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Abstract

The aim of the work is to provide a deontic language to
regulate closed-world interaction. To do so we use Coali-
tion Logic enriched with a preference order over the out-
comes of agents’ choices. We take the perspective of a
deontic language being agent-oriented, that is mandating
choices that only belong to agents or coalitions. We formal-
ize this intuition by identifying those interactions in which
Nature does not play an active role. We apply the formal
tools to games.

1 Introduction

Pauly’s Coalition Logic has shown to be a sound formal
tool to analyze the properties of strategic interactions. One
issue left is to define in that language what the interesting
properties of an interaction are, as possible for instance with
regularity (it is never the case that a group of agents can
determine that some variable p is true, while all the other
agents can at the same time determine that p is false) or
outcome monotonicity (if a coalition can force an outcome
to lie in a set X , can also force an outcome to lie in all
supersets of X).

If we think of a deontic logic as obligating agents to
choose what it should ideally be the case, an intuitive prop-
erty is that of coherence, a property of interaction that en-
sures players’ abilities non to contradict one other and the
empty coalition not to make active choices. With this prop-
erty we can model a closed world interaction, such as those
of a Coordination Game or of a Prisoner Dilemma, where
all the outcomes are determined only by the choices of the
agents that are present.

Our aim is to regulate multiagent interaction, mandat-
ing the optimal outcomes that result from the choices of the
coalitions. By mandating we mean the introduction of a
normative constraint on individual and collective choices
in a multiagent system.

!!!!!!!!!!Row
Column White Dress Black Dress

White Dress (3, 3) (0, 0)
Black Dress (0, 0) (3, 3)

Table 1. Clothing Conformity

We are specifically concerned with cases where the col-
lective perspective is at odds with the individual perspec-
tive. That is, cases where we think that letting everybody
pick their own best action regardless of other’s interest gives
a non-optimal result. The main question we are dealing with
is then: how do we determine which norms, if any, are to be
imposed?

To answer this question, the paper presents a language
to talk about the conflict between coalitionally optimal and
socially optimal choices in coherent interaction, and it ex-
presses deontic notions referring to such circumstances.

1.0.1 Example

The toy example we would like to start with concerns con-
ventional norms. Noms of this type are those in which play-
ers should conform to each other. In this situation (see Table
1), a legislator that wants to achieve the socially optimal
state (players coordinate), should declare that discordant
choices are forbidden, thereby labeling the combinations of
moves (black, white), (white, black) as violations. As easy
to see, these moves belong only to the set of agents taken
together. A norm helping both players to reach an optimal
outcome would be one that labels as violations combina-
tions of discordant choices. However, in this kind of games
Row will never know what is the best thing to choose, since
the choice of Column is independent from his. In order to
solve the problem a legislation should go beyond individual
choice, by forcing the coalition made of Row and Column
together to form and choose an efficient outcome.
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!!!!!!!!!!Row
Column White Dress

White Dress (3, 3)
Black Dress (0, 0)

Table 2. Clothing Conformity Modified

1.1 Motivation

Provided the aim of regulating interactions, we ask our-
selves whether it makes sense to construct a deontic logic
for any type of game.

Suppose the environment (the coalition made by an
empty set of agents) were active part of the game, and it
could decide to transform the game of table 1 in the one of
table 2.

What should then a legislator do? It is quite clear that
imposing the agents to choose something should depend on
the moves that are available to the players. But in a game
in which Nature plays an active role, taking this statement
serious would boil down to mentioning the environment in
the deontic language, saying for instance “Nature should
allow row to play only white” or “Nature should make it
convenient for the grand coalition to form”. If we think of a
deontic language as a sort of “agent-oriented” language and
as nature as a uncontrollable agent, the above mentioned
statements do not make sense.

No legislator though would be in the condition of deter-
mining what moves Nature would play. Nature, unlike all
the other players, does not have explicit preferences over
the outcomes of the interaction and intuitively does not fol-
low proper man made norms or orders. In order to have
a regulation of the Multi Agent System, we need a proper
agent-oriented deontic language and we should then avoid
deontic statements that concern proper choices (i.e. those
able to really modify the outcome of the game) to be car-
ried out by Nature. This translates into ruling out all those
interactions in which Nature plays an active role. In this
paper we will pursue this idea formally, identifying all such
interactions and axiomatizing their logic.

The paper is structured as follows: In the first part we
introduce Coherent Coalition Logic, proving that Inability
Of the Empty Coalition (IOEC) is not entailed by Pauly
playable effectivity functions and it cannot even be defined
in Coalition Logic. In the second part we discuss the axiom-
atization of the logic, giving a characterization of coherence
in terms of global modality. In the third part we give appli-
cation of the logic to the regulation of closed-world strategic
interaction, constructing a deontic logic that tells coalitions
how to behave in order to achieve socially desirable out-
comes.

