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Abstract

In this paper, we compare two modal frameworks for

multi-agent belief revision: dynamic doxastic logics com-

puting stepwise updates and temporal doxastic logics de-

scribing global system evolutions, both based on plausibil-

ity pre-orders. We prove representation theorems showing

under which conditions a doxastic temporal model can be

represented as the stepwise evolution of a doxastic model

under successive ’priority updates’. We define these proper-

ties in a suitable doxastic-temporal language, discuss their

meaning, and raise some related definability issues.

Analyzing the behavior of agents in a dynamic environ-

ment requires describing the evolution of their knowledge

as they receive new information. Moreover agents entertain

beliefs that need to be revised after learning new facts. I

might be confident that I will find the shop open, but once I

found it closed, I should not crash but rathermake a decision

on the basis of new consistent beliefs. Such beliefs and in-

formation may concern ground-level facts, but also beliefs

about other agents. I might be a priori confident that the

price of my shares will rise, but if I learn that the market is

rather pessimistic (say because the shares fell by 10%), this

information should change my higher-order beliefs about

what other agents believe.

Tools from modal logic have been successfully applied

to analyze knowledge dynamics in multi-agent contexts.

Among these, Temporal Epistemic Logic [23], [19]’s In-

terpreted Systems, and Dynamic Epistemic Logic [2] have

been particularly fruitful. A recent line of research [11, 10,

9] compares these alternative frameworks, and [10] presents

a representation theorem that shows under which conditions

a temporal model can be represented as a dynamic one.

Thanks to this link, the two languages also become com-

parable, and one can merge ideas: for example, a new line
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of research explores the introduction of protocols into the

logic of public announcements PAL, as a way of modeling

informational processes (see [9]).

To the best of our knowledge, there are no similar re-

sults yet for multi-agent belief revision. One reason is

that dynamic logics of belief revision have only been well-

understood recently. But right now, there is work on both

dynamic doxastic logics [5, 3] and on temporal frameworks

for belief revision, with [14] as a recent example. The ex-

act connection between these two frameworks is not quite

like the case of epistemic update. In this paper we make

things clear, by viewing belief revision as priority update

over plausibility pre-orders. This correspondence allows

for similar language links as in the knowledge case, with

similar precise benefits.

We start in the next section with background about ear-

lier results and basic terminology. In section 2 we give the

main new definitions needed in the paper. Section 3 presents

the key temporal doxastic properties that we will work with.

In section 4 we state and prove our main result linking the

temporal and the dynamic frameworks, first for the special

case of total pre-orders and then in general. We also dis-

cuss some variations and extensions. In section 5 we intro-

duce formal languages, providing an axiomatization for our

crucial properties, and discussing some related definability

issues. We state our conclusions and mention some further

applications and open problems in the last section.

1 Introduction: background results

Epistemic temporal trees and dynamic epistemic logics

with product update are complementary ways of looking

at multi-agent information flow. Representation theorems

linking both approaches were proposed for the first time in

[6]. A nice presentation of these early results can be found

in [21, ch5]. We start with one recent version from [9],

referring the reader to that paper for a proof, as well as gen-

eralizations and variations.
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Definition 1.1 [Epistemic Models, Event Models and

Product Update]

• An epistemic modelM is of the form 〈W, (∼i)i∈N , V 〉
whereW $= ∅, for each i ∈ N , ∼i is a relation onW ,

and V : Prop → ℘(H).

• An event model ε = 〈E, (∼i)i∈N , pre〉 hasE $= ∅, and
for each i ∈ N , ∼i is a relation on W . Finally, there

is a precondition map pre : E → LEL, where LEL is

the usual language of epistemic logic.

• The product updateM⊗ε of an epistemicmodelM =
〈W, (∼′

i)i∈N , V 〉 with an event model ε is the model
〈E, (∼i)i∈N , pre〉, whose worlds are pairs (w, e) with
the world w satisfying the precondition of the event e,
and accessibilities defined as:

(w, e) ∼′
i (w′, e′) iff e ∼i e′, w ∼i w′

#

Intuitively epistemic models describe what agents cur-

rently know while the product update describe the new

multi-agent epistemic situation after some epistemic event

has taken place. Nice intuitive examples are in [1].

Next we turn to the epistemic temporal models intro-

duced by [23]. In what follows, Σ∗ is the set of finite se-

quences on any set Σ, which forms a branching ‘tree’.

Definition 1.2 [Epistemic Temporal Models] An epistemic

temporal model (ETL model for short) H is of the form

〈Σ, H, (∼i)i∈N , V 〉 where Σ is a finite set of events, H ⊆
Σ∗ and H is closed under non-empty prefixes. For each

i ∈ N , ∼i is a relation on H , and there is a valuation V :
Prop → ℘H . #

The following epistemic temporal properties drive [9]’s

main theorem.

Definition 1.3 Let H = 〈Σ, H, (∼i)i∈N , V 〉 be an ETL
model. H satisfies:

• Propositional stability if, whenever h is a finite
prefix of h′, then h and h′ satisfies the same proposi-

tion letters.

• Synchronicity if, whenever h ∼ h′, we have

len(h) = len(h′).

Let ∼∗ be the reflexive transitive closure of the relation⋃
i∈N ∼i:

• Local Bisimulation Invariance if, whenever

h ∼∗ h′ and h and h′ are epistemically bisimilar1, we

have h′e ∈ H iff he ∈ H .
1The reader is referred to Subsection 3.1 for a precise definition of

bisimulation invariance.

