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Abstract

This paper aims to extend in two directions the proba-
bilistic dynamic epistemic logic provided in Kooi’s paper
[8]. Kooi’s probabilistic dynamic epistemic logic adds to
probabilistic epistemic logic sentences that express conse-
quences of public announcements. The first extension of-
fered in this paper is to add a previous time operator to a
probabilistic dynamic epistemic logic similar to Kooi’s. The
other is to involve action models and update products in a
probabilistic dynamic epistemic logic setting. This would
allow for more kinds of actions, such as private announce-
ments.

1 Introduction

Probabilistic epistemic logic has been developed to ex-
press interaction between both qualitative and quantitative
beliefs. This logic lets us formally express statements such
as “Bob believes the probability of ¢ to be at least 1/2” or
“Ann considers the probability of ) to be 1/4”. As we are
often concerned about how beliefs and probabilities change
over time, there have been papers written that mix probabil-
ity, belief, and time. Examples include, [7] and [3], which
use probabilistic systems of runs, and [8], which combines
probability with public announcement logic. The proba-
bilistic systems of runs provides a natural way to view time,
both past and future, but conditions need to be imposed in
order to ensure that agents’ probability measures change in
a realistic way. Public announcement logic, and more gen-
erally dynamic epistemic logic (DEL), provides a mechan-
ical procedure for changes in belief upon receipt of public
information, and [8] extends this mechanical procedure to
show how a probability measure may change given public
information. But DEL has limitations in its ability to ex-
press features of the past and future. By adding temporal
logic to DEL in a non-probabilistic setting, the paper [13]
captures both some of the temporal flexibility of the system
of runs as well as the mechanical method offered by DEL
of going from one stage in time to the next. One goal of this
paper is to involve probability in the combination of tempo-
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ral logic and DEL, focusing on the inclusion of a previous-
time operator and exploring the possibility of completeness.

Another goal is to go beyond public announcements.
There are other forms of information exchange that are
of interest, such as semi-private announcements, where
the fact that a message was sent to someone is not a se-
cret, and completely-private announcements, where non-
recipients of the message are completely unaware of the fact
that there is a message at all. An illuminating example in-
volving semi-private announcements is given in [3]. The
sequence of events provides a context motivating why there
are stages in time in which an agent’s sample space should
differ from the set of states the agent considers possible. A
non-probabilistic mechanical method for changing beliefs
according to semi-private announcements was given in [2]
and [1]. There, semi-private announcements are encoded in
action models, and a product is defined between a model
and an action model to produce an updated model that en-
codes the updated beliefs. This goal then is to involve action
models in probabilistic dynamic epistemic logic.

2 Probabilistic Public Announcement Logic
with a Previous Time Operator

As the underlying structure for public announcement
logic is the epistemic model, the underlying structure for
probabilistic public announcement logic is the probabilistic
epistemic model, which adds probability spaces to an epis-
temic model.

Definition 2.1 [Probabilistic Epistemic Model] Let ® be
a set of proposition letters, and I be a set of agents. A
probabilistic epistemic model is a tuple M (X, {—

}iEIa H || ’{Pi,x}), where

e X is a set of “states” or “possible worlds”

e 5C X2 is an epistemic relation for each agent i € I,
that is x — y if ¢ considers y possible from x

e ||| is a function assigning to each proposition letter p
the set of states where it is true.



e P, . is a probability space for each agent 7 and state z,
thatis P; , = (Si 5, Aiz, i), Where

- S;.« € X is set called the sample space

- A; , is a o-algebra over S, , (that is, a collection
of subsets of S; , that is closed under comple-
ments and countable unions). We the sets in the
o-algebra “measurable sets”.

- Wig = Aig — [0,1] is a probability measure
over S; ,; (that is, p; »(S;z) = 1 and for each
countable collection Aj, As, ... of pairwise dis-

joint sets in A, (U Ak) = D peq 1(AR)).

For the rest of this section, we restrict the set X to be finite
and the set A, , to be the power set P(S; ;). Thus we need
not specify the o-algebra A; , until the next section. It is

recommended that S; , C {z : z — z}, as every outcome
in the sample space is a state the agent considers possible.
For technical convenience in definition 2.2, we will not im-
pose such a restriction. One might assume that the con-
verse of the recommendation should hold too, thus making
i’s sample space S; , equal to the set {z : = 5 z} of states 4
considers possible, but the example in the beginning of the
next section motivates why we prefer not to make this re-
striction either. The example presents a situation in which
an agent does not know enough to assign a probability to
everything she considers possible, and although there are
different ways of handling the uncertainty about the prob-
ability, omitting some states from the sample space is an
attractive solution. As sample spaces are defined for each
state, the agent may still be uncertain about which sample
space is correct.

