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Abstract

In this paper we take a game-theoretic perspective to
study the effects of previously adopted intentions in ratio-
nal decision making. We investigate the question of how
agents transform the decision problems they face in the light
of what they intend, and provide conditions under which
such transformations, when iterated, leave room for delib-
eration, i.e. do not exclude all the options of the decision
maker.

1 Introduction

In this paper we take a game-theoretic perspective to
study the effects of previously adopted intentions in rational
decision making. We investigate the question of how agents
transform the decision problems they face in the light of
what they intend, and provide conditions under which such
transformations, when iterated, leave room for deliberation,
i.e. do not exclude all the options of the decision maker.

There is a broad consensus among philosophers of ac-
tion, e.g. [Bratman, 1987] and Velleman [2003], that pre-
viously adopted intentions, alongside beliefs and desires,
shape decision problems. This role, however, has until now
attracted little if no attention in game theory. The present
work attempts at (partially) filling this gap. This not only
results in a richer game-theoretic framework, but also sheds
new lights on the philosophical theory of intentions, es-
pecially concerning the interactive character of intention-
based transformations of decision problems.

The approach in this paper differs in important respects
from the one in “BDI” architectures, e.g. Georgeff et al.
[1998] and van der Hoek et al. [2007]. Studies in that
paradigm have mainly focused on the relation that inten-
tions can or should have with beliefs and desires, and on dif-
ferent policies of intention revision. Furthermore, these ap-
proaches do not directly use game-theoretic formalisms, but

∗This is an extended abstract of [Roy, 2008, chap.4]. Some results
presented here have been obtained in collaboration with Martin van Hees
(Rijksuniversiteit Groningen).

rather frameworks tailored for the analysis of multi-agent
systems. Here we use strategic form games, and focus on
how intentions transform them.

We consider two ways of transforming decision prob-
lems on the basis of the agents’ intentions. For each of
them we characterize the conditions under which they do
not remove all possible choices for the agents. Proofs of the
technical results can be found in the Appendix.

2 Strategic games with intentions

We use standard strategic form games, as in e.g. [Os-
borne and Rubinstein, 1994], except that preferences are
represented qualitatively. A decision problem or strategic
game G is a tuple 〈I, Si, X,π,≤i〉 such that :

• I is a finite set of agents.

• Si is a finite set of actions or strategies for i. A strategy
profile σ ∈ Πi∈ISi is a vector of strategies, one for
each agent in I . The strategy si which i plays in the
profile σ is noted σ(i).

• X is a finite set of outcomes.

• π : Πi∈ISi → X is an outcome function that assigns to
every strategy profile σ ∈ Πi∈ISi an outcome x ∈ X .
We use π(si) to denote the set of outcomes that can
result from the choice of si. Formally: π(si) = {x :
x = π(si,σj "=i) for some σj "=i ∈ Πj "=iSj}.

• ≤i is a reflexive, transitive and total preference relation
on X .

We study the effect of previously adopted intentions on
such decision problems, rather than the process by which
the agents form these intentions. Furthermore, we restrict
our attention to intentions to realize certain outcomes in the
game, in contrast with intentions to play certain strategy—
although there is an obvious connection between the two.
We thus assign to each agent i ∈ I an intention set ιi ⊆
X . The intention set ιi of agent i should be thought as the
intentions that i has formed some time before entering the
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game, and on the basis of which he now has to make his
decision. Following common assumption by philosophers
of action we suppose that ιi != ∅, which amounts to agents
not having inconsistent intentions. An intention profile ι is
a vector of intention sets, one for each agent.

Many philosophers of action have stressed that previ-
ously adopted intentions transform decision problems, a
phenomenon which is called the reasoning-centered com-
mitment of intentions. They imposes a “standard for rel-
evance for options considered in deliberation. And they
constrain solutions to these problems, providing a filter of
admissibility for options.” [Bratman, 1987, p.33, emphasis
in the original]. These are the two effects of intentions on
deliberation that we study in the next sections.

