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Abstract

We present a framework for verifying systems composed
of heterogeneous reasoning agents, in which each agent
may have differing knowledge and inferential capabilities,
and where the resources each agent is prepared to commit
to a goal (time, memory and communication bandwidth) are
bounded. The framework allows us to investigate, for exam-
ple, whether a goal can be achieved if a particular agent,
perhaps possessing key information or inferential capabili-
ties, is unable (or unwilling) to contribute more than a given
portion of its available computational resources or band-
width to the problem.

1. Introduction

A distributed approach to problem solving involves the
collective effort of multiple agents combine their knowl-
edge and information to solve problems which no single
agent could solve alone or to solve problems more effec-
tively. For a given problem, for different multi agent sys-
tems, different solution strategies will be preferred depend-
ing on the relative costs of computational and communi-
cation resources for each agent. These tradeoffs may be
different for different agents (e.g., reflecting their compu-
tational capabilities or network connection) and may reflect
the agent’s commitment to a particular problem. For a given
set of agents with specified inferential abilities and resource
bounds it may not be clear whether a particular problem
can be solved at all, or, if it can, what computational and
communication resources must be devoted to its solution by
each agent.

There has been considerable work in the agent literature
on distributed problem solving in general e.g., [15, 20, 22]
and on distributed reasoning in particular [1, 8]. Much of

*An extended version of this paper will be presented at AAMAS 2008,
Estoril, Portugal.

this work analyses the time and communication complex-
ity of distributed reasoning algorithms. In this paper we
present a framework for reasoning about tradeoffs between
time, memory and communication in systems of distributed
reasoning agents. In contrast to previous work, e.g., [3]
which focused primarily on memory limitations of single
reasoners, our approach allows us to specify bounds on the
number of messages the agents can exchange, allowing the
investigation of tradeoffs between different resources. We
introduce a novel epistemic logic, BMC'L, for specifying
resource-bounded reasoners. Critically, the logic allows up-
per bounds on the resource commitments (time, memory
and communication) of each agent in the system to be spec-
ified. The logic is sound and complete and admits effi-
cient model-checking. Using simple resolution examples,
we show how to encode systems of distributed reasoning
agents specified in the logic in a model checker, and verify
some example properties.

2 Distributed Reasoners

We define the ‘shape’ of a proof in terms of the max-
imum space requirement at any step in the proof and the
number of inference steps it contains. The lower bound on
space for a given problem is then the least maximum space
requirement of any proof, and the lower bound on time is
the least number of inference steps of any proof. In general,
a minimum space proof and a minimum time proof will be
different (have different shapes). Bounding the space avail-
able for a proof will typically increase the number of infer-
ence steps required and bounding the number of steps will
increase the space required.

We define the bounds on a reasoning agent in terms of its
available resources expressed in terms of memory, time and
communication. We assume that the memory required for
a particular proof can be taken to be its space requirement
(e.g., the number of formulas that must be simultaneously
held in memory) times some constant. For a single threaded
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agent, the number of inference steps executed times some
constant can be taken as a measure of the time necessary
to solve the problem. The communication requirement of
a proof is taken to be the number of messages exchanged
with other agents. In what follows, we ignore the constants
and assume that the units of problem size and resources are
the same.

In the distributed setting we distinguish between sym-
metric problem distributions, where all agents have the
same premises and the same rules of inference, and asym-
metric problem distributions where different premises may
be assigned to different agents and/or the agents use dif-
ferent rules of inference. Similarly, we can distinguish be-
tween symmetric resource distributions (when all agents
have the same resource bounds) and asymmetric resource
distributions, (when different agents have different resource
bounds).

Distribution does not necessarily change the shape (max-
imum space requirement and number of inference steps)
of a proof. However, in a distributed setting the tradeoffs
between memory and time bounds is complicated by com-
munication. Unlike memory and time, communication has
no direct counterpart in the proof. However like memory,
communication can be substituted for time (e.g., if part of
the proof is carried out by another agent), and, like time,
it can be substituted for memory (e.g., if a lemma is com-
municated by another agent rather than having to be remem-
bered). In the distributed setting, each agent has a minimum
memory bound which is determined by its inference rules
and which may be smaller than the minimum space require-
ment for the problem. If the memory bound for all agents
taken individually is less than the minimum space require-
ment for the problem, then the communication bound must
be greater than zero.

In the next section, we present measures of space, time
and communication for distributed reasoning agents which
allow us to make these tradeoffs precise.

3 Measuring Resources

We assume a set of n agents where each agent 7 has a set
of propositional inference rules R; (for example, R; could
contain conjunction introduction and modus ponens, or it
could contain just a single rule of resolution) and a set of
premises or a knowledge base K;. The notion of a deriva-
tion, or a proof of a formula G from K is standard. We
view the process of producing a proof of G as a sequence
of configurations or states of a reasoner, starting from an
empty configuration, and producing the next configuration
by one of four operations: Read copies a formula from K;
into the current configuration; Infer applies a rule from R;
to formulas in the current configuration; Skip leaves the
configuration unchanged; and Copy copies a formula « into

the next configuration of agent j if « is in the current config-
uration of agent 7, j # i. Note that Read, Infer and Copy
may overwrite a formula from the previous configuration.
The goal formula is derived if it occurs in the configuration
of one of the agents.