Public announcement logic is concerned with how an
agent revises his/her beliefs given new information, know-
ing that this information is received by all other agents. Of
greatest interest is new information that is consistent with
the agent’s beliefs, and PAL provides an enlightening me-
chanical procedure called an update for producing a new
epistemic model from an old one given the new information.
But although the updates provide a reasonable method of re-
vising beliefs upon consistent information, they do not upon
inconsistent information. The goal of probabilistic public
announcement logic is to provide an update procedure that
shows how to produce a new probabilistic epistemic model
from an old one given information that is not only consistent
with the agents’ beliefs, but is also given positive probabil-
ity. The case where the probability of the new information
is 0 poses difficulties, and the goal of the definition of such
a case is more to provide technical convenience than to offer
a realistic result.
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Definition 2.2 [updates] Given a probabilistic epistemic
model M = (X, {5}, ] - |, {P;,}) and a subset Y of X,
the update of M given Y is written M ® Y and is the model
(X' {5V (P, ). where

e X'=XnNY

. xi>/yiffm7erandaci>y

o llpl" = lplinY

e If y1; . (Y) = 0, then let P} , be the only probability
space definable on the singleton x. Otherwise, let P ,

be defined by

- Sz/,ac = Si,z ny

— For each subset Z C Y, pu (Z)
pia(Z) /i (Y)

This definition differs from the one in [8] in that here updat-
ing removes states while in [8] it removes relational connec-
tions but not states. Probability is updated in the same way
as long as the set Y has positive probability. The reason for
these differences is to aid in proving completeness for the
language that adds a previous time operator to probabilis-
tic public announcement logic. Although completeness is
still under construction (and the semantics in [8] may later
demonstrate itself to be easier), the following discussions
about the previous time operator may provide some intu-
ition for why this new semantics may help, particularly for
the conditions in definition 2.4.!

A natural choice for semantics that includes a previous
time operator for this language is to involve structures that
consist of a list of all past and present models. This is what
was done in [13]

Definition 2.3 [History] A history H is a list of models
(Mo, My, ..., M,,), where for each k, M}, = (X, {i?k
Bl ks {Prie})s and My = My @ Xpy1. <
Given a history H = (Mg, My, ...,M,), let P(H) =
(Mg,Mjy,...M,,_1) be the previous history, ﬁ(H)
M,, be the last (most recent) model in the list, and let
X(H) = X,,. We may write z € H forxz € X(H).

Definition 2.4 makes use of sets A, consisting of all states corre-
sponding to time n. It is helpful that this set is equal to the set B,, con-
sisting of all of the more recent versions of states that satisfied the formula
that induced the update. Finding an appropriate characterization of By, so
far appears more difficult using the semantics of [8].



Language Proof system

Let ® be a set of proposition letters and I be a set of agents.
We define by mutual recursion a multi-sorted language £
with sentences and terms for each agent. The sentences
(also called formulas) are given by

Include axioms of proposition logic together with the fol-
lowing:

O;-normality

@ = true|p|—p|e1 Az |Dip|[pi]e2 [t 2 q| Y Oi(p — ¥) — (O — O;2)
[¢] -normality
where tisaterm,p € ®,and: € L. [o] (1 — 12) — ([]tb1 — [e]2)
The terms for agent ¢ are given by Y -normality

Y(p =) = (Yo — Y
Update partial functionality [p]—¢) < (o — —[p]¥))