2 Coherent Interactions

We begin by defining the strategic abilities of agents and
coalitions, introducing the concept of a dynamic Effectivity
Function, adopted from [7]. Later on in the paper we will
move from game forms to real games, by introducing the
notion of preference.

Definition 2.1 [Dynamic Effectivity Function]
Given a finite set of agents Agt and a set of states W ,

a dynamic Effectivity Function is a function E : W →
(2Agt → 22W

).
!

Any subset of Agt will henceforth be called a coalition.
For elements of W we use variables u, v, w, . . .; for

subsets of W we use variables X, Y, Z, . . .; and for sets
of subsets of W (i.e., elements of 22W

) we use variables
X ,Y,Z, . . .. The elements of W are called ‘states’ or
‘worlds’; the subsets of Agt are called ‘coalitions’; the sets
of states X ∈ E(w)(C) are called the ‘choices’ of coalition
C in state w. The set E(w)(C) is called the ‘choice set’ of
C in w. The complement of a set X or of a choice set X are
calculated from the obvious domains.

A dynamic Effectivity Function assigns, in each world,
to every coalition a set of sets of states. Intuitively, if
X ∈ E(w)(C) the coalition is said to be able to force or
determine that the next state after w will be some member
of the set X . If the coalition has this power, it can thus
prevent that any state not in X will be the next state, but
it might not be able to determine which state in X will be
the next state. Possibly, some other coalition will have the
power to refine the choice of C.

For studying closed-world interaction we isolate a set of
minimally required properties, that constitute the class of
coherent Effectivity Functions.

Definition 2.2 [Coherence]
For any world w, coalitions C,D and choice X , an Effec-

tivity Function is coherent if it has the following properties:

1. coalition monotonicity: if X ∈ E(w)(C) and C ⊆ D
then X ∈ E(w)(D);

2. regularity: if X ∈ E(w)(C) then X $∈ E(w)(C);

3. outcome monotonicity: if X ∈ E(w)(C) and X ⊆ Y
then Y ∈ E(w)(C);

4. inability of the empty coalition (IOEC): E(w)(∅) =
{W}.

!
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The first property says that the ability of a coalition is
preserved by enlarging the coalition. In this sense we do not
allow new members to interfere with the preexistent capac-
ities of a group of agents. The second property says that if a
coalition is able to force the outcome of an interaction to lie
in a particular set, then no possible combinations of moves
by the other agents can prevent this to happen. We think
that regularity is a key property to understand the meaning
of ability. If an agent is properly able to do something this
means that others have no means to prevent it. Outcome
monotonicity is a property of all Effectivity Functions in
CL, which is therefore a monotonic modal logic. It says
that if a coalition is able to force the outcome of the inter-
action to lie in a particular set, then is also able to force the
outcome to lie in all his supersets (see [7]). The last con-
dition is IOEC, that forces the empty coalition relation to
be universal. As noticed also in [2] with such a property
the empty coalition cannot force non-trivial outcomes of a
game.

One important class of Effectivity Functions are the
playable ones, to which we will refer throughout the paper.

Definition 2.3 [Playability]
For any world w an Effectivity Function is playable if it

has the following properties:
(1) ∅ /∈ E(w)(C), for any C; (2) W ∈ E(w)(C) for

any C. (3) E is Agt-maximal, that is for any X ⊆ W ,
s.t. W \ X $∈ E(w)(∅) implies X ∈ E(w)(Agt) (4) E is
superadditive, i.e. for C ∩ D = ∅, if X ∈ E(w)(C) and
Y ∈ E(w)(D) then X ∩ Y ∈ E(w)(C ∪D).

!

The first condition imposes that games are nonempty, the
second that coalitions can always choose the largest possi-
ble set, the third that the grand coalition of agents can do
whatever not blocked by Nature, the fourth that coalitions
can join their forces.

As proved in [7] [Theorem 2.27], nonempty strategic
games exactly correspond to playable Effectivity Functions
1.

2.0.1 Playability and Coherence

What kind of interactions are coherent Effectivity Functions
isolating?

1The proof involves the definition of strategic game as a tuple
〈N, {Σi|i ∈ N}, o, S〉 where N is a set of players, each i being endowed
with a set of strategies σi from Σi, an outcome function that returns the
result of playing individual strategies at each of the states in S; the defi-
nition of α-Effectivity Function for a nonempty strategic game G, Eα

G :
℘(N) → ℘℘(S) defined as follows: X ∈ Eα

G iff ∃σC∀σCo(σC ; σC) ∈
X . The above mentioned theorem establishes that Eα

G = E in case E is
playable and G is a nonempty strategic game.