3 Filter of admissibility

We take “providing a filter of admissibility” to mean
ruling out options that are incompatible with the agents
achieving their intentions. Agents, in that sense, discard
some of their strategies because they are incompatible with
what they intend. We will study two different admissibil-
ity/compatibility criteria, depending on whether the agents
take each others’ intentions into account.

We start with a generic definition of the discarding pro-
cess, which we call cleaning, and in which the two notions
of admissibility will be plugged in. The cleaned version
cl(Si) of a strategy set Si is defined as:

cl(Si) = {si | si is admissible for deliberation for i}

The cleaned version of a game G with intention profile ι is
the tuple cl(G) = 〈I, Xcl, {cl(Si),≤cl

i }i∈I ,πcl〉 such that:

• Xcl = π(Πi∈Icl(Si)) = {x |x = π(σ) for some σ ∈
Πi∈Icl(Si)}.

• ≤cl
i is the restriction of ≤i to Xcl.

• πcl is π with the restricted domain Πi∈Icl(Si).

We do not study intention revision, and so we assume that
the agents adapt their intentions to the decision problem
they face after cleaning by giving up on achieving the out-
comes that are no longer achievable. We thus take the
cleaned version ιcl

i of the intention set ιi to be ιi ∩ Xcl,
reminding plain belief expansion in e.g. Rott [2001] and
Gärdenfors [2003].

The first criterion for admissibility we consider is indi-
vidualistic: we say that a strategy si of agent i is individ-
ualistically admissible for him when choosing it can yield
an outcome he intends. Formally, a strategy si of agent i is
individualistically admissible with respect to his intention
set ιi when π(si) ∩ ιi != ∅. Conversely, a strategy is not

admissible for i when choosing it would not realize any of
his intentions.

It can be that no strategy survive cleaning with individ-
ualistic admissibility, simply because some outcome x can
be unrealizable, i.e. it can happen that there is no profile
σ such that π(σ) = x. In such case we say that clean-
ing empties a decision problem for the agent. Intuitively
agents should avoid intentions which, once used for clean-
ing, empty the decision problem. This this leaves them no
strategy to choose. It is thus important to characterize the
intention sets that do not lead to empty cleaned games.

When there is only one agent, cleaning empties a deci-
sion problem if and only if ιi contains no realizable out-
comes. In interactive situations, however, agents who clean
individualistically can make intentions of others unrealiz-
able. Table 1 is an example, with the numbers in the cells
representing which outcomes are in ιi for the corresponding
agent, 1 being the row and 2 being the column player. When

G t1 t2
s1 1
s2 2
cl(G) t1

s1 1

Table 1. A game which an empty cleaning.

more than one agent is involved, to have realizable inten-
tions is thus not enough to avoid ending up with empty strat-
egy sets after cleaning. To pinpoint the conditions which
ensure such non-emptiness in the general case, we look at
iteration of cleaning, in a way that draws from van Benthem
[2003] and Apt [2007].

Given a strategic game G, let clk(G) =
〈I,Xclk , {clk(Si),≤clk

i }i∈I ,πclk〉 be the strategic game
that results after k iterations of the cleaning of G. That is,
cl1(G) = cl(G) and clk+1(G) = cl(clk(G)). The smallest
cleaning fixed-point cl#(G) of G is defined as clk(G)
for the smallest k such that clk(G) = clk+1(G). In what
follows we ignore the “smallest” and only write about the
fixed point.

Every game has a unique cleaning fixed point with indi-
vidualistic cleaning but, as just noted, it may be an empty
one. This is avoided only if the intentions of the agents are
sufficiently entangled with one another.

Let us call the cleaning core of a strategic game G is
the set of strategy profile S∗ inductively defined as follows,
with πSn

(si) = π(si) ∩ {π(σ′) : σ′ ∈ Sn}.

