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Abstract

The present paper introduces two new information
merging protocols for the family of adaptive logics ADM,
for which majority merging has been defined in previous
work. The new adaptive operators reflect the negotiation
processes of quasi-merging and pure-arbitration known
from the Integrity Constraints framework. The Adaptive
Variant Counting selection provides results equivalent
to the GMax family of merging operators: it selects a
collective model for a multi-set of belief bases established
on the number of disagreements verified by the various
models. The Adaptive Minimax Counting selection is a
quasi-merging operator which applies a minimax function
and it obtains a larger spectrum of possibilities than
the previous selection: it simulates the behaviour of the
Max family of operators from the Integrity Constraints
framework, but it avoids some of its counterintuitive results.

Keywords: Information Fusion, Negotiation Protocols,
Arbitration, Quasi-Merging, Adaptive Logics.

1. Introduction

The analysis of processes of intelligent interaction in
multi-agent systems has grown constantly in the logical lit-
erature of the last decade, with diversificated approaches
and aims. The applications vary from the formalization of
interactive processes of collective deliberation, especially
relevant with respect to the formulation of judgement ag-
gregation strategies, to information fusion architectures.

∗Research for this paper was supported by subventions from Ghent
University and from the Research Foundation - Flanders (FWO - Vlaan-
deren).

The analysis of contents involved in a decision process
focuses naturally on the agreements among agents, in or-
der to perform the most satisfactory selection of common
goals and judgements in the group. Obviously, such a pro-
cess might not be entirely satisfactory, and the presence of
disagreements expressing a certain degree of internal dis-
satisfaction cannot be completely ruled out by the negotia-
tion and the consequent aggregation protocols. The formal-
ization of selection procedures in view of such inconsistent
data is the aim of the frameworks defining knowledge merg-
ing operators, also known as information fusion operators.

The merging of contents from contradictory sources,
whose study goes back to [5], has applications in distributed
databases and information systems. General properties for
the logical approaches to merging procedures for knowl-
edge bases containing inconsistent information have been
studied in [7], [6], [4], and more recently surveyed in [11]
and [10].

The first definition of an operator for merging informa-
tion has been given in [21] and later considerably reworked
in [14] and [15]. In the latter work, the idea of arbitration
comes from an intuitive modification of the more standard
revision operator from the AGM-paradigm in [1]: it refers
to merging as the revision of an older base with the infor-
mation of a newer base, without any order of priority of the
latter over the former. The process requires instead preser-
vation of information from one base in some cases and from
the other in other cases. This general principle has been
modified by the use of weights on the bases, to indicate the
relative importance of the information rather than strict pri-
ority. Weights have been expressed as priority values (as in
[9]), they have been assigned either to propositional terms
(see e.g. [8]) or to the set of models of formulas (as in [21]),
and finally they have been formulated as possibility values
(see [23]).

A major distinction has been introduced by the defini-
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tion of the majority protocol. In [16] an operator is defined
which avoids the typical restrictions of the majority princi-
ple, formulated taking into account formulae in disjunctive
form within the bases to be merged. This allows to repre-
sent bases that only partially support their contents. The
ground distinction between the arbitration and majority op-
erators - see e.g. [13] - can be reflected in the following
terms: whereas majority merging operators aim at mini-
mizing collective dissatisfaction, arbitration operators aim
at maximizing individual satisfaction. This distinction is of
the greatest importance with respect to the results of col-
lective deliberation procedures and the restrictions due to
results as the one of the judgement aggregation paradox.

These two sub-classes of merging operators are further
defined in the more general and standard framework of in-
formation merging under intergrity constraints in [12]. This
framework allows for defining families of three distinct op-
erators:

1. the !Σ operator satisfies the postulates for majority
merging and it corresponds to the merging operator de-
fined in [16];

2. the!GMax operator satisfies a pure arbitration proce-
dure, and it represents a new merging method;

3. finally, the !Max operator is called a quasi-merging
operator and it represents a pseudo-arbitration operator
corresponding to the one defined in [15].

Moreover, in [13] it is shown that another family of oper-
ators called !n can be defined which belongs simultane-
ously to the two main subclasses.

The standard approach to these protocols uses a defini-
tion of distance between the involved belief bases and the
possible interpretations. The standard one is the Dalal dis-
tance from [8]: the intuitive idea behind this definition is to
measure the number of atoms that have different truh values
among each base and every interpretation, so to find the col-
lective model that retains the most of each base; a variant is
represented by the Satoh distance, defined in [22]. The var-
ious merging protocols apply an ordering on the values re-
sulting from the definition of distance according to different
functions, in order to obtain the desired negotiation process.

A different approach to the resolution of merging pro-
cesses of conflicting belief bases has been introduced in
[17] in view of the dynamic semantics of adaptive logics
(see [2, 3] for a general introduction to the standard for-
mat of Adaptive Logics). The crucial change of perspective
given by this new approach is represented by the focus on
disagreements occurring among the agents involved in the
negotiation process: the explicit derivation of conflicts in
the collective decision process allows for the formulation
of a consequence set that reflects the various aggregation

methods in terms of unavoidable disagreements. The result-
ing framework is the family of logics ADM, for Adaptive
Doxastic Merging.