In this respect, it is interesting to compare playable and
coherent Effectivity Function, in order to understand the
types of interactions we are considering.

Proposition 2.4 Not all playable EF are coherent, and not
all coherent EF are playable.

Proof.
For the first part, take W = {x, y}, Agt = {i, j} and the

following Effectivity Function E(∅)(k) = E({i})(k) =
E({j})(k) = E(Agt)(k) = {W,W\{x}} for k ∈ W .
Now it is just a matter of checking the conditions for playa-
bility.

For the second part take W = {x, y}, Agt = {i, j} with
E(∅)(k) = E({i})(k) = E({j})(k) = E(Agt)(k) =
{W} for k ∈ W .

QED

Proposition 2.5 Coherent Agt-maximal superadditive EF
are playable.

Proof.
It is a matter of checking the conditions of playability.

QED

3 On the axiomatization of Coherent Coali-
tion Logic

In order to fully understand what sort of interactions we
are investigating by using coherent effectivity functions we
need to provide an axiomatization of their logic.

To do so we exploit some results due to Pauly and we
adapt them to our framework. We recall first that Coalition
Logic uses a modality [C]φ (to be read as “Coalition C can
achieve φ”) and it is interpreted in neighbourhood models
with an outcome monotonic dynamic Effectivity Function
as neighbourhood relation. The axioms of Coalition Logic
extend propositional logic axiomatization with the Mono-
tonicity axiom (φ → ψ ⇒ [C]φ → [C]ψ).

Consider the coalitional canonical model C∗ =
((W ∗, E∗), V ∗) and take φ = {w ∈ W ∗|φ ∈ w}, as the
truth set of φ in the canonical model. The canonical rela-
tion (the rest is standard) is defined as

wE∗
CX iff ∃φ s.t φ ⊆ X and [C]φ ∈ w

The set of formulas are closed under Modus Ponens and
Monotonicity and the relation is easily proved to be mono-
tonic. Moreover in [7] the following theorem [3.10] is
proved: Every Coalition Logic Λ is sound and complete
with respect to its canonical model C∗.

What we look for now is the a set of axioms and rules
such that the corresponding maximally consistent sets gen-
erate a coherent Effectivity Function in the canonical mod-
els.
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Nevertheless IOEC is not definable in Coalition Logic.
To see this it is important to notice that Coalition Logic
is monotonic multimodal logic, and frame validity of for-
mulas of monotonic modal logics is closed under taking
disjoint unions. This is proven for modal satisfaction in
[4][Definition 4.1, Proposition 4.2].

Definition 3.1 [[4] 4.1]
Let Mi = (Wi, Ni, Vi), i ∈ I, be a collection of dis-

joint models. Then we define their disjoint union as the
model ⊕Mi = (W,N, V ) where W =

⋃
i∈I Wi, V (p) =⋃

i∈I Vi(p) and for X ⊆W,w ∈Wi,

X ∈ N(w) iff X ∩Wi ∈ Ni(w)

!

Without loss of generality, we can simply think of the
monotonic modal logic with only the box for the empty
coalition, and take frames instead of models.

Consider the following monotonic frames F0 =
(W0, N0) and F1 = (W1, N1), with a domain Wj and a
relation Nj ⊆ Wj × 2Wj (j ∈ {0, 1}). Take W0 = {w0},
W1 = {w1}, N0(w0) = {w0} and N1(w1) = {w1}.
Now suppose φ is some formula true at a world w in a
model M ′ = (W ′, N ′, V ′) of a monotonic frame F ′ iff
[[&]]M is neighbour of w (if wN ′[[&]]) and nothing else is
(wN ′X ⇒ X = [[&]]). We see that M0, w0 |= φ and
M1, w1 |= φ for arbitrary Mi inside Fi (i ∈ {0, 1}). From
[4] we construct the disjoint union ⊕(F0, F1) = (W,N) as
defined. We see clearly that our formula φ is not true in
the disjoint union, because the neighbourhoods of the sin-
gle models are copied in the disjoint union even if they are
smaller than the unit. We observe moreover that the disjoint
union is monotonic. The conclusion is that the formula ex-
pressing inability of the empty coalition is not definable is
monotonic modal language.

At this point it is clear why [∅]φ → [∅](φ ∨ ψ) or also
[∅]& would not be decent axioms for Coherent Coalition
Logic. They would both ensure the presence of the unit in
the neighbourhood of ∅, but they would not say anything
about the absence of all the other sets. We will give to this
intuition a formal characterization, stating that in fact the
ability of the empty coalition in Coherent Coalition Logic
is a global modality.