~

Y -partial functionality Yip — (Ytrue — Y)

where ¢ € Q is a rational number, ¢; and u; are terms for

agent i, and ¢ is a sentence. Future atomic permanence (ip — p)A<—> [elp
The semantics is defined by a function [-] from formulas Past atomic permanence Yp < (Yirue —p)
to functions f that map each history H to a subset of X (H), Update yesterday [plY Y < (¢ — Difp])
the carrier set of the most recent model in /1. Then Probability yesterday 0 N
Y (X1 aePiler) = 0) — (34— auPi(Yor) = 0)
° [[truAe]] is the function that maps each H to the whole Probability yesterday 1
set X (H). (S, o) = i anP(true))
~ — n_ v P (Y or) = " P (true
+ ) = X ()~ A Episemicertiy iy $0g D
o [p AIH) = [P)(H) N[, Epistemic update lpl0i = (p = D)
Probability update
e z € [0;p](H) if and only y € [O;0](H) for every y Pi(¢) > 0— ([¢] Xop_q atPiler) > ¢
in which z = y, where L is s epistemic relation in = (p— ZZ:l e Pi(¢ A [eler) > qPi()))
M(H) (the most recent model in H). Probability 0 update .
Pi(p) =0 = ([p] QX py axPiler)) = g
e v € [[p1]p2] (H) if and only if either z ¢ [p1](H) or — (o — > ¢ , aPi(true) > q)
x € 2] (H @ [e1] (H)). Non-initial time
Y true — Di}?true A Pi(f/ true) =1
o z€[qPi(p1)+ 4+ aqnPi(pn) > ¢](H) if and only Initial time
if qui o ([ (H)) + - + anpialonl (H)) 2 @) Y false — 0,Y false A P;(Y false) = 1
0 terms

r € [Yp](H) if and only if H = (M) has just one

> h—1 G Pipr) >
model or z € [p](P(H)). N Qkpi(QOk))i bg(wﬁlz) > Z

We have the usual modal abbreviations, such as $ 4 = Permutation

=04 and () = =[], and we let Yo =Y, D=1 lef_’i(@k) Z 99— 2het qjkf:’i(@jk) 2 q
which asserts that there is a previous time and ¢ is true then. N wherejy, ..., jn is a permutation of 1,...,n
Here are some abbreviations in the language that express a Addition

i i it i Y1 e Pi(or) = a N iy aiPiler) > d
variety of inequalities and equality. k=1 9k Fk) = k=1 Tk k) =49
= k=1 + @) Piler) = (¢ + )

e t<g=—-t>—q Multiplication
B (o1 @ Piler) = q)
e t<qg=-(t=q) — (XF_, dax Pi(px) > dgq) where d > 0
B Dichotomy t>qV(t<q)
e t>q=-(t<q) Monotonicity
ct—g=t<qAt>q (t>q)— (t>q') where ¢ > ¢
Nonnegativity Pi(p)>0
et>s5=t—5>0 Probability of truth P;(true) =1
Additivity
ot=5=t—5>0As—-t>0 Pi(p A1) + Pi(p A—p) = Pi(p)
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Include axioms of proposition logic together with the fol-
lowing:

O,;-necessitation From F ¢ infer - O;¢
[¢] -necessitation From F ¢ infer F [p]p
Y -necessitation ~ From I ¢ infer F Yo
Equivalence

From F ¢ < 4, infer + P;(p) = P;(y)

Approach to completeness

A general strategy for proving weak completeness is to start
with a consistent formula and then prove that it is satisfi-
able. Modal logic and probabilistic epistemic logic provide
techniques for finding filtrations that may satisfy either the
formula or a formula provably equivalent to the first. But
such filtrations are single models, not lists of models. There
is a similar difficulty for DEL to use filtrations, because the
semantics of DEL involves the construction of a new model.
But it turns out that in DEL, a semantics for a subset of for-
mulas, each called normal form formulas, can be defined
in which no new model needs to be constructed in order to
determine whether a formula is true. In addition, each for-
mula is provably equivalent to a normal form formula, and
the two semantics relate to each other in a natural and con-
venient way: a formula is true given one semantics if and
only if it is true given the other.

To employ a strategy similar to this, we need an alter-
native set of models and an alternative semantics. Let us
define a non-standard model as a probabilistic epistemic
model together with a binary relation Y. Ideally Y z can
be read as “z is one stage later than z”, but this interpre-
tation may be difficult to achieve unless there are some re-
strictions placed on this new non-standard model. We thus
provide the following definition:

Definition 2.4 [non-standard history] Let
M= (X {=Yien ||l {Piz},Y)
be a non-standard model. Define
Ap = {x : there is no z such that Yz},
and for each n > 0,

A,, = {x :there is a z such that Y™z

and there is no z such that zY "1z}
Define for each set A and binary relation R,
R(A) = {z : there is ax € A such that xRz}

Then M is a non-standard history if the following condi-
tions hold:

1. Partial functionality of Y": if Y 2 and 2Y 2/, then z =

Z.