The first effective result obtained for adaptive merging
is the majority protocol for bases with partial support de-
fined in terms of the logic ADMc, for Adaptive Doxastic
Merging by Counting, formulated in [20]. As it is shown in
[16], the protocol which satisfies all the due postulates for
majority has to take into account the requirements on par-
tially supported contents, and the family ADM makes use
of so called abnormal formulas that are designed precisely
to accomplish this aim. The Counting strategy selects from
the set of models of a given premise set, providing a proto-
col of majority merging corresponding to the generalization
under Integrity Constraints represented by the !Σ opera-
tor. Moreover, the use of fully versus partially supported
contents allows for the mentioned notion of weights to be
reformulated in a new light: weights express the support
each agent gives to contents, in order for his or her beliefs
to be accepted by the group in the fusion procedure. This al-
lows for commutativity to be entirely preserved also among
weighted bases.

The application of the majority protocol to the judgment
aggregation paradox is considered in [18]: it provides a
non-paradoxical though inefficient solution. Effectivity is
obtained by modifying the agenda of interaction, which in
turn amounts to give up the Universal Domain condition.
To this aim the formulation of the logic ADMc is slightly
more simple in view of the fact that all bases in the case of
the paradox express full support to their contents.

The next step in this resarch is represented by the for-
mulation of an arbitration protocol for the family of logics
ADM, mimicking the results of the!GMax operator. This
result is first presented in [19], where the logic ADMc+

for Adaptive Doxastic Merging by Variant Counting is in-
troduced. The semantic selection defined for this adap-
tive logic in standard format shows a basic correspondance
between a pre-order on satisfied disagreements among the
agents and a lexicographic order of Dalal’s distances. The
formulation of the arbitration protocol is considered in the
light of the problem of fusion of information from heteroge-
neous databases: the fusion architecture based on this pro-
tocol shows its potential in applications where the treatment
of incomplete or only partially verified data might be crucial
to an effective fusion procedure.

In the present paper we shall recover the basics of the
logic ADMc+ and of its selection procedure. Starting from
its basis, it will be possible to define a third selection proce-
dure on the models of a premise set, derived from the mini-
max rule for decision theory, and thus performing the same
results as the!Max quasi-merging operator. This selection
procedure shall be introduced as the logic ADMc−mm, for
Adaptive Doxastic Merging by Minimax Counting. With
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this last result the family of logics ADM is shown to be
a general framework to define all the various negotiation
processes modelled by the standard merging operators, in
particular those of the general Integrity Constraints frame-
work.

The structure of this paper is as follows. In section 2
we will consider briefly the quasi-merging and arbitration
Integrity Constraints operators. In section 3 we will intro-
duce the preliminaries needed for the adaptive logics of the
family ADM, and in section 4 and 5 we will respectively
define the semantic selection procedures that give rise to
the logics ADMc+ and ADMc−mm. Section 6 presents a
standard example where both strategies are applied. In the
final section further steps for the research on the adaptive
procedures of merging are surveyed.

2. Integrity Constraints Merging

In this section we introduce the Integrity Constraints (IC)
merging protocols from [12] that are going to be mimicked
by different strategies in the ADM family of adaptive log-
ics. In the following of this paper L will refer to the stan-
dard language of classical propositional logic (henceforth
CL) that is formed from a finite set of atoms P in the usual
way. The set of literals P± contains atoms and their nega-
tions. Letters from the greek alphabet ϕ, ψ, . . . are used as
metavariables for sentences of L. As is common, the abbre-
viation

∨
(∆) will stand for the disjunction of the members

of ∆, where ∆ is a set of formulas. A belief base T is a fi-
nite set of sentences of L. Integrity constraints µ are a finite
set of sentences, i.e. a belief base with respect to which the
final merged state must be consistent. By Γ one refers to
a multi-set consisting of n belief bases, Γ = {T1, . . . , Tn}.
The formula

∧
Γ denotes the conjunction of the belief bases

of Γ, i.e.
∧

Γ =
∧
{T1, . . . , Tn}. A CL-model is a func-

tion P → {0, 1}. We shall use M to denote the set of all
CL-models. A model M is a model of T iff all the mem-
bers of T are true in it. Mod(Γ) will be the set of models
of the multi-set Γ and Cn(Γ) will denote the consequence
set of Γ. The result of a merging procedure on a multi-set Γ
under constraints µ shall be denoted as "µ(Γ). The union
of multi-sets will be denoted by #.

2.1 IC Pure-Arbitration

The IC framework defines selection methods of the col-
lective models of various belief bases by operators satisfy-
ing the following postulates:

IC0 "µ(Γ) $ µ;

IC1 If µ is consistent, then"µ(Γ) is consistent;

IC2 If
∧

Γ is consistent with µ, then"µ(Γ) =
∧

Γ ∧ µ;

IC3 If Γ1 ↔ Γ2 and µ1 ↔ µ2, then"µ1(Γ1)↔"µ2(Γ2);

IC4 If T $ µ and T ′ $ µ, then"µ(T #T ′)∧T ! µ implies
that"µ(T # T ′) ∧ T ′ ! µ;

IC5 "µ(Γ1) ∧"µ(Γ2) $ "µ(Γ1 # Γ2);

IC6 "µ(Γ1) ∧"µ(Γ2) is consistent, then"µ(Γ1 # Γ2) $
"µ(Γ1) ∧"µ(Γ2);

IC7 "µ1(Γ) ∧ µ2 $ "µ1∧µ2(Γ);

IC8 If "µ1(Γ) ∧ µ2 is consistent, then "µ1∧µ2(Γ) $
"µ1(Γ) ∧ µ2.