3.1 Inability of the Empty Coalition is a
global relation

We extend the language of Coalition Logic with a global
modality, defined as follows:

M,w |= Eφ⇔ ∃w′ ∈W s.t. M,w′ |= φ

The dual Aφ is defined as ¬E¬φ. We claim that in
Coalition Logic plus the global modality IOEC is definable.

Proposition 3.2 A(φ)↔ [∅]φ defines IOEC. That is,
|=C A(φ) ↔ [∅]φ ⇔ E(w)(∅) = {W} for every w in

the coalitional frames C.

Proof. (⇒) Assume that |=C Aφ ↔ [∅]φ while not
E(w)(∅) = {W} for every w in any frame F in the class
of Coalitional Frames C. Then there is an F in which there
is a w such that E(w)(∅) .= {W}. Notice that both W and
E(w)(∅) are nonempty. So there is a W ′ .= W s.t W ′ ∈
E(w)(∅) and W ′ ⊂ W . Take an atom p to be true in all
w′ ∈ W ′ and false in W \ W ′. Now we have model M
based on a coalitional frame C for which M .|= Ap↔ [∅]p.
Contradiction.

(⇐) Assume E(w)(∅) = {W} for a given w in an arbi-
trary model M of a coalition frame in C, and that w |= Aφ.
Then [[φ]]M = W and w |= [∅]φ follows. Assume now
that w |= [∅]φ. It has to be the case that [[φ]]M = W by
assumption. So also that w |= Aφ, which concludes the
proof.

QED

3.2 Axiomatization for the Global Modal-
ity plus a new inclusion axiom

The global relation induces an equivalence class in the
models, therefore it is axiomatizable by an S5 modality in-
terpreted on a global relation.

However this does not ensure that the underlying relation
- that we indicate with R∃ - is globally connected. Global
connectedness is not definable in basic modal language [1]
2.

As suggested in [1][p.417-418], taken a set of maximally
consistent formulae Σ+ we can simply take a generated sub-
model of the canonical model in such a way that the for-
mulae in Σ+ are invariant and the relation is (it follows by
construction) a global relation.

Taken the canonical model M∗ = ((W ∗, E∗, R∗
∃), V

∗),
its submodel

M∗′
= ((W ∗′

, E∗′
, R∗′

∃ ), V ∗) generated by Σ+ using
the R∗

∃ relation should ensure that R∗′

∃ = W ∗′ ×W ∗′
.

Nevertheless in taking the generated submodel we
should ensure that the coalitional relation is not alterated.
One way to do it is to guarantee that the canonical coali-
tional relation is included in the global relation and that the
generated submodel for the second relation is also a gener-
ated submodel for the first.

We begin with some definitions:
2The reason is also the invariance under taking disjoint unions. This

fact sheds light on the relation between IOEC and Global Relation, in fact
now we see clearly that the ability of the empty coalition in Coherent Coali-
tion Logic is a global modality.
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Definition 3.3 [Generated Submodels for Basic Modal
Language, [1]]

Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two
models; we say that M ′ is a submodel of M if W ⊆ W ′, R′

is the restriction of R to W ′, that is R′ = R∩(W ′×W ′) and
V ′ is the restriction of V to M ′. We say that M ′ is a gener-
ated submodel of M (M ′ $→ M )if M ′ is a submodel of M
and for all points the following closure condition holds:

if w is in M ′ and Rwv, then v is in M ′

!

Modal satisfaction is invariant under taking generated
submodels [1].

Now the definition for monotonic modal logic.

Definition 3.4 [Generated Submodels for Monotonic
Modal Language, [4]] Given a monotonic model M , M ′ is
a submodel of M if W ′ ⊆ W,V ′(p) = V (p) ∩ W ′ for p
atomic, and N ′ = N ∩ (W ′ × 2W ′

), that is

∀s ∈ W ′ : N ′(s) = {X ⊆ W ′|X ∈ N(s)}

In neighbourhood semantics given M ′ submodel of M ,
M ′ is also a generated submodel of M if the identity map-
ping i : W → W ′ is a bounded morphism, that is, for all
w′ ∈ W ′ and all X ⊆ W

i−1[X] = X ∩W ′ ∈ N ′(w′) iff X ∈ N(w′)

!

For all states of the generated submodels, truth of modal
formulas is preserved [4].

Now the question is, is the submodel generated a max-
imally consistent set of formulas Σ+ using the existen-
tial global modality relation (making the canonical model
strongly connected with respect to this relation) also a gen-
erated submodel with respect to the coalitional relation?