• S0 = Πi∈ISi.

• Sn+1 = Sn−{σ : there is an i such that πSn

(σ(i)) ∩
ιi = ∅}.
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• S∗ =
⋂

n<ω Sn.

For each strategy si and profile σ in the cleaning core
such that σ(i) = si, there is at least one agent j for whom
strategy σ(j) is admissible, by looking only at what can
result from the profiles in the core.

Fact 3.1 For any strategic game G and intention profile ι,
S∗ != ∅ iff cl#(G) is not empty.

From this we learn that the individualistic character of
admissibility must be compensated by an interlocking web
of intentions and strategies if cleaning is not to make the
game empty. Intentions which yield a non-empty cleaning
core closely fit the admissible strategies of all agents. By in-
tending outcomes that are realizable in the cleaning core, an
agent somehow acknowledges that he interacts with other
agents who, like him, clean inadmissible options from their
strategy set.

The following alternative form of admissibility empha-
sizes this interactive character. A strategy si of agent i is
altruistically admissible with respect to his intention set ιi
when there is a j ∈ I such that π(si) ∩ ιj != ∅. Follow-
ing this second criterion, a strategy of agent i is admissible
whenever it can yield an outcome that some agent, not nec-
essarily i, intends. When agents discard option on the basis
of this criterion, there is no risk of emptying the game, and
the process does not need to be iterated.

Fact 3.2 For G an arbitrary strategic game, cl#(G) =
cl(G) for cleaning with altruistic admissibility.

Fact 3.3 For any strategic game G, intention profile ι and
cleaning with altruistic admissibility, there is, for all i, a
realizable x ∈ ιi iff cl#(G) is not empty.

It is thus crucial for agents to take the others’ intentions
into account when ruling out options in strategic games. If,
on the one hand, agents rule out options without taking care
of what the others intend, they run the risk of ending up with
no strategy at all, unless their intentions are already attuned
to those of their co-players. If, on the other hand, their in-
tentions do not fit so well with those of others, then they
should at least take heed of what the others intend when
ruling out options. This aspect of the reason-centered com-
mitment of intentions has, up to now, been overlooked in
philosophical theories of intentions.

4 Standard of relevance

We now turn to the second aspect of the reason-centered
commitment of intentions: transformations of decision
problem based on the “standard of relevance”.

Here we take this idea to mean discarding options which
differences are not relevant in terms of what one intends.
We say that such options are redundant. Formally, two
strategies s1 and s2 in Si are redundant, noted s1 ≈ s2,
whenever π(s1,σj "=i) ∈ ιi iff π(s2,σj "=i) ∈ ιi for all com-
binations of actions of other agents σj "=i ∈ Πj "=iSj . Strate-
gies s1 and s2 in Table 2 are redundant for the row player
in that sense.

t1 t2 t3
s1 1, 2 2 1
s2 1 2 1
s3 1 2

Table 2. A game with redundant strategies for
the row player.

The relation ≈ clearly induces a partition of the set of
strategies Si into subsets [si]G≈ = {s′i ∈ Si|s′i ≈ si}, each
of which represents a distinct “means” for agent i to achieve
what he intends. We take the standard of relevance imposed
by intentions to induce such a means-oriented perspective
on decision problems.

To make a decision from that perspective agents have
to sort out these means according to some preference or-
dering. Here we assume that they “pick” a representative
strategy for each means, and collect them to form their new
strategy set. This allows to define preferences in the game
that result from this transformation from those in the origi-
nal game. Regarding the picking process itself, we take an
abstract point of view and leave implicit the criterion which
underlies it.

Given a strategic game G, a function θi : P(Si) → Si

such that θi(S) ∈ S for all S ⊆ Si is called i’s picking
function. A profile of picking functions Θ is a combination
of such θi, one for each agent i ∈ I . These functions return,
for each set of strategies—and in particular each equiva-
lence class [si]≈—the strategy that the agents picks in that
set. We define them over the whole power set of strategies
to facilitate the technical analysis.

