
π1(Ee) = 1 is a proper equilibrium of Γiff

π2(A) =
p(g′

a −mb + g′
b − gb) + gb − g′

b

p(ga −mb + ga − gb) + gb − ga

I will not provide the proof here, I only remark that for ev-
ery game, there are three and only three equilibria, and that
the suitable value for π2(A) is always included in the open
interval (

gb − g′
b

gb − ga
,
g′

a −mb

ga −mb

)

I admit that this fact is not welcome, since it weakens the
strategy adopted so far. I just take it as a reason for not
adopting proper equilibrium as a solution concept in disam-
biguation games.

7. Conclusion

Summing up, the substance of this work is a new game-
theoretic analysis of the capacity humans have to communi-
cate using ambiguous expressions. The background hypoth-
esis is that these tasks are accomplished because humans are
rational creatures, and, when two people are involved in a
conversation, they crucially capitalize on this fact, assuming
that it is common knowledge. I built on ideas first developed
by Prashant Parikh, raising some objections that led me to
modify his models.

I built a game of imperfect information in extensive
form, where a hearer and a speaker are the two players,
the speaker has some private information, and his task is to
convey this piece of information to the hearer. Here lies the
main difference between my analysis and Parikh’s, since, in
his model, the relevant private information of the speaker
is the intended meaning of his speech act. I argued that
my reform renders the theory more natural and conceptu-
ally simpler.

The examples I chose as sample cases were simpler to
analyze than more general cases, because of the structural
features of the resulting model. In the end I retain Parikh’s
conclusion that speakers tend to focus on efficient equilib-
ria, but I also proposed a solution to a problem that had
been left open, namely, the strategy adopted by the speak-
ers when there is not a unique efficient equilibrium. I ar-
gued that, in this case, the speaker goes for the ambiguous
expression, which is costly, but safe. The argument I used
to back both of these tenets hinges on the idea that the play-
ers are able to guess the joint strategy they would agree on,

were they allowed some preplay communication before the
beginning of the game. This kind of argument is not new. It
is crucial that the players do not really need to entertain this
kind of communication in order to know what would ensue
from it. Yet, I acknowledged that my argument is partially
unorthodox, from the point of view of the existing literature.

I also showed that the relevant equilibria are plausible
even if we consider that a conversation is sequential in na-
ture, proving that they are trembling hand perfect. And I
ended stating, omitting the proof, that not all the equilibria
are proper, which I take to be an unwelcome result.

Now the task is to extend this analysis to other, more gen-
eral and more complex cases, and check whether the claims
that have been put forward here have a wider application.
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