On the basis of these postulates, the consistency on
merging and the irrelevance of syntax are principles of
the greatest importance to define quasi-merging and pure-
arbitration. The former is given in the following informal
definition:

Definition 2.1 [Principle of Consistency on Merging] If
two subgroups agree on at least one alternative, the result
of global merging will be exactly those alternatives the two
groups agree on. #

and it is formally obtained by the combination of postulates
IC5 and IC6. The principle of syntax irrelevance says in-
formally:

Definition 2.2 [Principle of Syntax Irrelevance on Merg-
ing] If two bases are syntactically equivalent and so are their
integrity constraints, then the merging of one base under one
set of integrity constraints shall be equivalent to the merging
of the other base under the other set of constraints. #

and it is formally given by postulate IC3.
For the introduction and explanation of the pure-

arbitration and quasi-merging protocols we will refer to a
preorder on the set of models of a premise set. A pre-
order over the set of CL-models is a reflexive and transi-
tive relation on M. Where ≤ is a preorder, < is defined as:
M < M ′ iff M ≤ M ′ and M ′ (≤ M . Where M is a subset
of M, a model M is said minimal in M with respect to ≤
iff M ∈ M and there is no M ′ ∈ M such that M ′ < M .
Min(M,≤) shall denote the set of models that are minimal
in M with respect to ≤.

Given two models M1,M2 and a belief base T , a pre-
order M1 ≤ M2 holds if and only if dist(M1, T ) ≤
dist(M2, T ). The value of dist(M1,M2) between two
models M1 and M2 according to the Dalal distance refers
to the number of atoms whose valuation differs in the two
models. Given the set Mod(T ) of possible models of the
base T , the distance between a CL-model M and T is given
as follows:

23



dist(M,T ) = min(dist(M,M ′)) for each M ′ ∈Mod(T ).
(1)

The selection of collective models Mod("GMax
µ (Γ))

performed according to the IC arbitration operator using
this notion of distance works in the following way. Consider
belief bases T1, T2 whose alternatives are preferred respec-
tively under Integrity Contraints µ1, µ2; assume that each of
the set of alternatives is equally preferred under the union of
the bases T1 #T2; the subset of preferred alternatives under
the disjunction of the integrity constraints coincides with
the preferred alternatives of each base. Model-theoretically
this means that there is a total preorder on the plausibility
of the models with respect to the belief bases. Plausibility
is obtained as an ordering by a notion of distance as Dalal’s
one and an aggregation function ⊕. Such an ordering says
that if M1 is more plausible than M2 for T1 and more plau-
sible than M3 for T2, and M2 and M3 are equally plausible
for the union of bases T1 # T2, than M1 has to be more
plausible than both M2 and M3 for T1 # T2. The result of
the merging procedure is the belief base whose models are
the most plausible ones for the given set of individual bases,
according to given rationality criteria.

In [12], it is shown that the aggregation function⊕ satis-
fying the arbitration protocol is the leximax function. Con-
sider the multi-set Γ = {T1, . . . , Tn}; for each model M
consider the list D = (distM1 , . . . , distMn ) of distances be-
tween M and the n belief bases in Γ, i.e. the list of distances
distMi = dist(M,Ti). Let LM

Γ be the list obtained from D
by sorting its members in descending order. Denote now by
≤lex the lexicographic order among sequences of integers
of the same length. For any two models M1 and M2, a to-
tal preorder M1 ≤Γ M2 holds in view of Γ if and only if
LM1

Γ ≤lex LM2
Γ . Given a multi-set Γ holding under con-

traints µ, the"GMax
µ operator is then defined as follows:

Mod("GMax
µ (Γ)) = Min(Mod(µ),≤Γ). (2)

This operator satisfies the typical postulate for arbitration:

"µ1(T1)↔"µ2(T2)
"µ1↔¬µ2(T1 # T2)↔ (µ1 ↔ ¬µ2)

µ1 ! µ2

µ2 ! µ1






⇒"µ1∨µ2

(T1 # T2 ↔
"µ1(T1))

(3)
which says that if a set of alternatives preferred among one
set of integrity constraints µ1 for a belief base T1 corre-
sponds to the set of alternatives preferred among another
set of integrity constraints µ2 for base T2, and if the al-
ternatives that belong to a set of integrity constraints but
not to the other are equally preferred for the whole group
(T1 # T2), then the subset of preferred alternatives among
the disjunction of integrity constraints coincides with the

preferred alternatives of each base among their respective
integrity constraints (see [12], p.778).

2.2 IC Quasi-Merging

The second family of merging operators considered is a
less fine-grained one and it is defined by the so-called quasi-
merging"Max operator in terms of the minimax function.
Let Γ = {T1, . . . , Tn} be the usual belief set, M a model
and d the standard Dalal’s distance value. The Max oper-
ator considers first the maximal distance between an inter-
pretation and a belief base

dMax(M,Γ) = MaxT∈Γdist(M,T ); (4)

then a preorder on the set of interpretations M is defined:

M1 ≤Max
Γ M2 iff dMax(M1,Γ) ≤ dMax(M2,Γ) (5)

which says that a model M1 comes before in the preorder
than a model M2 if and only if the maximal distance be-
tween the former and the multi-set Γ is lower than the same
distance between the latter and Γ. The resulting "Max

µ (Γ)
operator is obtained as the one with lower position (minimal
value) in the obtained pre-order:

Mod("Max
µ (Γ)) = Min(Mod(µ),≤Max

Γ ). (6)

In the following sections we shall introduce the Adaptive
Logic ADM with two adaptive strategies, namely Variant
Counting and Minimax Counting: their role is to formulate
adaptive merging procedures whose results are comparable
to those of the"GMax and"Max operators.