We take the time complexity of a derivation to be the
length of the sequence of configurations. Space complex-
ity is taken to be the size of configurations as in [6]." The
size of a configuration can be measured either in terms of
the maximal number of formulas appearing in any configu-
ration or in terms of the number of symbols required to rep-
resent a configuration. Clearly, for some inference systems,
for example, where the set of inference rules contains both
conjunction introduction and conjunction elimination, the
first size measure results in constant space usage. However,
for other systems, such as resolution, counting formulas re-
sults in non-trivial space complexity [13]. In this paper, we
take the size of a configuration to be the maximal number of
formulas, since all the reasoning systems we consider have
a non-trivial space complexity for this measure.

#  Configuration Operation
1 {}

2 {Ai} Read

3 {Al, Az} Read

4 {Al,Al /\AQ} Infer

5 {Al A AQ, AL N Ay — B1} Read

6 {A1 A Aa, Bl} Infer

Figure 1. Example derivation using /; and
MP

As an illustration, Figure 1 shows the space and time
complexity of the derivation of the formula B; from
Ay, Ay, Ay N Ay — Bj in an inference system which
contains only conjunction introduction and modus ponens.
The length of the proof is 6 and the space usage is 2 (at
most 2 formulas need to be present in the configuration
at any given time). It is worth observing that the infer-
ence system consisting of just conjunction introduction and
modus ponens does not have constant space complexity
when space is measured as the number of formulas; a se-
quence of derivation examples requiring (logarithmically)
growing space can easily be constructed starting from the
example above, and continuing with a derivation of Cy from
Ay, Ag, A3, Ay, ANAs — By, AsNA4y — By, BiABy —
(1, etc.

Most research in time and space complexity of proofs

'We deviate from [6] in that we do not have an explicit erase opera-
tion, preferring to incorporate erasing (overwriting) in the read and infer
operations. This obviously results in shorter proofs; however including an
explicit erase operation gives proofs which are no more than twice as long
as our proofs if we don’t require the last configuration to contain only the
goal formula.

123



#  Configuration Operation
Y

2 {Al Vv AQ} Read

3 {A1 Vv A27 -A; V Az} Read

4 {Al Vv AQ, AQ} Infer

5 {Az, AV —|A2} Read

6 {AQ, ALV —\AQ, -A V _\AQ} Read

7 {A2,7A2,-A1 V-As} Infer

8 {0,-As,-A; Vv -As} Infer

Figure 2. Example derivation using resolu-
tion

has focused on the lower bounds for the inference system as
a whole. While we are interested in the lower bounds, we
are also interested in the trade-offs between time and space
usage for particular derivations. For example, consider a set
ofpremises Al, AQ, Ag, A4, Al/\A2 — Bl, A3/\A4 — Bg,
By A Bs — (1 and a goal formula A; A As A C. Tt is pos-
sible to derive the goal from the premises using conjunction
introduction and modus ponens and configurations of size
3 in 17 steps (deriving A; A As twice). On the other hand,
with configurations of size 4 the proof is 3 steps shorter.
Different inference systems have different complexity
and different tradeoffs. Figure 2 illustrates the (non-trivial)
space complexity of resolution proofs in terms of the num-
ber of formulas in a configuration. The example, which is
due to [13], shows the derivation of an empty clause by
resolution from the set of all possible clauses of the form

NAl\/ NAQ\/\/ NAn

(where ~ A; is either A; or —A;), for n = 2. Its space usage
is 3 and the length of the proof is 8.

In the multiagent case, when several reasoners can com-
municate to derive a common goal, an additional resource
of interest is how many messages the reasoners must ex-
change in order to derive the goal. In the distributed setting,
we assume that each agent has its own set of premises and
inference rules and its own configuration, and that the rea-
soning of the agents proceeds in lock step.

The goal formula is derived if it occurs in the config-
uration of one of the agents. Our model of communica-
tion complexity is based on [25], except that we count the
number of formulas exchanged by the agents rather than the
number of bits exchanged. The communication complexity
of a joint derivation is then the (total) number of Copy op-
erations in the derivation.

In general, in a distributed setting, trade-offs are possible
between the number of messages exchanged and the space
(size of a single agent’s configuration) and time required for
a derivation. The total space use (the total number of formu-
las in all agent’s configurations) clearly cannot be less than
the minimal configuration size required by a single reasoner

Agent 1 Agent 2

# Configuration Op. Configuration Op.
Y 0

2 {Al V Ag} Read {A1 Vv _‘AQ} Read
3 {A;vas,-a;va,y Read | (-a;v-4a5,4,v-4,3 Read
4 {A1 Vv AQ, AQ} Infer {—\AQ, ALV —|A2} Infer
5 {Ai1V-Az, A2} Read | {—Az, Ao} Copy
6 {A1,As} Infer | {{}, A2} Infer

Figure 3. Example derivation using resolu-
tion with two agents

to derive the goal formula from the union of all knowledge
bases using all of the available inference rules, however this
can be distributed between the agents in different ways, re-
sulting in different numbers of exchanged messages. Sim-
ilarly, if parts of a derivation can be performed in paral-
lel, the total derivation will be shorter, though communica-
tion of the partial results will increase the communication
complexity. As an illustration, figure 3 shows one possible
distribution of the resolution example in figure 2. As can
be seen, two communicating agents can solve the problem
faster than a single agent.