2. Bounded age: There exists N such that for all = there
is no z for which YV 2.

3. Epistemic synchronicity: if 2 — z, then for each n,
xY ™' for some ' iff zY ™2z’ for some z’.

4. Probabilistic synchronicity: if z,z,w € X and x, z €
S;.w» then for each n, xY ™z’ for some «’ iff zY™ 2’ for
some 2.

5. Update product relation condition a: if z — 2 and
2Y 2 then there exists 2’ such that Yz’ and 2’ = 2’

6. Update product relation condition b: if Y/, 2’ = 2/,
and zY 2/, then © — z.

7. Update product sample space condition a: for each
n>11 €I x € A,, and z such that Yz, if
wi (Y (Ay)) > 0,then Y (S, ) =Y (A4,) NS ..

8. Update product sample space condition b: for each
n>11 €I x € A,, and z such that Yz, if
wi (Y (Ay,)) =0, then S; , = {z}.

9. Update product probability condition a: for each
n>11 €I x € A,, and z such that Yz, if
wi (Y (Ay,)) > 0, then foreach A C S, ,,

. _ Mz (Y(A))
Hia(d) = AL))

10. Update product probability condition b: for each
n>11 €I x € A,, and z such that Yz, if

Mi,z(Y(An)) =0, then Ni,a;({x}) =1

11. Update product valuation condition: if 2Y 2 then x €
Ipll iff z € [p]

<

Semantics can be defined for formulas that do not include
public announcement operators [p]. These formulas consti-
tute a language which we call normal form. The operator
Y is treated as the box modality for the relation Y. The
semantics for the other operators remain the same.

To show that every formula is provably equivalent to one
in normal form, we employ a term rewriting system similar
to one used in [1]. Our term rewriting system will make use
of the following algebraic semantics.

Definition 2.5 [Signature] We define A to be the following
signature. It is multi-sorted, with one sort for sentence terms
s and another for weight terms ¢; for each agent ¢ € I. Here
are the symbols in the signature:



1. Each p € ® and true is a constant symbol of sort s.
2. =, 04,0z, Y are function symbols of type s — s

3. A, —, and [ ] are binary function symbols of type s x
s—s

4. P, is afunction of type Q X s — ¢t;

5. +; is a function of type t; X t; — t;

6. >;is afunction of type t; x Q — s

7. triv; is a function of type t; — t;

8. bay, is a function of type s x t; — t;

We will in general write [s]s for [ ](s, s), and we choose to
write +; and >; in infix notation too. In addition, we of-
ten drop the subscripts when it is understood from context.
The functions bay and triv are just tools for reducing for-
mulas of the form [z](¢ >; ¢) in the next definition. The
choice of symbol bay is supposed to indicate a relationship
to Bayesian updating, and the choice of the symbol triv is to
indicate that the probabilities are trivialized (that is, we will
take the probability of true).

Let £ be the algebraic language defined by this signa-
ture, and let £1(X) be the language L augmented with a
set of variables X. Syntactically, occurrences of a variable
must agree on the sort, that is, x +; = implies that z is a
weight term for ¢, and x >; x is not allowed, since the first
occurrence of z would have to be a weight term and the
second a sentence term.

A term rewriting system is a collection of rewrite rules,
written  ~ 1), where @, € L7 (X). Executing a rewrite
rule on a formula y would identify a substitution instance
of ¢ in x and replace it with a substitution instance of
(using the same assignment of variables to terms). For our
purposes, we use the following rewrite system.

Definition 2.6 [Rewriting system R] Here is a rewriting
system of use to us

35

) z—vy ~ =(x A y)
(r2)  [z]true ~ true
(1‘3) [a:]p ~> r—p
) [l w oz laly
@5)  [z]lyA2) ~ [x]y A [z]z
(r6) [x]EAy ~ x — Oylzly
@ [z]Y=z ~ r—z
©8)  triv(P(q,x)) ~ P;(q, true)
19) triV(tl + tQ) ~ triV(tl) + triV(tQ)
(rlO) baY(%Pi((LZ)) ~ Pi(qax/\ [LC}Z)
(rl1) bay(x,tl +t2) ~
bay(x,t1) + bay(z, t2)
(r12)  [z](t > q) ~
(Pi(—=1,2) > 0N (z — (triv(t) > q)))V
—(Pi(=1,z) > 0)A
(z — (bay(z,t) +i Pi(—q,2) > 0)))

N

These rules correspond to either biconditional axioms
schema or provable biconditiionals, which is the core reason
why a rewritten formula is provably equivalent to the first.
Note that there is a natural translation between our original
language £ and the algebraic language £T. The rewriting
is done in £ and the provable equivalence is determined
between corresponding formulas in L.