3. The Adaptive Logic for Merging

The formulation of the logics belonging to the family
ADM is based on the langugae LB , which enables one to
represent a set of belief bases by a single set of premises.
It also enables one to consider (modal) models that validate
all the premises, rather than having to consider models for
each of the belief bases separately. Where I = {0, 1, . . .}
is a set of indexes, the multi-modal language LB is L ex-
tended with a belief operator bi, for any i ∈ I. Each differ-
ent base is given an index bi with i ∈ I \ 0. The operator b0

is used exclusively for the beliefs selected for the merging
state, or for the constraints holding in such state. Intuitively,
biϕ (for i > 0) will express that agent i believes or sup-
ports ϕ; the formula b0ϕ means that all agents agree on ϕ or
that their decision is constrained by the holding of ϕ. The
premise set Γ refers to a multi-set of indexed belief bases
Γ = {T1, . . . , Tn}. When the two adaptive strategies are in-
troduced, the operator"c+ (eventually"c+

µ when some set
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of constraints µ is given) is used for the result of the Variant
Counting strategy and Mod(!c+(Γ)) to refer to the subset
of Mod(Γ) correspondingly selected; the operator !c−mm

(!c−mm
µ respectively) is used for the result obtained by the

Minimax Counting Strategy, Mod(!c−mm(Γ)) referring
to the subset of Mod(Γ) selected by that strategy.

Let us consider as an example a set of belief bases

T1 = {p ∨ q}
T2 = {¬p}
T3 = {¬q}.

These belief bases are given a modal translation in any of
the logics belonging to the family ADM as the premise
set Γ = {b1(p ∨ q), b2¬p, b3¬q}. This means that for any
Ti |= φ, in a DM premise set there is a doxastic formula
biφ holding in LB . A literal ϕ is fully supported by some
belief base T if T ! ϕ. A literal ϕ is partially supported
by a belief base T if there is a set of literals ∆ such that
ϕ ∈ ∆, T ! ∨

(∆), $! ∨
(∆), and there is no ∆′ ⊂ ∆ such

that T ! ∨
(∆′). As usual

∨
(∆) stands for the disjunction

of the members of the set of literals ∆. So, for the previous
premise set where T1 = {p∨q}, T1 partially supports p and
q; whereas T2 fully supports ¬p and T3 fully supports ¬q.

All the logics belonging to the family ADM are adap-
tive logics in standard format. This format is extensively
discussed in [3]. They all share the same first element
needed for their definition, i.e. the lower limit logic (LLL);
they all share the same second element in the definition, i.e.
the set of abnormal formulas; and they all differ for the last
element, i.e. the adaptive strategy which selects the abnor-
mal models holding for a given premise set.

The basis of the adaptive logics of the ADM family is
the so-called lower limit logic DM: this is a multi-modal
version of the modal logic D. In addition to all CL-axioms,
the logic DM validates

• Necessitation Rule: if &CL ϕ then &DM biϕ;

• Distribution: bi(ϕ ⊃ ψ) ⊃ (biϕ ⊃ biψ);

• Consistency: biϕ ⊃ ¬bi¬ϕ.

Semantically, the models of each logic (ADMc,
ADMc+, ADMc−mm) of a given premise set Γ are ob-
tained by making a selection of the DM-models of Γ. This
selection will establish the valid models, and the contents
of the corresponding consequence sets are the result of the
negotiation procedure.

The semantics of the lower limit logic DM is a standard
possible world semantics, with multiple accessibility rela-
tions. A DM-model is a quadruple 〈W, wo,R, v〉 where W
is a set of possible worlds, wo ∈ W is the actual world, R
is a set of serial accessibility relations Ri (i ∈ I) over W ,
and v : P ×W → {0, 1} is an assignment function.

The valuation function defined by a model M is charac-
terized as follows:

C1 where A ∈ P , vM (A,w) = v(A,w);

C2 vM (¬A,w) = 1 iff vM (A,w) = 0;

C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) =
1;

C4 vM (A∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) =
1;

C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) =
1;

C6 vM (biϕ, w) = 1 iff vM (ϕ, w′) = 1 for all w′ such that
Riww′.

The standard semantic notions are defined as usual: a
model M verifies A iff vM (A,w0) = 1, Γ |=DM A iff
all DM-models of Γ verify A, and |=DM A iff all DM-
models verify A.

In order to establish which contents of the premise set
are finally merged, the adaptive machinery formulates all
the disagreements that occurr in view of each agent’s belief
base. These are formalised in terms of a special class of
formulas, called abnormalities, that are eventually verified
by some models of the given premise set in the lower limit
logic. In the case of the previously introduced premise set
Γ = {b1(p ∨ q), b2¬p, b3¬q}, and in view of the fact that
one tries to merge as much as possible of its content, some
of the DM-models of Γ verify the formula b3¬q ⊃ b0¬q,
whereas others falsify it; or, what comes to the same, verify
b3¬q∧¬b0¬q. An abnormality is precisely a formula of the
form

biϕ ∧ ¬b0ϕ (7)

i.e. a formula expressing a (full) support by some agent i
for a literal ϕ which is not merged in view of someone’s
disagreement. In all DM-models of Γ, at least one instance
of such an abnormality is verified. In a simple example,
where Γ = {b1p, b2p, b3¬p}, there will be two types of
DM-models: those that verify b0p and those that verify
¬b0p. Models that verify b0p, necessarily verify the ab-
normality b3¬p ∧ ¬b0p; those that verify b0¬p necessarily
verify b1p ∧ ¬b0p and b2p ∧ ¬b0p. The selection tells us
which type of models should be chosen.