4 A Bounded Memory and Communication
Logic BMCL

In this section we present a temporal epistemic logic
BMCL which allows us to describe a set of reasoning
agents with bounds on memory and on the number of mes-
sages they can exchange. In this logic, we can express state-
ments like ‘the agents will be able to derive the goal formula
in n inference steps’. The bounds on memory and commu-
nication ability are expressed as axioms in the logic. In this
paper, as an example, we have chosen to axiomatise a set
of agents reasoning using resolution. Other reasoning sys-
tems can be axiomatised in a similar way, and we briefly
sketch how to add model conditions and axioms for reason-
ers which reason using conjunction introduction and modus
ponens to our logic at the end of this section.

Let the set of agents be AG = {1,2,..,n4¢}. For sim-
plicity, we assume that they agree on a finite set PROP
of propositional variables (this assumption can easily be re-
laxed, so that only some propositional variables are shared).
Since each agent uses resolution for reasoning, we assume
that all formulas of the internal language of the agents are
in the form of clauses. For convenience, we define a clause
as a set of literals in which a literal is a propositional vari-
able or its negation. Then the set of literals is defined as
LPROP = {p,—plp € PROP}. If L is a literal, then
=L is —p if L is a propositional variable p, and p if L is of
the form —p. Let {2 be the set of all possible clauses over
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PROP,ie., Q = o(LPROP). Note that 2 is finite.
The only rule of inference that each agent has is the res-
olution rule which is defined as follows:

a3l 6> -L
(a\{LHu(B\{~-L}

which states that if there are two clauses « and 3 such that
one contains a literal L and the other contains —L, then we
can derive a new clause (o \ {L}) U (8 \ {—L}).

Each agent ¢ has a memory of size n(¢) where one unit
of memory corresponds to the ability to store an arbitrary
clause. Agent ¢ can read clauses from its set of premises
K;. We assume that each K; is finite. The communication
ability of the agents is expressed by the copy action which
copies a clause from another agent’s memory. The limit on
each agent’s communication ability is nc(¢): in any valid
run of the system, agent i can perform at most n¢ (i) copy
actions.

Res
)

4.1 Syntax of BMCL

The syntax of BM C'L is defined inductively as follows.
e T is a well-formed formula (wff) of BMCL.

o If v is a clause, then B} v is a wit of BMCL, for all
1€ AG.

o If v is a clause, then Bfa is a wit of BMC'L, for all
1€ AG.

e If ¢ and ¢ are wff, then so are —¢, ¢ A 9.

e If ¢ and ¢ are wff, then so are X ¢, U, Y ¢, ¢St
and A¢.

Classical abbreviations for VV, —, «<» and L are defined as
usual.

The language contains both temporal and epistemic
modalities. For the temporal part of BMCL, we have
PCTL*, abranching time temporal logic with the past op-
erator. Intuitively, PC'T'L* describes infinite trees, or all
possible runs of the system, over discrete time. In the tem-
poral logic part of the language, X stands for next step, U
for until, Y for previous step, S for since and A for ‘on
all paths’. We will also use abbreviations F'¢p = TU¢ for
some time in the future, P¢ = T S¢ for some time in the
past, E¢ = = A—¢ for on some path and start = =Y T for
the starting state of the system. The epistemic part of the
language consists of belief modalities B} «c, which means
that agent ¢ has read « from its knowledge base or derived
it, and B «, which means that 7 has copied o from another
agent. We define B;« (agent ¢ believes ) to be B aV B a.

2The reason we use PCTL* rather than CTL* is that we need the
past operator to express the bound on agent communication.

4.2 Semantics of BMCL

The semantics of BMCL is defined by BMCL tree-
like transition systems. A BMC'L transition system M =
(S, R, V", V®) is defined as follows.

e S'is a non-empty set of states.

e R C S xS isatotal binary relation, i.e. for any s € .S,
there exists ¢ € S such that (s,¢) € R. Moreover, it is
also required that (S, R) is a tree-frame. A branch o is
an infinite sequence (s, $1,..) such that (s;, s;+1) €
Rforall i > 0, o; denotes the element s; of o and o<;
is the prefix (so, s1, .., $;) of o. The set of all branches
is denoted as BR. Note that since (S, R) is a tree-
frame every state s has a unique past past(s) = o<;
where 0; = s.

e V" 1 S x AG — p(Q), is a mapping that defines
for each state which formulas an agent believes due to
reading or inference.

o V¢ : 8 x AG — p(), is a mapping that defines for
each state which formulas an agent copied from the
memories of other agents.

The truth of a BM CL formula in a state at point n of a
path o of M is defined inductively as follows:

o M,o,n = Blaiffa € V' (0,,1),

e M,o,n = Bfaiff a € V(op,,i),

o M,0,n = —$iff M,o,n I o,

o M,o,n = ¢ AWift M,o,n = ¢and M, o = 1,
o M,o,n = X¢iff M,o,n+ 1 o,

e M,o,n = ¢Uv iff Im > n such that Vk € [n,m)
Mo,k = ¢and M,o,m =,

e M,oonEY¢iff n >0and M,o,n — 1 | ¢,

e M,o,n = ¢Sy iff Im < n such that Vk € (m,n]
M,o,m = ¢and M, o0,k =,

e M,o,n = A¢iff Vo' € BR such that 0L, = o<,
M,o',n = ¢.