The pruned version pr(Si) of a strategy set Si, with re-
spect to an intention set ιi and a picking function θi is de-
fined as:

pr(Si) = {θ([si]G≈) : si ∈ Si}

Pruned version of a strategic game G are defined similarly
as cleaned ones: given an intention profile ι and a profile
of picking function Θ, the pruned version of G is the tuple
pr(G) = 〈I,Xpr, {pr(Si),≤pr

i }i∈I ,πpr〉 such that:

• Xpr = π(Πi∈Ipr(Si)).

• ≤pr
i is the restriction of ≤i to Xpr.
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• πpr is π with the restricted domain Πi∈Ipr(Si).

The pruned version ιpr
i of an intention set ιi is ιi ∩ Xpr.

Agents, again, adapt their intentions in the process of prun-
ing.

We once again take a general point of view and an-
alyze iterations of pruning. Given a strategic game G,
let prk(G) be the strategic game that results after k iter-
ations of the pruning of G. That is, pr0(G) = G and
prk+1(G) = pr(prk(G)). The pruning fixed point pr#(G)
of G is defined as prk(G) for the smallest k such that
prk(G) = prk+1(G).

As for cleaning, it can happen that agents end up with
empty intentions after a few rounds of pruning, but no prun-
ing makes a game empty.

Fact 4.1 For all strategic game G and agent i ∈ I ,
pr#(Si) #= ∅.

Furthermore, the existence of pruning fixed points where
all agents have non-empty intentions depends on whether
they intend “safe” outcomes. Given a strategic game G, an
intention profile ι and a profile of picking functions Θ, the
outcome x = π(σ) is:

• Safe for pruning at stage 1 iff for all agents i,
θi([σ(i)]) = σ(i).

• Safe for pruning at stage n + 1 whenever it is
safe for pruning at stage n and for all agents i,
θi([σ(i)]pkn(G)) = σ(i).

• Safe for pruning when it is safe for pruning at all stages
n.

Safe outcomes are those which the picking functions re-
tain, whatever happens in the process of pruning. Intending
safe outcomes is necessary and sufficient for an agent to
keep his intention set non-empty in the process of pruning.

Fact 4.2 For any strategic game G, intention profile ι, pro-
file of picking function Θ and for all i ∈ I , ιpr#

i #= ∅ iff
there is a π(σ) ∈ ιi safe for pruning in G.

Agents are thus required to take the others’ intentions
and picking criteria into account if they wish to avoid end-
ing up with empty intentions after pruning. In single-agent
cases pruning never makes the intention set of the agent
empty, as long as the agent has realizable intentions. This
shows, once again, that reasoning-centered commitment re-
ally gains an interactive character in situations of strategic
interaction.

5 Putting the two transformations together

We now look at how the pruning and cleaning interact
with one another, in order to get a more general picture
of the reasoning-centered commitment of intentions. We
investigate sequential applications of these operations, and
consider individualistic admissibility only.

Given a strategic game G, let t(G) be either pr(G) or
cl(G). A sequence of transformation of length k is any
tk(G) for k ≥ 0, where t1(G) = t(G) and tk+1(G) =
t(tk(G)). A sequence of transformation tk(G) is a trans-
formation fixed point whenever both cl(tk(G)) = tk(G)
and pr(tk(G)) = tk(G).

The first notable fact about cleaning and pruning se-
quences is that these operations do not in general commute.
Table 3 is a counterexample, with θ2([t1]) = t1. They do
commute, however, in the single-agent case.

G t1 t2
s1 1
s2 1, 2 1, 2

pr(G) t1
s1

s2 1, 2
cl(pr(G)) t1

s2 1, 2

Table 3. Counter-example to commutativity.