As one is considering arbitration on bases that express
also partial support, among the DM-models of Γ there are
models verifying a different kind of abnormalities. As far
as an abnormality with respect to T1 from the previous ex-
ample is concerned, one has to account for the rejection of
a partially supported content. An abnormality involving a
base expressing partial support might be due to conflicts
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arising with respect to each partially supported literal. This
is formulated in the following form:

bi(ϕ1 ∨ . . . ∨ ϕn) ∧ (¬biϕ1 ∧ . . . ∧ ¬biϕn)∧
¬b0(ϕ1 ∨ . . . ∨ ϕn) (8)

where all ϕi are literals. The union of sets of disagreements
for fully and partially supported literals will form our set of
abnormalities:

Definition 3.1 [Set of Abnormalities] Ω = {biϕ ∧ ¬b0ϕ |
i ∈ I \ 0,ϕ ∈ P±} ∪ {bi(ϕ1 ∨ . . . ∨ ϕn) ∧ (¬biϕ1 ∧ . . . ∧
¬biϕn) ∧ ¬b0(ϕ1 ∨ . . . ∨ ϕn) | i ∈ I \ 0,ϕ1, . . . ,ϕn ∈
P±, n > 1}. "

In each adaptive logic obtained by the lower limit logic
DM, a disjunction of abnormalities may be DM-derivable
without any of its disjuncts being DM-derivable. Consider
again Γ = {b1(p ∨ q), b2¬p, b3¬q}. From this, neither
b1p ∧ ¬b0p nor b2¬p ∧ ¬b0¬p is DM-derivable, but the
disjunction (b1p ∧ ¬b0p) ∨ (b2¬p ∧ ¬b0¬p) is. Disjunc-
tions of abnormalities will be called Dab-formulas, and the
abbreviation Dab(∆) is used to refer to them:

Definition 3.2 [Disjunctions of Abnormalities] Dab(∆)
stands for

∨
(∆) where ∆ ⊆ Ω. "

If ∆ is a singleton, Dab(∆) is a single abnormality; if ∆ =
∅, any disjunction A ∨ Dab(∆) corresponds to A. A Dab-
formula that is DM-derivable from Γ will be called a Dab-
consequence of Γ:

Definition 3.3 [Dab-Consequence] Dab(∆) is a Dab-
consequence of a premise set Γ iff Γ |=DM Dab(∆). "

If Dab(∆) is a Dab-consequence of a set Γ, then so is
any Dab(∆′) such that ∆′ ⊃ ∆. This is why a further
definition is needed:

Definition 3.4 [Minimal Dab-Consequence] A disjunction
of abnormalities Dab(∆) is a minimal Dab-consequence of
Γ iff Γ |=DM Dab(∆) and there is no ∆′ ⊂ ∆ such that
Γ |=DM Dab(∆′). "

It is in view of the derivability of Dab-formulas from a
premise set that the adaptive strategy is needed. Intuitively,
the adaptive strategy specifies what it means, in the case
of disjunctions of abnormalities, that the abnormalities are
false unless and until proven otherwise. Given the same
lower limit logic and the same set of abnormalities, there are
different ways to interpret a set of premises as normally as
possible: the precise interpretation of this ambiguous phrase
is determined by the adaptive strategy. In the present case,
one will distinguish between the interpretation of a premise

set as normally as possible in view of the Variant Counting
Strategy in ADMc+, and the interpretation in view of the
Minimax Counting Strategy in ADMc−mm.

4. Variant Counting for Arbitration

The selection by variant Counting is applied to the con-
sequence set of the lower limit logic DM and it gives rise to
the adaptive logic ADMc+. It considers the various Dab-
consequences of a premise set Γ in view of the number of
disagreements involving each agent. This corresponds to a
selection of the formulas verified in any given model on the
basis of the number of contents held true by each agent and
involving a disagreement with another agent.

Consider first all the formulas A ∈ Dab(∆) such that
Γ |=DM Dab(∆) and the b-operator indexed 1 occurs in
A: typically, this will be the set of all the abnormalities
derivable from a premise set Γ that are of the form b1φ ∧
¬b0φ or of the form b1(φ1 ∨ . . . ∨ φn) ∧ (¬b1φ1 ∧ . . . ∧
¬b1φn)∧¬b0(φ1∨. . .∨φn). Call this set Ω1. Then consider
the set of all formulas of the same kind occurring with b-
operator indexed 2 and call this set Ω2, and so on up to
index n. The set Ω is in turn the union of all the various Ωi

sets:

Definition 4.1 [The set of indexed abnormalities]

Ω =
n⋃

i=1

Ωi. (9)

"

It is obvious that one can consider now the set of abnormal-
ities with a given index as a proper subset of Ω.

For each model of a given premise set, consider now the
abnormal formulas of a certain Ωi verified by that model:

Definition 4.2 [The abnormal part of a model with index i]
Abi(M) = {A | A ∈ Ωi and M |= A}. "

For any model Mj of a given premise set, let Ci
Mj

=
|Abi(Mj)| denote the cardinality of its abnormal part with
respect to Ωi:

Definition 4.3 [Abnormal cardinality of a model] Given
a model Mj of a premise set Γ and its abnormal part
Abi(Mj), its abnormal cardinality Ci

Mj
is the number of ab-

normal formulas A ∈ Ωi verified in the model Mj . "

The abnormal cardinality Ci
Mj

expresses the number of dis-
agreements that agent i faces with respect to the literals ver-
ified by the model Mj . For each model M , we construct the
list (C1

M , . . . , Cn
M ), where n is the number of elements of I.