The answer is: it depends on the extra axioms. Usually
when we have a K and a global modality it is sufficient to
include the diamond relation in the global modality relation.
But we cannot simply have:

[C]φ → Eφ

because the coalitional canonical relation may cross S5
equivalence classes. Instead the good candidate for our at-
tempt is just the following:

Aφ ↔ [∅]φ

We claim that taking a generated submodel with respect
to the global relation, given this axiom, ensures the condi-
tion of taking also a generated submodel with respect to the
neighbourhood modality.

This is easy to see, because all the neighbourhoods of all
coalitions are of the form X ⊆ W and W is covered by the
global modality.

Proposition 3.5 The axiom Aφ ↔ [∅]φ guarantees inclu-
sion of the canonical relation in the global relation

Proof.
Take a maximally consistent set of formulas Σ+ that ex-

tends a consistent set of formulas Σ according to the ax-
ioms and the rules that we have just defined (for the global
and the coalitional modality). Suppose now Aφ is in Σ+

for some φ. This means that W ∗ = [[φ]]C
∗
. Now take a

given [C]ψ in the same maximally consistent set of formu-
las. This means that [[φ]]C

∗ ∈ E∗(Σ+)(C). But by defi-
nition, [[φ]]C

∗ ⊆ W ∗ which proves that all neihbourhoods
are covered by the global modality relation.

QED

Now, let us take a generated submodel, as described in [1]
for basic modal logic, using the maximally consistent set
Σ+ looking only at the global modality.

Proposition 3.6 The generated canonical submodel under
Σ+ preserves both global modality and monotonic Coali-
tion Logic formulas satisfaction.

Proof.
It is just a matter of verifying that the generated sub-

model for the global relation is also a generated submodel
for the coalitional relation.

QED

It follows that we have an axiomatization for the Coherent
Coalition Logic.

3.3 A sound and complete axiomatization

Take now the maximally consistent sets w ∈ W ∗, closed
under the proof system depicted in the table.

We take the following conditions to describe coherence
of the Effectivity Function on the canonical relation.

• wE∗
CX iff ∃φ ⊆ X : [C]φ ∈ w and ∀ψ ⊆ (W ∗\X) :

[C]ψ +∈ w (for C += ∅)

• E∗
C ⊆ E∗

D (for C ⊆ D)

• wE∗
CX iff X = W ∗ (for C = ∅)

• wR∃v iff w, v ∈ W ∗
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Proposition 3.7 The canonical Coherent frame for Coali-
tion Logic with Aφ ↔ [∅]φ as axiom has the property that
E(w)(∅) = {W ∗} for any MCS w and Aφ ↔ [∅]φ is valid
in the class of frames with that property.

It is a consequence of the previous propositions and the
canonical relation definition.

Proposition 3.8 The set of axioms and rules in the table
are sound and complete with respect to Coherent Coalition
Frames

Proof.
We need just to check the statement with respect to M∗′

.
We omit the detailed proof.

QED

Proof System
A1 [C]φ→ [D]φ (for C ⊆ D)
A2 [C]φ→ ¬[C]¬φ
A3 Aφ↔ [∅]φ
A4 φ→ Eφ
A5 EEφ→ Eφ
A6 φ→ AEφ
A7 A(φ→ ψ)→ (Aφ→ Aψ)
R1 φ ∧ (φ→ ψ)⇒ ψ
R2 φ→ ψ ⇒ [C]φ→ [C]ψ
R3 φ⇒ Aφ

3.4 On Agt-Maximal Coherent Games

Notice that if we add Agt-maximality to Coherent
Games, the following holds:

M,w |= [Agt]φ↔ Eφ

This suggest, at the expressivity level, that Coherent
Coalition Logic is powerful enough to reason on global
properties of the models. These results are useful to apply
the language to the study of multiagent interactions.

4 A Deontic Logic for Efficient Interactions

Any deontic language comes along with an idea of how
a certain world state should be.

Once we view a deontic language as regulating a Multi
Agent System, we can say that a set of commands promote a
certain interaction (or social state), prohibiting certain oth-
ers. Following this line of reasoning it is possible, given
a notion of optimality or efficiency, to construct a deontic
language that requires this notion to hold.

If we want to consider what it is socially optimal, as we
do here, we can see obligations and prohibitions as resulting
from one general norm saying that all actions of coalitions
that do not take into account the interests of the society as a
whole, are forbidden.

From the practical point of view, one way to view our
logic is to say that it can be used to derive obligations,
permission and prohibitions from conflicting group prefer-
ences, and use these as suggestions for norm introduction in
the society.