Fact 5.1 pr(cl(G)) = cl(pr(G)) for any strategic game G
with only one agent, intention set ιi and picking function θi.

Sequential cleaning and pruning creates new possibili-
ties for empty fixed points. Neither the existence of a clean-
ing core nor of safe outcomes, and not even a combination
of the two criteria are sufficient to ensure non-emptiness.
Furthermore, there might not be a unique fixed point, as
revealed in Tables 4, 5 and 6, with θ1({s1, s2}) = s2,
θ1({s1, s2, s3}) = s1 and θ1({s2, s3}) = s2.

G t1 t2 t3
s1 1 2
s2 1, 2
s3 1 1

Table 4. A game with two different fixed-
points.

Ignoring redundant transformations, all sequences of clean-
ing and pruning reach a fixed point in a finite number of
steps, for every finite strategic games. Non-emptiness of
this fixed point is ensured by the following strengthening
of safety for pruning and cleaning core. The outcome x of
profile σ ∈ Πi∈ISi is:
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cl(G) t1 t2
s1 1 2
s2 1, 2
s3 1

pr(cl(G)) t1 t2
s1 1 2

cl(pr(cl(G))) t2
s1 2

Table 5. The route to the first (empty) fixed
point of the game in Table 4.

pr(G) t1 t2 t3
s2 1, 2
s3 1 1

cl(pr(G)) t1
s2 1, 2
s3 1

pr(cl(pr(G))) t2
s2 1, 2

Table 6. The second fixed point of the game
in Table 4.

• Safe for iterated transformations at stage 1 whenever,
for all i ∈ I:

1. π(σ(i)) ∩ ιi #= ∅.
2. θi[σ(i)]G≈ = σ(i).

• Safe for iterated transformations at stage n + 1 when-
ever it is safe for iterated transformation at stage n and
for all i ∈ I:

1. πtn(G)(σ(i)) ∩ ιt
n(G)

i #= ∅.

2. θi[σ(i)]t
n(G)
≈ = σ(i).

• Safe for iterated transformations whenever it is safe
for transformation at all n.

Fact 5.2 For any strategic game G, intention profile ι and
profile of consistent picking function Θ, if π(σ) is safe for
transformation in G then for all fixed points t#(G), σ ∈
Πit#(Si).

The presence of safe outcomes is thus sufficient not only
to ensure that a game has no empty fixed point, but also
that all fixed points have a non-empty intersection. Pre-
cisely because of that, this does not entail that any game
which has no empty fixed point contains safe outcomes. If it
can be shown that whenever a game has a non-empty fixed-
point then this fixed-point is unique, we would know that
safety for transformation exactly captures non-emptiness.
Whether this is the case is still open to us at the moment.
We do know, however, that the converse of Fact 5.2 holds if
we constraint the picking functions.

In the spirit of Sen’s [1970] “property α” , let a picking
function θi be called consistent if θi(X) = si whenever
θi(Y ) = si, X ⊆ Y and si ∈ X .

Fact 5.3 For any strategic game G, intention profile ι and
profile of consistent picking function Θ, if σ ∈ Πit#(Si) for
all fixed points t#(G), then π(σ) is safe for transformation
in G.

If all players intend safe outcomes we thus know that
all fixed-point are non-empty, and we can “track” safe out-
comes in the agents’ original intentions by looking at those
they keep intending in all fixed-points.

The existence of empty transformation fixed points and
the definition of safety for transformation once again high-
light the importance of taking each others’ intention into
account while simplifying decision problems. The fact that
the pruning and cleaning do commute when there is only
one agent is in that respect illuminating.

6 Conclusion

We have studied two aspects of the reason-centered com-
mitment of intentions, by extending game-theoretic for-
malisms with two new operations on strategic form games.
We characterized conditions under which these operations
keep the games or the intentions of the agents non-empty.
This has revealed an important interactive character to the
reason-centering commitment, one which went up to now
unnoticed in philosophical theories of intentions. This work
thus extends game-theoretic models and shew new lights on
the theory of intentions.