Let LM
Γ be the list obtained by (C1

M , . . . , Cn
M ) by sorting its
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elements in descending order. Let now ≤lex be the lexi-
cographic order between sequences of integers of the same
length. On the basis of the ordering ≤lex, a total preorder
≤C

Γ holds among the various models M1, . . . ,Mn of Γ in
the following way:

Definition 4.4 [Preorder by Minimal Abnormal Cardinal-
ity] A total preorder≤C

Γ holds between models of a premise
set Γ according to the following definition

Mi ≤C
Γ Mj iff LMi

Γ ≤lex L
Mj

Γ . (10)

!

According to this definition, the pre-order on the models of
a premiset set Γ is obtained by ordering models according
to their abnormal cardinalities. Where MΓ stands for the set
of DM-models of Γ, the Variant Counting strategy"c+(Γ)
will select among those models the minimal ones with re-
spect to the ordering obtained by ≤C

Γ:

Definition 4.5 [Selection of Models by ADMc+]

Mod("c+(Γ)) = Min(MΓ,≤C
Γ). (11)

!

The definition of the merging operator "c+ reflects a
selection of abnormal models of the premise set that corre-
sponds to the models satisfying the median possible choices
that are preferred. In terms of the fair syncretic assignment
presented in [13], the arbitration protocol satisfies the fol-
lowing conditions: the models of the premise set are the
more plausible interpretations for the pre-order associated
to that set; two equivalent knowledge sets have the same as-
sociated pre-orders. In the case of the adaptive selection this
means that the abnormal models of a premise set selected by
"c+ are those with lower position in the pre-order given by
abnormal cardinalities and that two equivalent premise sets
have the same pre-orders of abnormal cardinalities for their
models.

The main condition of arbitration as fair syncretic as-
signment is satisfied as follows: if the ordering of abnormal
cardinalities of Mi for base T1 is lower than that of Mj for
the same base (i.e. Mi <C

T1
Mj) and the same holds for Mi

with respect to Mk for T2 (i.e. Mi <C
T2

Mk), and if Mj and
Mk are equally abnormal for T1#T2 (i.e. Mj $C

T1!T2
Mk),

then Mi is less abnormal than Mj and Mk for T1 # T2 (i.e.
Mi <C

T1!T2
Mj,k). Correspondingly, the following princi-

ple is formulated:

Definition 4.6 [Arbitration by Ordering on Abnormal
Cardinalities] If for models Mi,Mj ,Mk holds that
|Abi(Mi)| < |Abi(Mj)| and |Abi(Mi)| < |Abi(Mk)|;

and if |Abi(Mj)| = |Abi(Mk)|; then (Mi) <C
Γ Mj,k and

M("c+(Γ)) = Mi.

|Abi(Mi)| <T1∈Γ |Abi(Mj)|
|Abi(Mi)| <T2∈Γ |Abi(Mk)|

|Abi(Mj)| $T1!T2∈Γ |Abi(Mk)|




⇒Mi <C
Γ Mj,k.

!

5. Minimax Counting for Quasi-Merging

The pseudo-arbitration operator from [15] has the main
property of being constrained to only two bases and to re-
quire consistency to be obtained without the principle of av-
erage on bases to be preserved. This means that the negoti-
ation procedure is performed among the belief bases rather
than among the propositional letters having different truth
values. If the operator is applied to two bases that support
only respectively inconsistent literals, it will provide their
disjunction without taking into account any combination of
consistent contents. The"Max operator from [12] is meant
to model the very same procedure of arbitration, without
the restriction imposed on the number of belief bases in-
volved in the negotiation process. This operator is a less
fine-grained one than the "GMax, because it provides a
larger spectrum of possible results, and therefore it is called
a quasi-merging operator.

In the present section a new adaptive semantic selection
for ADM is introduced: it is called Minimax Counting, it
gives rise to the adaptive logic ADMc−mm and it aims at
providing the same kind of negotiation process that is re-
flected by the result of the "Max operator. The resulting
"c−mm operator for the Minimax Adaptive Counting ap-
plies the minimax rule to the selection of DM-models of
a premise set in view of their abnormal cardinality. The
Minimax Counting selection presents an important differ-
ence with the standard "Max operator: the latter, as any
IC merging operator, does not satisfy the Majority Indepen-
dence postulate (see [12], p.779). This postulate states that
the result of merging is fully independent of the popularity
of the views and it simply takes into account each different
view:

∀n"µ (Γ # Γ′1, . . . ,Γ
′
n)↔"µ(Γ # Γ′). (12)

From this follows that the "Max operator does not sat-
isfy the IC6 postulate, which togheter with its counter-
part the IC5 postulate allows the merging to satisfy always
the alternatives for which there is no disagreement (consis-
tency). The selection performed according to "Max pro-
vides therefore a range of alternatives that contains also
some of the choices for which none of the agents has ex-
pressed explicit preference. On the other hand, "c−mm is
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based on the formulation of disagreements and their selec-
tion: anything which is not involved in any disagreement
is obviously merged. This restricts slightly the range of
results offered by the previous pseudo-arbitration operator
(because it avoids some counter-intuitive results), but it still
provides a larger spectrum of possibilities than the!c+ op-
erator by using the minimax function.