Now we describe conditions on the models. The first set
of conditions refers to the accessibility relation R. The in-
tuition behind the conditions is that R corresponds to the
agents executing actions (ay,...,ay,.) in parallel, where
action a; is a possible action (transition) for the agent ¢
in a given state. Actions of each agent ¢ are: Read; o 3
(reading a clause o from the knowledge base and erasing
B), Resi oy a,.1,8 (tesolving a7 and ap and erasing ),
Copy; a,p (copying a from another agent and erasing (3),
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Erase; . (erasing ), and Null; (doing nothing), where
a,a1,a9,8 € Qand L € LPROP.? Intuitively, § is an
arbitrary clause which may or may not be in the agent’s
memory, which gets overwritten in this transition. If the
agent’s memory is full (V" (s,4)| + [V°(s,1)| = na(0)),
then /3 has to be in V" (s,4) UV (s, ), otherwise we cannot
add an extra formula to it (this would violate the condition
on memory defined below). Not all actions are possible in
any given state (for example, to perform a resolution step
from state s, the agent has to have two resolvable clauses
assigned in s). Let us denote the set of all possible actions
by agent i in state s by R;(s).
Below is the definition of R;(s):

Definition 4.1 [Available actions] For every state s and
agent ¢,

1. Read;np € Ri(s) iff o € K; and B € Q, or if
[V (s,4)] + |V<(s,4)] = na(i) then 8 € V" (s,i) U
Ve(s,i).

2. ReSi,a0,0.8 € Ri(s)iff o, 00 € Q0 5 L, a0 5
aL, o, a0 € V7(s,0) UVE(s,i), a = (an \ {L}) U
(o \ {—L}) ¢ K; and (3 is as before.

3. Copyi,ap € Ri(s) iff there exists j # 4 such that
a €V (s,j)UVe<(s,7) and past(s) does not contain
more than nc (i) — 1 transitions of the form Copy; g,
and (3 is as before.*

4. Null; is always in R;(s).
5. There are no conditions on Erase; o € R;(S).
<

Now we define effects of actions on the agent’s state (as-
signments V" (s,7) and V(s,1)).

Definition 4.2 [Effects of actions] For each i € AG, the
result of performing an action a in state s is defined if
a € R;(s) and has the following effect on the assignment
of clauses to 4 in the successor state ¢:

1. if ais Read; o.5: V" (t,7) = (V"(s,i) \ {8}) U {a}
and V(t,i) = V(s,i) \ {B}.

2. if ais Res;ayan,n,30 V7 (t,1) = (V7 (s,0) \ {6}) U
{a} and V¢(t,7) = V<(s,4) \ {8}, where o = (a1 \
{L}) U (a2 \ {~L}).

3The Erase; o action is introduced for purely technical reasons, to
obtain a simpler axiomatisation of the system. The optimal sequences of
actions found by the system when verifying properties of agents will con-
tain no Erase actions so will not affect the verification process.

4 Assume that the state contains a communication counter for each agent
4, which is set to O in the start state and is incremented every time ¢ per-
forms a copy action. After the counter reaches nc (%), agent ¢ cannot per-
form any more copy actions.

3. ifais Copy;ap: V(i) = (V<(s,9) \ {B}) U {a}
and V" (t,1) = V"(s,i) \ {8}

4. if ais Null; V7(t,i) = V'(s,q) and V(t,) =
Ve(s,i)

5. if a is Erase; o then V' (t,4) = V"(s,i) \ {a} and
Ve(t,i) = Ve(s, i) \ {a}, where a € .

<

Definition 4.3 BMCM (K1, .., Ky .., ny,ne) is the set
of models M = (S, R, V, C) such that:

1. Forevery s and ¢, R(s, t) iff for some tuple of actions
(@1,...,0n,4)> @i € R;(s) and the assignment in ¢
satisfies the effects of a; for every ¢ in {1,...,nag}-

2. For every s and a tuple of actions (ay,...,an,.), if
a; € R;(s) for every i in {1,...,n4¢}, then there
exists t € S such that R(s, t) and t satisfies the effects
of a; forevery i in {1,...,nag}.

3. The bound on each agent’s memory is set by the fol-
lowing constraint on the mappings V" and V¢:

[V (s,9)|+|VE(s,4)| < np(3) forall s € Sand i € AG

N

Note that the bound n¢ () on each agent ’s communication
ability (no branch contains more than n¢ (i) Copy actions
by agent 7) follows from the fact that C'opy; is only enabled
if 7 has performed fewer than n¢ (%) copy actions in the past.

4.3 Axiomatisation of BMCL

Before we give an axiomatisation for the set of models
defined above, we need the following abbreviations for ex-
pressing that ¢ has performed at least k copy actions in the
past. A successful copying of a clause a by agent ¢ from an
agent j is defined by the following formula:

copied(i, j,a) = Bja A =B A X Bj«u

Copying of any clause from any agent by agent ¢ is defined
as follows:

copied; = \/
JEAG, aeQ

copied(i, j, @)
So to say that there are at least k copy actions in agent 4’s
past, we can use

CZ (k) = (Y P(copied; \'Y P(copied; A ...Y P(copied;) ...

3

k times
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and to say that there are fewer than k copy actions in agent
1’s past, we can say

3

C=(k) = —(Y P(copied; NY P(copied; A ...Y P(copied;) . .