But it is also important that we can apply rules finitely
many times in order to obtain a term corresponding to a
formula in normal form. We first observe that no rule can
be applied to terms if and only if the terms correspond to
formulas in in normal form. But we must also show that
only finitely many applications of the rules can be applied,
something that we may doubt, given that rule (r12) appears
to produce a much more complicated term. But the follow-
ing interpretation of symbols in the signature can help us
show that the rewriting system terminates.

Definition 2.7 [Interpretation of Signature] Let us overload
the symbol [-] to indicate interpretation. Our signature has
a carrier N> 3 for sentences, and a carrier N3 for actions.
The function symbols are then interpreted as the following
arithmetic functions on these numbers:

[true] =3 —
- [bay](a,b) = a
H](a) _ 2+ 1 [trivi(b) =3°
[Al(a,b) =a+b Rﬁ]ﬂ(ﬁaé) - Zbixl
el 2yt [Pl —a+s
[+:](a,b) =a+b [>:i](a,q) =a

We recursively extend this interpretation to all terms and
sentences. <

It turns out that every application of a term rewriting rule
results in a term with a strictly smaller interpretation. Thus



the interpretation of the term is an upper bound to the num-
ber of times rules can be applied before terminating.

To show completeness, we start with a consistent for-
mula in £, translate it into £, and then apply rewrite rules
until we obtain a term in which no more rules can be ap-
plied. The result of translating this term back into £ is a
normal form formula provably equivalent to the original for-
mula. We then show for every non-standard history H and
state = in the non-standard history, there is an actual his-
tory H and a state in that history that agrees with = on the
truth of every normal form formula. We then form a filtra-
tion for the non-standard semantics. A number of model
transformations will likely be needed to turn the filtration
into a history. One transformation that might be useful is
an unravelling (or partial unravelling) about a point in the
canonical model that satisfies the consistent formula. This
was done in [12]. But producing a discrete probability after
unravelling is not always straightforward or possible. Thus
it would be helpful to get a better grasp of issues regarding
updating probabilistic epistemic models that have unmea-
surable sets (sets not in the o-algebra). This is the great-
est challenge discussed in the next section concerning a dy-
namic probabilistic epistemic logic.

3 Involving Action Models

The example in [3] is as follows. There are two agents:
i and k. Agent k receives a bit: 0 or 1. Agent ¢ is aware
that k learns what the bit is, but 7 does not know what the
bit is. Then agent k flips a fair coin, and observes the result.
Again 7 is aware that k learns the result of the flip, but does
not learn the result. Viewing heads as 1 and tails as 0, agent
k performs action s if the coin agrees with the bit, and d if
it does not.

Fagin and Halpern viewed this experiment through a sys-
tem of runs. There are 4 possible runs of this example
based on the outcome of the bit together with the outcome
of the coin. The action d or s is determined from the first
two outcomes. Let us consider 4 states, one for each run:
(1,H),(1,T),(0,H),(0,T). Before agent k performs ac-
tion s or d, agent 7 considers all four possible. But what
should agent i’s probability space be at each state? Three
possibilities are discussed in [3] and are depicted below.
The solid box depicts what ¢ would consider to be the sam-
ple spaces from each state within its borders, and the dotted
lines depict the smallest non-empty sets in the o-algebra
for ¢ from each element in the sample space. Note that ¢’s
probability spaces from one state to another need not always
differ.
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The diagram on the left depicts the situation where the sam-
ple space should consist of all 4 states, thus making the sam-
ple space the same as the set of states considered possible.
Notice that the set {(1, H), (1,7)} is not measurable (that
is, is not in the o-algebra). Unlike a fair coin, we do not
know enough about how the bit is to be assigned to give it
a probability. But even without knowing the probability of
the bits 1 and 0, we can determine that s (represented by
{(1,H),(0,T)}) has probability 1/2, and similarly for d.
So the second diagram provides model where ¢ can give a
probability to s, but still does not give a probability to bits
1 or 0. The set of states ¢ considers possible is still all four
states, but now the sample spaces are different from that.
Thus ¢ can also be uncertain about whether the bit turned
out to be 0 or 1, but can still determine that the probability
of s is 1/2 in each case, thus concluding that the probability
is 1/2. In the third diagram, agent ¢ believes the probability
of any outcome is either 1 or 0, but does not know which.