The selection still makes use of the notion of abnor-
mal cardinality Ci

Mj
as given in Definition 4.3; it moreover

refers for each model M to the list LM
Γ obtained by ordering

in descending order the list (C1
M , . . . , Cn

M ), where n is the
number of elements of I. A new maximal distance Max is
defined as the first element in each list LM

Γ for each model
M :

Definition 5.1 [Maximal Abnormal Distance]
Max(M,Γ) = Ci

M and there is no index k such that
|Abk(M)| > |Abi(M)|. !

i.e. the highest of the values Ci for each model M and the
first element of each LM

Γ list. The Maximal Abnormal Dis-
tance expresses the highest number of disagrements possi-
ble in each abnormal model for any given agent. On its basis
one derives a new total pre-order for the abnormal models
in the following way:

Definition 5.2 [Preorder by Maximal Abnormal Distance]
A total preorder ≤Max

Γ holds between models of a premise
set Γ according to the following definition

Mi ≤Max
Γ Mj iff Max(Mi,Γ) ≤ Max(Mj ,Γ). (13)

!

Where MΓ stands for the set of DM-models of Γ, the Mini-
max Counting strategy of ADMc−mm will select the mini-
mal models with respect to the ordering obtained by≤Max

Γ :

Definition 5.3 [Selection of Models by ADMc−mm]

Mod(!c−mm(Γ)) = Min(MΓ,≤Max
Γ ). (14)

!

The result of this selection is therefore obtained by re-
stricting the DM-models to their highest abnormal part and
then selecting those that verify the minimal number of dis-
agreements. In this way the result expresses a negotiation
procedure that accounts for all the possible consistent com-
binations of contents, in view of full agreements and con-
straints.

6. An Example

The application of the various IC operators is shown in
[12] in terms of an example which will now be considered
for the operators!c+ and!c−mm. The formulation of the
example is the following:

At a meeting of a block of flat co-owners, the
chairman proposes for the coming year the con-
struction of a swimming pool, of a tennis court
and a private car park. But if two of these three
items are built, the rent will increase significantly
([12], p.787).

In the following, the letters p, q, r stand respectively for
the construction of the swimming pool, the tennis court and
the private car park. The rent increase will be denoted by s,
which is implied by each conjunction of two out of the three
items: µ = ((p∧q)∨(p∧r)∨(q∧r)) → s. The set of chioces
of the co-owners is represented by Γ = {T1&T2&T3&T4}.
The first two of the co-owners want to build the three items
and do not care about the rent (i.e. (s∨¬s) holds in T1 and
T2); the third does not want the rent increase nor anything
built; the fourth wants the last two items (i.e. (p∨¬p) holds
in T4), though he does not want the rent to increase:

T1 = {p ∧ q ∧ r}
T2 = {p ∧ q ∧ r}
T3 = {¬p ∧ ¬q ∧ ¬r ∧ ¬s}
T4 = {q ∧ r ∧ ¬s}.

Our premise set in DM is of the form Γ = {b1(p ∧ q ∧
r), b2(p∧q∧r), b3(¬p∧¬q∧¬r∧¬s), b4(q∧r∧¬s)}. The
adaptive procedure requires in the first instance the formu-
lation of the disagreements in terms of Dab-consequences
of Γ:

Dab(∆1) = (b1p ∧ ¬b0p) ∨ (b3¬p ∧ ¬b0¬p)
Dab(∆2) = (b1q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆3) = (b1r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)
Dab(∆4) = (b2p ∧ ¬b0p) ∨ (b3¬p ∧ ¬b0¬p)
Dab(∆5) = (b2q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆6) = (b2r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)
Dab(∆7) = (b4q ∧ ¬b0q) ∨ (b3¬q ∧ ¬b0¬q)
Dab(∆8) = (b4r ∧ ¬b0r) ∨ (b3¬r ∧ ¬b0¬r)

These provide the following Ωi sets of indexed abnormali-
ties (where !biϕ will abbreviate biϕ ∧ ¬b0ϕ provided ϕ ∈
P± and !bi(ϕ1 ∨ . . . ∨ ϕn) will abbreviate bi(ϕ1 ∨ . . . ∨
ϕn)∧ (¬biϕ1∧ . . .∧¬biϕn)∧¬b0(ϕ1∨ . . .∨ϕn) provided
each ϕi ∈ P± and n > 1):

Ω1 = {!b1p, !b1q, !b1r}
Ω2 = {!b2p, !b2q, !b2r}
Ω3 = {!b3¬p, !b3¬q, !b3¬r}
Ω4 = {!b4q, !b4r}.
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Let us now consider our models, with respect to which
abnormal cardinalities shall be calculated:

M1 = b0p, b0q, b0r, b0s
M2 = b0p, b0q, b0r, b0¬s
M3 = b0p, b0q, b0¬r, b0s
M4 = b0p, b0q, b0¬r, b0¬s
M5 = b0p, b0¬q, b0r, b0s
M6 = b0p, b0¬q, b0r, b0¬s
M7 = b0p, b0¬q, b0¬r, b0s
M8 = b0p, b0¬q, b0¬r, b0¬s
M9 = b0¬p, b0q, b0r, b0s
M10 = b0¬p, b0q, b0r, b0¬s
M11 = b0¬p, b0q, b0¬r, b0s
M12 = b0¬p, b0q, b0¬r, b0¬s
M13 = b0¬p, b0¬q, b0r, b0s
M14 = b0¬p, b0¬q, b0r, b0¬s
M15 = b0¬p, b0¬q, b0¬r, b0s
M16 = b0¬p, b0¬q, b0¬r, b0¬s