This last part of the paper is devoted to formalize this
derivation. Here we will introduce a notion of preference in
the strategic interaction scenario, to be lifted to coalitional
choice, in order to define what it is best for a society to
choose. We will then move to study the property of the
enriched language focusing on the regulation of coherent
interactions. We will show that Nature can be obliged to do
something when and only when it is not avoidable, that is it
will be assigned only trivial obligations.

4.1 Preference

As already noticed by von Wright, the notion of pref-
erence can be understood and modeled in many ways [9].
This is especially true in strategic interaction, in which play-
ers, in order to choose what is best to do, need to have pref-
erences over the possible outcomes of the game. Thus those
are the preferences that constitute our main concern.

The claim is thus that players do have a fixed order-
ing over the domain of discourse (what we call prefer-
ences), and that generate their strategic preference consid-
ering where the game may end (called choices domination,
or simply domination).

We start from a preference relation for individuals over
states working our way up to preferences for coalitions over
sets. A similar view is taken in [3].

Definition 4.1 [Individual preferences for states] A prefer-
ence ordering (≥i)i∈Agt consists of a partial order (reflex-
ive, transitive, antisymmentric) ≥i⊆ W ×W for all agents
i ∈ Agt, where v ≥i w means that v is ‘at least as nice’ as
w for agent i. The corresponding strict order is defined as
usual: v >i w if, and only if, v ≥i w and not w ≥i v. #

Definition 4.2 [Individual preferences for sets of states]
Given a preference ordering (≥i)i∈Agt, we lift it to an or-
dering on nonempty sets of states by means of the following
principles.

1. {v} ≥i {w} iff v ≥i w; (Singletons)

2. (X ∪ Y ) ≥i Z iff X ≥i Z and Y ≥i Z; (Left
weakening)
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3. X ≥i (Y ∪ Z) iff X ≥i Y and X ≥i Z. (Right
weakening)

!

These are some properties that seem minimally required
for calling some relation a preference relation. The first en-
sures that preferences are copied to possible choices. The
properties of left and right weakening ensure a lifting from
singletons to sets.

The lifting enables us to deal with preference under un-
certainty or indeterminacy. The idea is that if an agent were
ever confronted with two choices X, Y he would choose X
over Y provided X >i Y . preferences do not consider any
realizability condition, they are simply basic aspirations of
individual players, on which to construct a more realistic
order on the possible outcomes of the game, which are by
definition dependent on what all the agents can do together.

Out of agents’ preferences, we can redefine on choices
the classical notion of Pareto Efficiency.

Definition 4.3 [Strong Pareto efficiency] Given a choice set
X , a choice X ∈ X is Strongly Pareto efficient for coalition
C if, and only if, for no Y ∈ X , Y ≥i X for all i ∈ C,
and Y >i X for some. When C = Agt we speak of Strong
Pareto Optimality. !

We will use the characterization of Pareto Efficiency and
Optimality to refer to the notions we have just defined, even
though the classical definitions (compare [5]) are weaker 3.

We now construct a preference relation on choices. To
do so we first need to look at the interaction that agents’
choices have with one another.

Definition 4.4 [Subchoice] If E is an Effectivity Function,
and X ∈ E(w)(C), then the X-subchoice set for C in w is
given by EX(w)(C) = {X ∩ Y | Y ∈ E(w)(C)}. !

Considering subchoices allows to reason on a restriction
of the game and to consider possible moves looking from a
coalitional point of view, i.e. what is best for a coalition to
do provided the others have already moved.

When agents interact therefore they make choices on the
grounds of their own preferences. Nevertheless the moves
at their disposal need not be all those that the grand coalition
has. We can reasonably assume that preferences are filtered
through a given coalitional Effectivity Function. That is we
are going to consider what agents prefer among the things
they can do.

Definition 4.5 [Domination] Given an Effectivity Function
E, X is undominated for C in w (abbr. X!C,w ) if, and

3The last definition is clearer when we consider the case X =
E(w)(C). But it is formulated in a more abstract way in order to smoothen
the next two definitions.

only if, (i) X ∈ E(w)(C) and (ii) for all Y ∈ E(w)(C),
(X ∩ Y ) is Pareto efficient in EY (w)(C) for C. !

The idea behind the notion of domination is that if X ′

and X ′′ are both members of E(w)(C) then, in principle,
C will not choose X ′′, if X ′ dominates X ′′. This prop-
erty ensures that a preference takes into account the possi-
ble moves of the other players. This resembles the notion
of Individual Rationality in Nash solutions [5], according to
which an action is chosen reasoning on the possible moves
of the others.