It is suggested that these three diagrams may be viewed
as three different stages of the example. The first diagram
would correspond to the time before the bit is given. The
second diagram would correspond to the time after the bit
is given but before the coin is flipped. The third diagram
would correspond to the time after the coin is flipped. The
transition from one stage to the next might make more sense
if we view the probabilities as objective. Indeed, these di-
agrams would just as appropriately represent k’s probabili-
ties at the three stages. But one consequence of using these
objective probabilities is that ¢’s degree of certainty about
the probabilities changes as a result of learning that k£ was
informed of something. From the first diagram to the sec-
ond, 7 becomes more certain about the probability of events
s and d, but in both steps, 7 becomes less certain about the
probability space. Being more sensitive to probabilities as
subjective, we may prefer that there is more information re-
vealed to 7 between stages, to help the change in the degree
of certainty. Suppose that at first ¢ is not aware of any plan
for k to perform either action s or d, and hence does not
wonder about the probabilities of these two events. The se-
quence of actions may be as follows:

1. k receives the bit.

2. k informs ¢ of his plan to perform action s if the result
of the coin matches the bit and d if it does not match.

3. k observes the outcome of the coin.
4. k offers 7 a bet that the result was heads.

The first diagram would correspond to ¢’s probabilities be-
fore any of these actions have taken place. The second dia-
gram would correspond to ¢’s probabilities after the second
action, but before the third. The third diagram would cor-
respond to ¢’s probabilities after all four actions have taken
place. Perhaps action two, where k informs ¢ of the plan to
perform either s or d prompts i to rework his probabilities
so that s and d are assigned probabilities. The contribution
of the fourth action, where k offers ¢ a bet, may be more
convincing. Now ¢ considers it highly unlikely that &k would
have offered the bet knowing that he would lose, yet ¢ could
not have a quantitive grasp of this likelihood, and thus could
not assign a probability.

Now in terms of probabilistic epistemic logic, the first
model poses a difficulty; if there is any formula for the bit 1,
the bit 0, the action s, or the action d, then the set of states
making that formula true is not measurable. A temporary
fix is proposed in [3], which is to use the inner measure
function. If (5,4, ) is a probability space, then the inner
measure of y is . defined by

i (T) =sup{u(4) : Ac A,ACT}
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for each T' C S. We could alternatively use the outer mea-
sure:

p(T) =inf{u(A): Ae AT C A}

for each T' C S. Inner and outer measures are related ac-
cording to p*(T) = 1 — p.(T), where T is the comple-
ment of 7" in S. Thus either the inner or outer measure
can be taken as primitive in the language, and the other can
be defined according to the other. Either the inner or outer
measure lets us define the semantics of formulas such as
Pi(¢) > 1/2 even when the set of states making ¢ true
is unmeasurable. But as the inner measure and the outer
measure need not be a measures themselves, the probabil-
ity axioms would fail. One suggestion given in [3] is that
we explicitly require that the o-algebra be large enough to
contain all sets corresponding to each formula. But non-
measurable cases have been considered with a more relaxed
set axioms

In defining an update product between a probabilistic
epistemic model and an action model, we shall first consider
the general case, where sets of states that make the formulas
true need not be measurable. In particular, the formulas in-
ducing the update might not correspond to measurable sets
(the elements of the o-algebra). We thus define an “outer
(or inner) probability dynamic epistemic logic”. To make
this task manageable, we restrict the models to be finite.

Definition 3.1 [action model] An action model (,{-—
}.{Pi},pre) is a probabilistic epistemic model with the
valuation function || -|| replaced by a function pre which
assigns to each o € ¥ a function that assigns to each prob-
abilistic epistemic model a subset of the carrier set of that
model. Each element o € X is called an action type. N

We define the update product between a probabilistic epis-
temic model and an action model in two stages. We first
define the product between the original probabilistic epis-
temic model and an action signature (which is just a proba-
bilistic epistemic frame (no valuation, and without the pre
function)), and then relativize the result according to the pre
function. The first product is called the unrestricted product.
The second is called the relativization.