Theorem 4.4 BMCL(Kq,..,K,, o, "M, N¢)
is sound and weakly complete with
BMCM(Kl,..,K,LAG,HM,nc).

respect to

)

k+1 times

To define exactly k copies, we can use C;(0) = CZS (0) and
Ci(k) = CZ(k) A C= (k) for k > 0.
Consider the following set of axiom schemata:

A1 Axioms and rules of PCTL* as given in [24].

A2 A, eqBiagANCi(n) = EX(\, cq Bicg A Ci(n) A
Bla) forall o« € K;, 1 € AG, Q@ C Q with |Q] <
n (i), and n > 0.

A3 N\, ecoBiag N Ci(n) N Biox A Biaz  —
EX(/\aqu Biag N Ci(n) N Bja) for any oy
and as such that oy 3 L and ap, 3 —L for some literal
L,a= (a1 \{L}) U (a2 \ {~L}) ¢ Ki, Q@ € Q with
|Q| < nar(i), and n > 0.

A4 /\aquBiaq N C’l(n) A BjOé A C;(’I’Lc(l)) —
EX(N\,,eq Biag NCi(n+1) ABia) foralli # j €
AG, Q C Q with |Q| < nas(z),andn > 0.

AS EX(BZOél A Biag) — Bial \Y Biag
A6 EX(ﬁBiOél A\ ﬁBiOéQ) — (ﬁBiOél V ﬁBZ‘OzQ)

A7 EX(BlaACi(n)) — BraV (~Bla A Cy(n)) for all
a€K;

A8 EX(Bfa A Cy(n)) — Bfa V (=Bfa A
V(al,ag)eRes(a)(Bial AN Bjas A C’Z(n))) for all
a ¢ K; and Res(a) = {(a1,a2) € Q x Q|ag 3 L,
ag D ~Land a = (a1 \ {L}) U (a2 \ {—~L})} for
some literal L andn > 0

A9 EX(Bfa A Ci(n)) — BfaV (-Bfa A Ci(n — 1) A
(Vjeac Bia))

A10 Bial VANRAN BianM — ﬁBianMJrl where ¢ =
1, Y YeR and (673 7é &%) for all ¢ 75]

ALl CF (ne (i)

Al12 /\jGJ EX(/\QGQ Bjaq A Cj(kj)) —
EX N;e;(Njeq Biog NCi(kj)) where J C AG and
all indices j are distinct, and @ C ().

A13 6 — EXé

Let BMCL(Ky, .., Ky ., nr, ne) be the logic defined
by the our axiomatization. Then we have the following re-
sult.

Proof. The proof of soundness is standard. Due to lack of
space, we only prove validity of the first BM C'L axiom.

Let us consider A2 and a model M = (S, R, V", V¢) of
BMCM
(Ki,...,Kn,o.nm). Leto = (sg,51,...) € BR, itisre-
quired to prove for any m, thatif M, o, m = /\aqu BiagA
Ci(n), then M, o,m |= EX(\, cq BiagACi(n) ANB"a)
where € K;, i € AG, Q@ C Q with |Q| < np(¢)
and n > 0. Since o € K;, Read; onp € Ri(o,) for
some S € Q\ Q. Therefore, there exists t € S such
that R(s,t) and ¢ satisfies the effects of Read; 3. In
other words, we obtain V" (¢,i) = V" (s,i) U {a} \ {5}
and Ve(t,i) = V°(s,i) \ {8}, this shows V" (t,i) > .
Since M, o, m = /\aqu Biag, V'(s,1) UV°(s,i) 3 aq
for all ¢ € Q. Moreover, since |Q| < nps(i), we have
8 € Q\ Q, therefore V7 (t,4) U V°(t,4) > a4 Then,
M,o',m+1 A\, cqoBiag A B"a for some o' € BR
such that o, 1 = (01,...,0m, 1).

Since M,o,m = C;(n), we have that agent ¢ has per-
formed exactly n copy actions on the prefix (o1,...,0m).
Moreover, the action that agent 7 performs between o,,, and
t is to read o from K, therefore it has still performed ex-
actly n copy actions on the prefix (o1,...,0m,t). Then,
it is straightforward that M,o’,m + 1 | C;(n). That
givesus M,o',m+1 = A, coBiag N B"a A C(i,n).
Since 0., = o<y, and R(o,,t), we obtain M,o,m =
EX(/\O;GQ Biag A Ci(n) A B™a).

To prove completeness, a satisfying model for a consis-
tent formula is constructed as in the completeness proof of
PCTL* from [24]. Then we use the axioms to show that
this model is in BMCM (K1, ..., Kp,o,n0m,n¢c).  QED

4.4 Systems of Heterogeneous Reasoners

Changing the logic to accommodate reasoners which
reason using a different set of inference rules rather than res-
olution is relatively straightforward. As an illustration, we
show how to add model conditions and axioms for reasoners
which use modus ponens and conjunction introduction. We
assume that the knowledge base of these reasoners contains
literals and implications of the form Ly A ... A L,, — L.

First of all, we need to change the conditions on mod-
els so that instead of using the Res action, a reasoner could
change the state by performing M P and AN D actions. Let
i be an (M P, AN D) reasoner. Define (2; as K; closed
under subformulas and the following conjunction introduc-
tion: if @ is a set of distinct literals from K;, then AQ € ;.
An agent ¢ has actions Read; ¢ 5 for any formula ¢ in K;,
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Copyi,e p for any formula ¢ € ©;, Null;, Erase;, and in-
stead of Res ithas M P; 4, ¢, —¢,,3 and AND; 4. 4, 3.