If we take the Coordination Game previously discussed,
we have the following cases:

• (WhiteR,WhiteC)!Agt,w for any w.

• (BlackR, BlackC)!Agt,w for any w.

• not (BlackC)!C,w

The preceding three definitions capture the idea that
‘inwardly’ coalitions reason Pareto-like, and ‘outwardly’
coalitions reason strategically, in terms of strict domination.
A coalition will choose its best option given all possible
moves of the opponents. Looking at the definition of Op-
timality we gave, we can see that undomination collapses
to individual rationality when we only consider individual
agents, and to Pareto efficiency when we consider the grand
coalition of agents.

Proposition 4.6
X!Agt,w iff X is a standard Pareto Optimal Choice in w.
X!i,w iff X is a standard Dominating Choice in w for i.

Proof For the first, notice that since E(w)(∅) = {W},
then X is undominated for Agt in w iff it is Pareto efficient
in E(w)(Agt) for Agt (i.e., it is Pareto optimal in w). The
second is due to the restriction of undomination to singleton
agents.Q.E.D.

4.1.1 Violation

A way to impose normative constraints in a Multi Agent
System is to look at the optimality of the strategic interac-
tion of such system. In particular the presence of possible
outcomes in which agents could not unanimously improve
(Pareto Efficient) can be a useful guide line for designing a
new set of norms to be imposed.

Following this line we define a a set of violation sets
as the set of those choices that are not a Pareto Efficient
interaction.

Definition 4.7 [Violation] If E is an Effectivity Function
and C ⊆ C ′, then the choice X ∈ E(w)(C) is a C ′-
violation in w (X ∈ V IOLC,C′,w) iff there is a Y ∈
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E(w)(C ′ \ C), (X ∩ Y ) that is not undominated for C ′

in w. !

In words, X is a violation if it is not safe for the other
agents, in the sense that not all the moves at their disposal
yield an efficient outcome.

We indicate with V IOLC,w the set violations by C at w
towards Agt.

5 Logic

We now introduce the syntax of our logic, an extension
of the language of Coalition Logic [7] with modalities to
talk about ideal states in a closed-world interaction.

5.1 Language

Let Agt be a finite set of agents and Prop a countable
set of atomic formulas. The syntax of our Logic is defined
as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|Eφ|P (C, φ)|F (C, φ)|O(C, φ)|[rationalC ]φ

where p ranges over Prop and C ranges over the subsets
of Agt. The other boolean connectives are defined as usual.
The informal reading of the modalities is: “Coalition C can
choose φ”, “There is a state that satisfies φ”,“It is permitted
(/forbidden/obligated) for coalition C to choose φ”, “It is
rational for coalition C to choose φ”.

5.2 Structures

Definition 5.1 [Models] A model for our logic is a tuple

(W,E,R∃, {≥i}i∈Agt, V )

where:

• W is a nonempty set of states;

• E : W −→ (2Agt −→ 22W

) is a Coherent Effectivity
Function.

• R∃ = W ×W is a global relation.

• ≥i⊆ W ×W for each i ∈ Agt, is the preference re-
lation. Out of this relation we define the undomination
relation ! ⊆ 2Agt × W × 2W × 22W

as previously
specified.

• V : W −→ 2Prop is a valuation function.

!

5.3 Semantics

The satisfaction relation of modal formulas (the rest is
standard) with respect to a pointed model M,w is defined
as follows:

M, w |= [C]φ iff [[φ]]M ∈ E(w)(C)
M, w |= Eφ iff ∃v s.t. M, v |= φ

M, w |= [rationalC ]φ iff ∀X(X!C,w ⇒ X ⊆ [[φ]]M )
M, w |= P (C, φ) iff ∃X ∈ E(w)(C) s.t.

X ∈ V IOLC,w and X ⊆ [[φ]]M

M, w |= F (C, φ) iff ∀X ∈ E(w)(C)(X ⊆ [[φ]]M ⇒
X ∈ V IOLC,w)

M, w |= O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ V IOLC,w ⇒
X ⊆ [[φ]]M )

In this definition, [[φ]]M =def {w ∈ W | M,w |= φ}.
The modality for coalitional ability is standard from

Coalition Logic [7]. The modality for rational action re-
quires for a proposition φ to be rational (wrt a coalition C
in a given state w) that all undominated choices (for C in
w) be in the extension of φ. This means that there is no
safe choice for a coalition that does not make sure that φ
will hold. It is still possible for a coalition to pursue a ra-
tional choice that may be socially not rational. The deontic
modalities are defined in terms of the coalitional abilities
and preferences. A choice is permitted whenever is safe,
forbidden when it may be unsafe (i.e. when it contains an
inefficient choice), and obligated when it is the only safe.