Definition 3.2 [unrestricted product] The unrestricted
product between a probabilistic epistemic model M and an
action model ¥ is M ®; 32 with the following components:

. Xg=Xx%

2. (z,0) 5 (z,7)iffz 5 zand o 5 ¢

W

Niplle = llpll x

4. We define P; (, ) as follows:



(a) The sample space is the Cartesian product
Si,(z,a) = Si@ X Si,o

(b) The o-algebra A; (, o) is the smallest o-algebra
containing

{AxB:Ac A, Be A}

(c) The probability measure is defined as

A) =" i o (Br)pi o (Cr)

k=1

where By, € A; ., Cy
Wiz Br x Ci

i (,0) (

c Ai,g, and A

N

This product is a probabilistic epistemic model. The usual
definition for product measures (for finite spaces) is given
to our new probability measure. Product measures need
not be restricted to finite spaces, and hence this unrestricted
product can be defined between any probabilistic epistemic
model and action model of infinite size.

But the relativization of our probabilistic epistemic
model requires some restriction be placed on the probabilis-
tic epistemic model. Requiring the carrier set of the prob-
abilistic epistemic model to be finite is sufficient and still
allows us to explore a wealth of examples.

Definition 3.3 [relativization] The relativization of a prob-
abilistic epistemic model M to Y C X is givenby M®pgrY
with the following components:

1. Xy =Y
2. xi>y ziffx#zandx,zEY
3. lplly = llplnY

4. Forz € Y, if uj ,(Y') = 0, then define P; ;. to be the
trivial probability space on the singleton z. Otherwise

(a) SYi,x = Si,z ny
(b) Ay, , is the o-algebra generated by {ANY :

Ac Ai@}
(c) The probability measure is defined by
1i 2 (B)
By iq(A) = =
Vel =)

N

The choice to update using outer measures rather than inner
measures is mostly arbitrary. The outer measure, however
is less likely to be zero. When the o-algebra A of a space
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(S, A, u) is finite, the outer measure of p applied to a set
T C S becomes

=({mA): Ac AT C A}
=u(({A: Ac AT C A})

Thus the outer measure of a (not necessarily measurable) set
is equal to the measure of an appropriate measurable set.
This is not guaranteed in the infinite case. But this prop-
erty helps us guarantee that the updated function is indeed a
measure. The most difficult case is the additivity condition.
If Ay, ..., A, is asetof pairwise disjoint sets measurable in
the relativized model, let A; = ({B:A, CB,BeA,}
where A; , is the o-algebra for the original model. Unlike
the A;, the A; are necessarily measurable in the first space.
Also Ay,..., A, is pairwise disjoint, for if Y is the set with
which we relat1v1zed then B = A N A, C Y (otherwise
Aj and A would not be dlSJOlnt) But A; C A — B and
A —BeA,, thusA

that B = (. Also observe that L/JE = A;. We can then
make use of this and the fact that z*(C) = pu(C) for any
set C'in order to establish the additivity property of the new
measure.

= A — B, and so we conclude

Definition 3.4 [update product] Let ¥ = (Z,{>
Yier, {Pi .}, pre) be an action model and M = (X, {%
B {Pia}). LetY = {(x,0) : « € pre(o)(M)}. The

update product between M and X is written M ® 3 and is
definedas (M @y X) @ Y. <

Returning to the example above, the action of revealing
the bit to k in such a way that ¢ knows k learned something
is a semi-private announcement. Similarly, £’s learning the
result of the flip in such a way that ¢ knows k learned some-
thing is also a semi-private announcement. The relational
part of the action signature for semi-private announcements
may be depicted by the following diagram:

i, j (AT i,
R’

From each of the two action types, ¢’s probability space is
the only probability space where the sample space is that
single action type. This action signature may be used for
the action models of both stages. For the first stage, the
precondition of ¢ is 1, and the precondition of 7 is 0. For
the second action signature, the precondition of o could be
H, while the precondition for 7 could be T'.

But what should be the probability spaces of the action
model? Let us assume that one action model will capture
both the semi-private announcement of the bit to k and an-
nouncement that & plans to do either s or d. Then both ¢ and



k’s probability spaces in the action model could be ¢ and k’s

probability spaces:

Py

From each of the action types, the probability space is the
only space that can be defined over a sample space with one
element. Dotted ovals are therefore not needed. That 7 and
k share the same probability spaces agrees with the view
that probabilities should be objective.