Taking a epistemic perspective, in the line of Aumann
[1999], van Benthem [2003], Brandenburger [2007] and
Bonanno [2007], would surely enhance the present work.
Mutual knowledge of each others’ intentions seems crucial
in the process of cleaning and pruning. It would also be in-
teresting to relate the current proposal with game-theoretic
work on intention formation and reconsideration, e.g. Mc-
Clennen [1990] and Gul and Pesendorfer [2001], and with
the BDI architectures cited in the introduction.
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7 Appendix

7.1 Proof of Fact 3.1

For any strategic game G and intention profile ι, S∗ != ∅
iff cl#(G) is not empty.

By Definition, S∗ != ∅ is the same as saying that we can
find a σ ∈ S∗ such that for all i, πS∗

(σ(i)) ∩ ιi != ∅.
We show by induction that π(Sk) = Xclk , for all k. This
is enough to show the equivalence, for then we know that
Xcl# ∩ ιi != ∅, which we know is the same as cl#(G) being
non-empty. The basic case of the induction, k = 0, is trivial.
For the induction step, assume the claim is proved for k. We
have that x ∈ π(Sk+1) iff there is a σ ∈ Sk+1 such that
π(σ) = x. This in turns happens iff πSk

(σ(i))∩ ιi != ∅, for
all i. But by the inductive hypothesis this is just to say that
π(σ(i)) ∩ Xclk ∩ ιi != ∅, which is just the definition of x
being in Xx+1.

7.2 Proof of Fact 3.2

For G an arbitrary strategic game, cl#(G) = cl(G) for
cleaning with altruistic admissibility.
We show that cl(cl(G)) = cl(G). Given the defini-
tion of the cleaning operation, it is enough to show that
cl(cl(Si)) = cl(Si) for all i. It should be clear that
cl(cl(Si)) ⊆ cl(Si). It remains to show the converse. So
assume that si ∈ cl(Si). Since cleaning is done with al-
truistic admissibility, this means that there is a σ such that
σ(i) = si and a j ∈ I such that π(σ) ∈ ιj . But then
σ(i′) ∈ cl(Si′) for all i′ ∈ I , and so σ ∈ Πi∈Icl(Si).
This means that π(σ) ∈ Xcl, which in turns implies that
πcl(σ) ∈ ιcl

j . We thus know that there is a σ ∈ Πi∈Icl(Si)
such that σ(i) = si and a j such that πcl(σ) ∈ ιcl

j , which
means that si ∈ cl(cl(Si)).

7.3 Proof of Fact 3.3

For any strategic game G, intention profile ι and clean-
ing with altruistic admissibility, there is, for all i, a realiz-
able x ∈ ιi iff cl#(G) is not empty.
There is a realizable x ∈ ιi for all i iff for all i there is a
σ such that π(σ) ∈ ιi. But this is this same as to say that
for all j there is a strategy sj such that σ(j) = sj and an i
such that π(σ) ∈ ιi which, by Facts 3.1 and 3.2, means that
cl#(G) is not empty.

7.4 Proof of Fact 4.1

For all strategic game G and agent i ∈ I , pr#(Si) != ∅.
This is shown by induction on prk(G). The basic case is
trivial. For the induction step, observe that the picking func-
tion θi is defined for the whole power set of Si. This means,
given the inductive hypothesis, that θi([si]

prk(G)
≈ ) is well-

defined and in [si]prk(G) for any si ∈ prk(Si), which is
enough to show that prk+1(Si) is also not empty.
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7.5 Proof of Fact 4.2

For any strategic game G, intention profile ι, profile of
picking function Θ and for all i ∈ I , ιpr#

i "= ∅ iff there is a
π(σ) ∈ ιi safe for pruning in G.
From right to left. Take any x ∈ ιpr#

i . By definition we
know that there is a σ ∈ Πi∈Ipr#(Si) such that π(σ) = x.
But this happens iff σ ∈ Πi∈Iprk(Si) for all k, and so that
θi([σ(i)]prk(G)

≈ ) = σ(i) also for all k, which in turns means
that x is safe for pruning in G. Left to right, take any such
π(σ) ∈ ιi. We show that π(σ) ∈ Xprk

for all k. The
basic case is trivial, so assume that π(σ) ∈ Xprk

. We know
by definition that π(σ) is safe for pruning at k, which gives
automatically that π(σ) ∈ Xprk+1

.