Definition 4.5 [Availability of M P and AN D] For any
sesS:

L MP; s, 61—¢:8 € Ri(s) iff ¢1,¢1
V7" (s,i) UV<(s,7) and 8 € Q;.

— @2 €

2. AND; ¢, 6,8 € Ri(s)iff 1,00 € V7 (s,0)UV (s, 1)
and (€ ;.

N
Definition 4.6 [Effects of M P and AN D] For every s €

S, the result of performing action a is defined if a € R;(s)
and has the following effect on the resulting state ¢:

1. ifais Mpi7¢7¢_,¢2ﬁ then Vr(t, Z) = VT(S, Z)U{¢2}\

{8} and V(s, 1) = V(t,4) \ {B}.

2. ifais AND; 4, 5,5 iff V7 (t,5) = VE(s,i) U {$1 A
$2} \ {B} and V(s, 1) = V(t,4) \ {B}.

N

The corresponding axioms for the (M P, AN D) rea-
soner are as follows:

A13 A cq Bidg A Ci(n) A Bigr A Bi(d1 — ¢2) —
EX (A, cq Bid A Ci(n) A Bigsy) where Q C ©; with
Q| < nar(d)

A4 A coBidg N Ci(n) A Bipr N B  —
EX(N,eq Bi¢g N Ci(n) A Bi(¢1 A ¢2)) where
Q C Q; with |Q] < nas(3), and ¢y, p2 € Q.

A15 EX(Bi(¢1Ap2)AC;(n)) — (Bi(diNd2)V (—~Bi(pin
$2) A Bip1 A Biga A Ci(n)))

Vo, —goer, (Bid1 A Bi(¢p1 — ¢2))) forall o ¢ K;.
Now we can add the conditions and axioms for the (M P,
AN D) reasoner to the system for resolution reasoners and
obtain an axiomatisation for the heterogeneous system of
reasoners.

5 Verifying Resource Bounds

The logic BMCL allows us to express precisely how
beliefs of a set of resource-bounded agents change over
time, and, given a memory and communication bound
for each agent, to verify formulas which state that a cer-
tain belief will or will not be acquired within a certain
number of steps. For example, given a system of two
agents with premises K1 = {{p1,p2},{—p1,p2}} and
Ky = {{p1, w2}, {p1, p2}}, with bounds np(1) = 2,

ns(2) = 2 (both agents have 2 memory cells) and no (1) =
0, nc(2) = 1 (agent 1 cannot copy anything and agent 2 can
copy one clause), we can prove that start — EX°By({})
(i.e., from the start state, the agents can derive the empty
clause in 5 steps).

However, rather than deriving such properties by hand,
it is more convenient to use an automatic method to ver-
ify them. In this section, we describe how the models in
BMCM (K, .., Ky ,,na,ne) can be encoded as an in-
put to a model-checker to allow the automatic verification
of the properties expressing resource bounds.

5.1 Model Checker Encoding

It is straightforward to encode a BM C' M model of such
a system for a standard model checker, and to verify re-
source bounds using existing model checking techniques.
For the examples reported here, we have used the Mocha
model checker [7].

States of the BM C'M models correspond to an assign-
ment of values to state variables in the model-checker. The
state variables representing an agent’s memory are organ-
ised as a collection of ‘cells’, each holding at most one
clause. For an agent ¢ with memory bound n (%), there are
nay(7) cells. Each cell is represented by a pair of bitvectors,
each of length k = |PROP], representing the positive and
negative literals in the clause in some standard order (e.g.,
lexicographic order). For example, if PROP contains the
propositional variables Ay, A, and As with index positions
0, 1 and 2 respectively, the clause A; V = A3 would be rep-
resented by two bitvectors: “100” for the positive literals
and “001” for the negative literals. This gives reasonably
compact states.

Actions by each agent such as reading a premise, res-
olution and communication with other agents are repre-
sented by Mocha atoms which describe the initial con-
dition and transition relation for a group of related state
variables. Reading a premise (Read; o g) simply sets the
bitvectors representing an arbitrary cell in agent i’s mem-
ory to the appropriate values for the clause .. Resolution
(Res;,ay,a4,1,8) 1s implemented using simple bit operations
on cells containing values representing «; and «g, with
the results being assigned to an arbitrary cell in agent i’s
memory. Communication (Copy; «,g) is implemented by
copying the values representing « from a cell of agent j
to an arbitrary cell of agent i. To express the communica-
tion bound, we use a counter for each agent which is incre-
mented each time a copy action is performed by the agent.
After the counter for agent ¢ reaches n¢ (i), the Copy; o,
action is disabled.

Mocha supports hierarchical modelling through compo-
sition of modules. A module is a collection of atoms and
a specification of which of the state variables updated by
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# agents Distrib. Memory | Comm. \ Time ‘
1 Symmetric 3 - 8
2 Symmetric 2,2 1,0 6
2 Symmetric 3,3 1,0 6
2 Symmetric 3,3 0,0 8
2 Symmetric 2,1 1,1 9
2 Asymmetric 2,2 2,1 7
2 Asymmetric 3,3 2,1 7
2 Asymmetric 3,1 1,0 8

Table 1. Tradeoffs between resource bounds

those atoms are visible from outside the module. In our en-
coding, each agent is represented by a module. A particular
distributed reasoning system is then simply a parallel com-
position of the appropriate agent modules.