But let us consider what happens if we break down the
transition from M; to M, into two steps (giving us an in-
termediate model) and similarly break down the transition
from M to M3 into two steps. The action where k is in-
formed of the bit will still be considered a semi-private an-
nouncement, and the relational structure will be the same.
The only difference shall be ¢’s probability space, which we
change to the following structure:

@

P

The action where : is informed that & plans to do either
action s or d will serve the purpose of splitting ’s probabil-
ity space into two. This can be done by using the probability
structure P;. We will also use P; for k’s probability struc-
ture. As k’s probability spaces are already split, using P;
for k as well will not affect k’s probability structure in the
update model. For the relational structure we use

ik

Ry

As the precondition of ¢ is the bit 1 and the precondition of
7 is the bit 0, the updated model will have the same rela-
tional structure as it did right before updating.

We use the same relational and probabilistic structures in
the actions model from M5 to M3, but we use different pre-
conditions. We may let the precondition for o be H rather
than 1, and we may let the precondition for 7 be T rather
than 0.

When we consider the language and semantics, we may
wish that every formula correspond to a measurable set. But
even this might not guarantee that the set Y in definition
3.3 is itself measurable. Consider an action signature for
which k’s probability space is given by diagram P, that
is, there are only two measurable sets: the whole set and
the empty set. Suppose a probabilistic epistemic model M
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has two states: x and y, and k’s probability sample space is
{z,y} and all subsets are measurable. Then in the product
measure, the measurable sets are

{0.{(z,0),(y, o)}, {(z,7), (y,7)},
{(:L‘, o), (y,0),(z,7), (yﬂ—)}}

Suppose there were a formula ¢ for which only z is true,
and another formula for which y is true. Then these for-
mulas correspond to measurable sets. Let the function pre
reflect these two formulas, by defining pre(o)(M) = «
and pre(7)(M) = y. Then when taking the full update
product, we would be relativizing with respect to the set
Y = {(z,0),(y,7)}, which is not measurable. In gen-
eral, if an action signature has only discrete probability
spaces (probability spaces where the o-algebras are power
sets of the sample spaces), then the measurability of the sets
pre(c)(M) for each o € X, does guarantee that the set Y’
in definition 3.3 is measurable. It remains to be seen that
in an updated model, every formula still corresponds to a
measurable set.

4 Conclusion

This paper is a synthesis of two related projects. One is
to add a previous time operator to a probabilistic dynamic
epistemic logic similar to the one given in [8], and the other
is to involve action models and update products in a prob-
abilistic dynamic epistemic logic. Although it appears that
these projects are independent, the second project may help
support the first. We have so far approached the first project
with the initial goal of maintaining simplicity in hope that
technical results will be easier to achieve. But sometimes
extra structure makes it easier to prove certain results, and
we have yet to see if the involvement of unmeasurable sets
will facilitate the completeness proof of a probabilistic dy-
namic epistemic logic with a previous time operator.

The second project explores the possibility and moti-
vation of non-discrete probability measures and updating
based on non-measurable sets. We have seen one way to
update finite probabilistic epistemic models that are not nec-
essarily discrete upon finite action models that are not nec-
essarily discrete in order to yield a new finite probabilis-
tic epistemic model. Although this updating can guarantee
that the updated model is indeed a probabilistic epistemic
model, it does not guarantee that in the updated model, all
the formulas correspond to measurable sets; we have yet to
see which conditions would ensure the updated model does
have that property. This is only a concern if we wish to en-
force additivity axioms of probability. Otherwise we may
have the machinery for a nice inner (or outer) probability
dynamic epistemic logic.

As this update product is quite flexible, with non-
measurable sets in both probabilistic dynamic epistemic



models and action models, questions open up as to how to
interpret particular instances of updating. We have looked
at an example in [3] to help us with this. While doing so, we
distinguished between subjective and objective probabilities
and considered breaking down each action into two. The
second action for each only affects the probability spaces
being updated, and does not affect the structure of the epis-
temic relations. There so far is no language for this prob-
abilistic dynamic epistemic logic with action models and
update products, and in coming up with a language, we
should determine what fundamentally is driving this change
in probability spaces. May the source of information play
an important role, as suggested by the phrasing of the action
“k offers 7 a bet that the result was heads”? What is the es-
sential component of the action phrased “k informs 4 of his
plan to perform action s if the result of the coin matches the
bit and d it does not match”? I suggest that in future work,
finding more examples will help reveal underlying patterns
that will enable us to adequately answer these questions.
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