In view of µ the models M2,M4,M6,M10 are rejected, i.e.
any model satisfying ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) ∧ ¬s
is ignored. The initial assumption that s ∨ ¬s holds for T1

and T2, i.e. that though these agents express preference for
the construction of all the three items, they still would ap-
prove if the three items might be built without increasing
the rent (¬s), means that with respect to ¬s there is no dis-
agreement, and none can be explicitely formulated within
Γ. This in turn means that Γ |=DM b0¬s holds, and the re-
sult of the selection shall be consistent with it. Hence, from
the previous list all the models that still verify b0s shall be
removed as well. This leaves the following list:

M8 = b0p, b0¬q, b0¬r, b0¬s
M12 = b0¬p, b0q, b0¬r, b0¬s
M14 = b0¬p, b0¬q, b0r, b0¬s
M16 = b0¬p, b0¬q, b0¬r, b0¬s.

6.1. Arbitration

For each of the remaining models one calculates the ab-
normal cardinality with respect to the indexed sets of ab-
normalities. For each model Mj and any indexed set of
abnormalities Ωi there will be a value to Ci

Mj
. These values

are listed in the following table, where at the intersection of
each Mj and Ωi one has the value of Ci

Mj
, and in the last

column each list L
Mj

Γ obtained by sorting the elements of
(C1

Mj
, . . . , Cn

Mj
) in descending oder:

Ω1 Ω2 Ω3 Ω4 L
Mj

Γ

M8 2 2 1 2 (2, 2, 2, 1)
M12 2 2 1 1 (2, 2, 1, 1)
M14 2 2 1 1 (2, 2, 1, 1)
M16 3 3 0 2 (3, 3, 2, 0)

The lexicographic order ≤C
Γ among the sequences of each

L
Mj

Γ gives the total preorder among the various models:

M12,14 ≤C
Γ M8 ≤C

Γ M16. (15)

The result of merging according to Min(MΓ,≤C
Γ) is:

$c+
µ (Γ) = b0((¬p ∧ q ∧ ¬r ∧ ¬s)∨

(¬p ∧ ¬q ∧ r ∧ ¬s)). (16)

The preferred choice by the group of co-owners is therefore
to build either the tennis court or the private car park with-
out increasing the rent. This is also the result of the pure
arbitration$GMax operator from [12].

6.2. Quasi-merging

By the same example it will be shown now how the
$c−mm operator for Minimax Adaptive Counting works.
From the very same premise set Γ = {b1(p∧ q ∧ r), b2(p∧
q ∧ r), b3(¬p ∧ ¬q ∧ ¬r ∧ ¬s), b4(q ∧ r ∧ ¬s)}, the same
derivable disjunctions of abnormalities and list of Ωi sets,
one derives the same list of values for abnormal cardinalities
in each of the possible models, and the same lexicographic
order of these values.

The models that allow the combination b0((p∧ q)∨ (p∧
r) ∨ (q ∧ r) ∧ s) are obviously still rejected in view of the
constraint µ; and it still holds in the merging state b0¬s in
view of the absence of disagreements with respect to this
literal. The rejection of any other model in which s holds
– which leaves only models M8,M12,M14,M16 – is of the
greatest importance in order to show the result of our mini-
max selection.

By the original $Max operator from [12], one cannot
avoid that some of the models are selected in which at least
two between p, q, r are negated (i.e. only one of the item is
allowed to be built by the group of co-owners), and nonethe-
less s is satisfied (i.e. the rent is increased). This result
is counterintuitive in view of the required constraint, but it
is also undesirable in view of intelligent interaction by our
agents. Our$c−mm operator avoids this undesirable result.

According to Definition 5.1, one selects the Maximal
Abnormal Distance for each of the allowed models out of
the lexicographic order of abnormal cardinalities:

Ω1 Ω2 Ω3 Ω4 Max(Mj ,Γ)
M8 2 2 1 2 2
M12 2 2 1 1 2
M14 2 2 1 1 2
M16 3 3 0 2 3

from which the following preorder based on ≤Max
Γ is ob-

tained:

M8,12,14 ≤Max
Γ M16. (17)
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The selection of models M8,M12,M14 with the minimal
values provides the following alternatives:

!c−mm
µ (Γ) = b0((p ∧ ¬q ∧ ¬r ∧ ¬s)∨

(¬p ∧ q ∧ ¬r ∧ s)∨
(¬p ∧ ¬q ∧ r ∧ ¬s)).

(18)

The preferred choice by the group of co-owners is there-
fore to build one of the three items without increasing the
rent. This results avoids the other alternatives allowed by
the !Max operator according to which one among the ten-
nis court or the private park is built and the rent is increased
(the latter condition being not necessary in view of the con-
straints).

7. Conclusion

The formulation of the family of adaptive logics ADM,
started with the definition of a Majority merging selection
in [20], has been in this paper further developed by the
definition of selection procedures corresponding to pure-
arbitration and quasi-merging protocols. A next obvious
step of this research is represented by the formulation of
a selection procedure for ADM that reflects the!n opera-
tors from [13], a set of operators that belong simultaneously
to the two main sub-families, majority and arbitration.

A number of application contexts, such as those pre-
sented in [19] for heterogenous databases and in [18] for
judgment aggregation procedures, provide the settings for
testing the computational limits and effectiveness of the
procedures. With respect to these open questions, a num-
ber of positive and negative results can be formulated, in
line with those valid for other general merging protocols.
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