The specification language of Mocha is AT L, which in-
cludes CTL. We can express properties such as ‘agent
i may derive belief ¢ in n steps’ as EF tr(B;«) where
tr(B;«) is a suitable encoding of the fact that a clause «
is present in the agent’s memory (either as a disjunction of
possible values of cell bitvectors, or as a special boolean
variable which becomes true when one of the cells contains
a particular value, for example all Os for the empty clause).
To obtain the actual derivation we can verify the negation of
a formula, for example AG —tr(B;«)—the counterexample
trace will show how the system reaches the state where « is
proved.

5.2 Examples

Consider a single agent (agent 1) whose knowledge base
contains all clauses of the form ~ A1V ~ Ay where ~ A; is
either A; or —A;, and which has the goal of deriving the
empty clause. We can express the property that agent 1
will derive the empty clause at some point in the future as
EF B1{}.

Using the model checker, we can show that deriving the
empty clause requires a memory bound of 3 and 8 time steps
(see Figure 2).> We can also show that these space and time
bounds are minimal for a single agent; i.e., increasing the
space bound does not result in a shorter proof.

With two agents and a symmetric problem distribution
(i.e., each agent has all the premises ~ A1V ~ As), we
can show that a memory bound of 2 (i.e., the minimum
required for resolution) and a communication bound of 1
gives a proof of 6 steps (see Figure 3). Reducing the com-
munication bound to 0 results in no proof, as, with a mem-
ory bound of 2 for each agent, at least one clause must be
communicated from one agent to the other. Increasing the
space bound to 3 (for each agent) does not shorten the proof,

5The space required for problems of this form is known to be logarith-
mic in the number of premises [13].

though it does allow the communication bound to be re-
duced to 0 at the cost of increasing the proof length to 8
(i.e., the single agent case). Reducing the total space bound
to 3 (i.e., 2 for one agent and 1 for the other, equivalent to
the single agent case) increases the number of steps required
to find a proof to 9 and the communication bound to 1 for
each agent. In effect, one agent functions as a cache for a
clause required later in the proof, and this clause must be
copied in both directions.

If the problem distribution is asymmetric, e.g., if one
agent has premises A; V Ay and —A; V - A5 and the other
has premises = A; V Ag and A; V —As, then with a memory
bound of 2 for each agent, we can show that the time bound
is 7, and the communication bound is 2 for the first agent
and 1 for the second. Increasing the memory bound for each
agent to 3 does not reduce the time bound. However the
memory bound can be reduced to 1 and the communication
bound reduced to 1 for one agent and O for the other, if the
time bound is increased to 8 (again this is equivalent to the
single agent case, except that one agent copies the clause it
lacks from the other rather than reading it). These tradeoffs
are summarised in Table 1.

Increasing the size of the problem increases the number
of possible tradeoffs, but similar patterns can be seen to the
2-variable case. For example, if the agent’s knowledge base
contain all clauses of the form ~ AV ~ A3V ~ Asz, then
a single agent requires a memory bound of 4 and 16 steps
to achieve the goal. In comparison, two agents, each with
a memory bound of 2, require 13 steps and 4 messages to
derive the goal.

While extremely simple, these examples serve to illus-
trate the interaction between memory, time and communi-
cation bounds, and between the resource distribution and
the problem distribution.

6 Related Work

There exist several approaches to epistemic logic which
model reasoners as resource-bounded (not logically omni-
scient), including deduction model of belief [21], step logic
and active logic [12, 17], algorithmic knowledge [18, 14,
23], and other syntactic epistemic logics [11, 2, 5, 19]
where each inference step takes the agent into the next (or
some future) moment in time. A logic where the depth of
belief reasoning is limited is studied in [16].

A considerable amount of work has also been done in
the area of model-checking multi-agent systems (see, e.g.,
[10, 9]). However, this work lacks a clear connection be-
tween the way agent reasoning is modelled in agent theory
(which typically assumes that the agents are logically omni-
scient) and the formalisations used for model checking, and
emphasises correctness rather than the interplay between
time, memory, bounds on communications and the ability
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of agents to derive a certain belief.

The current paper extends the work of [3] which pro-
posed a method of verifying memory and time bounds in a
single reasoner which reasons in classical logic using nat-
ural deduction rather than resolution. We also extend the
work in [4] which analyses a system of communicating
rule-based reasoners and verifies time bounds for those sys-
tems, but assumes unlimited memory. As far as we are
aware, the logic we propose in this paper is the first attempt
to analyse time, space and communication bounds of rea-
soners in one logical system, and verify properties relating
to all three resources using a model-checker.

7 Conclusions and Future Works

In this paper, we analyse the time, space and communi-
cation resources required by a system of reasoning agents
to achieve a goal. We give a rigorous definition of the mea-
sures for each of those resources, and introduce an epis-
temic logic BM C'L where we can express properties of a
system of resource-bounded reasoning agents. In particular,
we can express bounds on memory and communication re-
sources as axioms in the logic. We axiomatise a system
of agents which reason using resolution (other reasoning
systems can be axiomatised in a similar way), prove that
the resulting logic is sound and complete, and show how
to express properties of the system of reasoning agents in
BMCL. Finally, we show how BM CL transition systems
can be encoded as input to the Mocha model-checker and
how properties, such as existence of derivations with given
bounds on memory, communication, and the number of in-
ference steps, can be verified automatically.