7.6 Proof of Fact 5.2

For any strategic game G, intention profile ι and profile
of consistent picking function Θ, if π(σ) is safe for transfor-
mation in G then for all fixed points t#(G), σ ∈ Πit#(Si).
This is shown by induction on k for an arbitrary fixed point
tk(Si). The proof is a direct application of the definition of
safety for transformation.

7.7 Proof of Fact 5.3

For any strategic game G, intention profile ι and profile
of consistent picking function Θ, if σ ∈ Πit#(Si) for all
fixed points t#(G), then π(σ) is safe for transformation in
G.
We show by “backward” induction that π(σ) is safe for
transformation at any k for all sequences tk(G). For the
basic case, take k to be the length of the longest, non-
redundant fixed point of G. I show that π(σ) is safe for
transformation at stage k for all sequences of that length.
Observe that by the choice of k all tk(G) are fixed points.
We thus know by assumption that σ ∈ Πi∈Itk(Si). But
then it must be safe for transformation at stage k. If clause
(1) was violated at one of these, say t′k(G), then we would
have cl(t′k(G)) "= t′k(G), against the fact that t′k(G) is
a fixed point. By the same reasoning we know that clause
(2) cannot be violated either. Furthermore, by the fact that
t′k+1(G) = t′k(G), we know that it is safe for transforma-
tion at all stages l > k.
For the induction step, take any 0 ≤ n < k and assume
that for all sequences tn+1(G) of length n + 1, π(σ) is
safe for transformation at stage n + 1. Take any tn(G).
By our induction hypothesis, that π(σ) is safe for trans-
formation at both cl(tn(G)) and pr(tn(G)). This secures
clause (2) of the definition of safety for transformation,
and also gives us that σ ∈ Πi∈Itn(Si). Now, because
it is safe for transformation in cl(tn(G)), we know that

πcl(tn(G))(σ(i)) ∩ ιcl(tn(G))
i "= ∅ for all i. But since

πcl(tn(G))(σ(i)) ⊆ πtn(G)(σ(i)), and the same for the in-
tention set, we know that πtn(G)(σ(i)) ∩ ιt

n(G)
i "= ∅ for all

i. For condition (2), we also know that θi[σ(i)]cl(tn(G))
≈ =

σ(i) for all i from the fact that π(σ) is safe for transfor-
mation at stage n + 1. By Lemma 7.1 (below) and the as-
sumption that θi is consistent for all i, we can conclude that
θi[σ(i)]t

n(G)
≈ = σ(i), which completes the proof because

we took an arbitrary tn(G).

Lemma 7.1 For any game strategic game G and intention
set ιi and strategy si ∈ cl(Si), [si]G≈ ⊆ [si]

cl(G)
≈ .

Proof. Take any s′i ∈ [si]G≈. Since si ∈ cl(Si), we know
that there is a σj $=i such that π(si,σj $=i) ∈ ιi. But because
s′i ≈ si, it must also be that π(s′i,σj $=i) ∈ ιi, and so that
s′i ∈ cl(Si). Now, observe that {σ ∈ Πi∈Icl(Si) : σ(i) =
si} ⊆{ σ ∈ Si : σ(i) = si}, and the same for s′i. But then,
because s′i ≈ si, it must also be that s′i ∈ [si]

cl(G)
≈ . QED
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