6 Properties

It is now interesting to look at what we can say within
our system.

Some Validities
1 P (C,φ) → ¬O(C,¬φ)
2 F (C,φ) ↔ ¬P (C,φ)
3 P (C,φ) ∨ P (C,ψ) → P (C,φ ∨ ψ)
4 O(C,φ) → [C]φ → P (C,φ)
5 [rationalC ]φ ∧ [rationalAgt]¬φ → F (C,φ)
6 O(C,+)
7 O(∅,φ) ↔ [∅]φ

The first validity says that permissions are consistent
with obligations (the converse does not hold in general).
The second that prohibition and permission are interdefin-
able. The third says that permission is monotonic. The
fourth that the obligation to choose φ for an agent plus the
ability to do something entails the permission to carry out φ.
The validity number 5 says that the presence of a safe state
that is rational for the grand coalition of agents is a norm
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for every coalition, even in case of conflicting preferences,
i.e. in case of conflict the interest of the grand coalition
prevails. The sixt one that there are no empty normative
systems. The last validity says that obligations for Nature
coincides with its ability. Notice that in Coherent Coalition
Logic this means that obligation for Nature can only be a
trivial choice.

6.1 Back to the Game

Norms of Conformity Consider the model Mc of the
Game of Conformity described in Table 1.

Nature is obligated only a trivial choice:

Mc |= O(∅,φ) ↔ Aφ

What is interesting also is that also players are individu-
ally permitted only nontrivial choices:

Mc |= ¬P (R,whiteR) ∧ ¬P (R, blackR)
∧ ¬P (C, blackC) ∧ ¬P (C, blackC).

But as coalition they are:

Mc |= P ({R,C}, whiteR,C)∧Mc |= P ({R,C}, blackR,C)

No precise indication of the choices is given by the re-
sulting obligation:

Mc |= O({R,C}, (whiteR, C) ∨ (blackR,C))

This is revealing of the form of the game: no equilib-
rium can be achieved by the agents acting independently,
but only as a coalition 4. As a matter of fact, looking at the
obligations for this game tells us more than just a static fact
about coalitional choice. In Coordination games only the
grand coalition can make an optimal choice, which suggest
that the grand coalition is in fact obligated to form.

7 Conclusion and Future Work

In this paper we studied those interactions in which Na-
ture does not play an active role, and we proposed a deontic
logic to indicate their optimal solutions. We provided an
axiomatization of the resulting logic, switching from game-
form interactions to interactions with preferences in order to
analyze gametheoretical examples like Coordination Game.
The work here described allows for several developments.
Among the most interesting ones is the study of the relation
between imposed outcomes and steady states that describe
where the game will actually end up (i.e. Nash Solution,

4Notice that we have no way of detaching from this choice a more
precise command: O(C, φ ∨ ψ) → ((O(C, φ) ∨ O(C, ψ))) is not a
validity.

the Core etc...). As suggested by the last example, some
obligations say something about the convenient dynamics
to achieve a socially optimal outcome. One idea is to talk
explicitly about such dynamics. Conversely another feature
that is worth studying is those structures in which Pareto Ef-
ficiency is not always present. Agents will reckon some ac-
tions as optimal even though there is no social equilibrium
that can be ever reached. This can be achieved by talking
explicitly about preferences in the language as done for in-
stance in [8]. The study of the interaction between choices
and preferences has shown to have an interesting connection
with deontic logic that, viewed in a multiagent perspective,
allows to talk about those desirable properties that an in-
teraction should have. As system designers, our aim is at
last to construct efficient social procedures that can guaran-
tee a socially desirable property to be reached. We think
that normative system design is at last a proper part of the
Social Software enterprise [6].

References

[1] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge Tracts in Theoretical Computer Sci-
ence, 2001.

[2] S. Borgo. Coalitions in action logic. In Proc. of IJCAI,
pages 1822–1827, 2007.

[3] P. Gardenfors. Rights, games and social choice. Nous,
15:341–56, 1981.

[4] H.H. Hansen. Monotonic Modal Logics. Master Thesis,
ILLC, 2001.

[5] M. Osborne and A. Rubinstein. A course in Game The-
ory. The MIT Press, 1994.

[6] R. Parikh. Social software. Synthese, 132(3):187–211,
2002.

[7] M. Pauly. Logic for Social Software. ILLC Dissertation
Series, 2001.

[8] J. van Benthem and F.Liu. Dynamic logic of preference
upgrade. Journal of Applied Non-Classical Logics, 14,
2004.

[9] G.H. von Wright. The logic of preference. Edimburgh
University Press, 1963.

121