In future work, we plan to consider logical languages
containing primitive operators which would allow us to
state the agents’ resource limitations as formulas in the lan-
guage rather than axioms, and consider agents reasoning
about each other’s resource limitations. We also would like
to consider agents reasoning in a simple epistemic or de-
scription logic.

Acknowledgements:  This work was partially sup-
ported by the EPSRC project EP/E031226/1.

References

[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and
L. Simon. Distributed reasoning in a peer-to-peer setting. In
Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI’2004), pages 945-946. 10S Press, 2004.
T. Agotnes and M. Walicki. Strongly complete axiomati-
zations of “knowing at most” in standard syntactic assign-
ments. In Proceedings of the 6 International Workshop on
Computational Logic in Multi-agent Systems (CLIMA VI),
2005.

(2]

130

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

A. Albore, N. Alechina, P. Bertoli, C. Ghidini, B. Logan,
and L. Serafini. Model-checking memory requirements of
resource-bounded reasoners. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence (AAAI
2006), pages 213-218. AAAI Press, 2006.

N. Alechina, M. Jago, and B. Logan. Modal logics
for communicating rule-based agents. In Proceedings of
the 17th European Conference on Artificial Intelligence
(ECAI’2006), pages 322-326. I0S Press, 2006.

N. Alechina, B. Logan, and M. Whitsey. A complete and
decidable logic for resource-bounded agents. In Proceedings
of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2004 ), pages 606—
613. ACM Press, 2004.

M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and
A. Wigderson. Space complexity in propositional calculus.
SIAM J. of Computing, 31(4), pages 1184-1211, 2002.

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.
Rajamani, and S. Tasiran. MOCHA: Modularity in model
checking. In Computer Aided Verification, pages 521-525,
1998.

E. Amir and S. A. Mcllraith. Partition-based logical rea-
soning for first-order and propositional theories. Artificial
Intelligence, 162(1-2), pages 49-88, 2005.

M. Benerecetti, F. Giunchiglia, and L. Serafini. Model
checking multiagent systems. J. Log. Comput., 8(3), pages
401-423, 1998.

R. Bordini, W. V. M. Fisher, and M. Wooldridge. State-space
reduction techniques in agent verification. In Proc. of the
Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-2004), pages 896-903.
ACM Press, 2004.

H. Duc. Reasoning about rational, but not logically omni-
scient, agents. J. Log. Comput., 5, pages 633-648, 1997.
J.J. Elgot-Drapkin and D. Perlis. Reasoning situated in time
I: Basic concepts. J. of Experimental and Theoretical Artifi-
cial Intelligence, 2, pages 75-98, 1990.

J. L. Esteban and J. Toran. Space bounds for resolution. In
Proc. of the 16th Annual Symposium on Theoretical Aspects
of Computer Science (STACS 99), pages 551-560. Springer,
1999.

R. Fagin, J. Y. Halpern, Y. Moses, , and M. Y. Vardi. Rea-
soning about Knowledge. MIT Press, Cambridge, 1995.

B. Faltings and M. Yokoo. Introduction: Special issue on
distributed constraint satisfaction. J. of Artif. Intell., 161(1-
2), pages 1-5, 2005.

M. Fisher and C. Ghidini. Programming Resource-Bounded
Deliberative Agents. In Proc. of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI’99), pages
200-206. Morgan Kaufmann, 1999.

J. Grant, S. Kraus, and D. Perlis. A logic for characterizing
multiple bounded agents. Autonomous Agents and Multi-
Agent Systems, 3(4), pages 351-387, 2000.

J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic
knowledge. In Proc. of the 5th Conference on Theoreti-
cal Aspects of Reasoning about Knowledge, pages 255-266.
Morgan Kaufmann, 1994.

M. Jago. Logics for Resource-Bounded Agents. PhD thesis,
University of Nottingham, 2006.



[20]

(21]

(22]

(23]

[24]

[25]

H. Jung and M. Tambe. On communication in solving dis-
tributed constraint satisfaction problems. In Multi-Agent
Systems and Applications IV, Proc. 4th International Central
and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2005, pages 418-429. Springer, 2005.

K. Konolige. A Deduction Model of Belief. Morgan Kauf-
mann, San Francisco, Calif., 1986.

G. M. Provan. A model-based diagnosis framework for dis-
tributed embedded systems. In Proc. of the Eighth Inter-
national Conference on Principles and Knowledge Repre-
sentation and Reasoning (KR-02), pages 341-352. Morgan
Kaufmann, 2002.

R. Pucella. Deductive algorithmic knowledge. In AI&M
1-2004, Eighth International Symposium on Artificial Intel-
ligence and Mathematics, 2004.

M. Reynolds. An axiomatization of PC'T'L*. Inf. Comput.,
201(1), pages 72-119, 2005.

A. C.-C. Yao. ome complexity questions related to distribu-
tive computing(preliminary report). In Conference Record
of the Eleventh Annual ACM Symposium on Theory of Com-
puting, pages 209-213. ACM, 1979.

131