• Perfect Recall if, whenever ha ∼i h′b, we also
have h ∼i h′ .

• Local No Miracles if, whenever ga ∼i g′b and
g ∼∗ h ∼i h′, then for every h′a, hb ∈ H , we also
have h′a ∼i hb.

#

These properties describe the idealized epistemic agents

that are presupposed in dynamic epistemic logic:

Theorem 1.4 (van Benthem et al. [9]) Let H be an ETL
model,M an epistemic model, and the ‘protocol’P a set of

finite sequences of pointed events models closed under pre-

fixes. We write ⊗ for product update. Let Forest(M, P ) =⋃
!ε∈P M ⊗ $ε be the ‘epistemic forest generated by’M and

sequential application of the events in P . 2 The following
are equivalent:

• H is isomorphic to Forest(M, P ).

• H satisfies propositional stability, synchronicity, local

bisimulation invariance, Perfect Recall, and Local No

Miracles.

Thus, epistemic temporal conditions describing ideal-

ized epistemic agents characterize just those trees that arise

from performing iterated product update governed by some

protocol. [9] and [21, ch5] have details.

Our paper extends this analysis to the richer case of be-

lief revision, where plausibility orders of agents evolve as

they observe possibly surprising events. We prove two main

results, with variations and extensions:

Theorem 1.5 Let H be a doxastic temporal model, M a

plausibility model, $ε a sequence of event models, and⊗ pri-
ority update. The following are equivalent, where the no-

tions will of course be defined later:

1. H is isomorphic to the forest generated byM⊗ $ε

2. H satisfies propositional stability, synchronicity, in-

variance for bisimulation, as well as principles of Pref-

erence Propagation, Preference Revelation and Ac-

commodation.

Theorem 1.6 Preference Propagation, Preference Revela-

tion and Accommodation are definable in an extended dox-

astic modal language.

2For a more precise definition of this notion, see Section 2 below.
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2 Definitions

We now turn to the definitions needed for the simplest

version of our main representation theorem, postponing

matching formal languages to Section 5. In what follows,

letN = {1, . . . , n} be a finite set of agents.

2.1 Plausibility models, event models and
priority update

As for the epistemic case, we first introduce static mod-

els that encode the current prior (conditional) beliefs of

agents. These carry a pre-order ≤ between worlds encod-

ing a plausibility relation. Often this relation is taken to be

total, but when we think of elicited beliefs as multi-criteria

decisions, a pre-order allowing for incomparable situations

may be all we get [18]. We will therefore assume reflexivity

and transitivity, but not totality.

As for notation: we write a"b (‘indifference’) if a ≤ b
and b ≤ a, and a < b if a ≤ b and b #≤ a.

Definition 2.1 [Doxastic Plausibility Models] A doxastic

plausibility modelM = 〈W,
(%i)i∈N , V 〉 hasW #= ∅, for each i ∈ N , %i is a pre-order

onW , and V : Prop → ℘H . "

We now consider how such models evolve as agents ob-

serve events.

Definition 2.2 [Plausibility Event Model] A plausibil-

ity event model (event model, for short) ε is a tuple

〈E, (%i)i∈N , pre〉 with E #= ∅, each %i a pre-order on E,
and pre : E → L, where L is a doxastic language. 3 "

Definition 2.3 [Priority Update; [3]]

Priority update of a plausibility model M = 〈W, (%i

)i∈N , V 〉 and an event model ε = 〈E, (%i)i∈N , pre〉 is the
plausibility modelM⊗ ε = 〈W ′, (%′

i)i∈N , V ′〉 defined as
follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)}

• (w, e) %′
i (w′, e′) iff either e≺ie

′, or e"ie
′ and w %i

w′

• V ′((s, e)) = V (s)

Here, the new plausibility relation is still a pre-order. "

The idea behind priority update is that beliefs about the

last event override prior beliefs. If the agent is indifferent,

however, the old plausibility order applies. Moremotivation

can be found in [3, 8].

3This definition is incomplete without specifying the relevant language,

but all that follows can be understood by considering the formal language

as a ’parameter’.

2.2 Doxastic Temporal Models

Definition 2.4 [Doxastic Temporal Models] A doxastic

temporal model (DoTL model for short) H is of the form

〈Σ, H, (≤i)i∈N , V 〉, where Σ is a finite set of events, H ⊆
Σ∗ is closed under non-empty prefixes, for each i ∈ N , ≤i

is a pre-order onH , and V : Prop → ℘H . "

Our task is to identify just when a doxastic temporal

model is isomorphic to the ‘forest’ generated by a sequence

of priority updates:

2.3 Dynamic Models Generate Doxastic
Temporal Models

Definition 2.5 [DoTL model generated by updates]
Each initial plausibility model M = 〈W, (%i)i∈N , V 〉

and sequence of event models εj = 〈Ej , (%
j
i )i∈N , prej〉

yields a generated DoTL plausibility model 〈Σ, H, (≤i

)i∈N ,V〉 as follows:

• Let Σ :=
⋃m

i=1
ei.

• Let H1 := W and for any 1 < n ≤ m let Hn+1 :=
{(we1 . . . en)|(we1 . . . en−1) ∈ Hn andM ⊗ ε1 ⊗
. . . ⊗ εn−1 ! pren(en)}. Finally let H =⋃

1≤k≤m Hk.

• If h, h′ ∈ H1, then h ≤i h′ iff h %M
i h′.

• For 1 < k ≤ m, he ≤i h′e′ iff 1. he, h′e′ ∈ Hk, and

2. either e≺k
i e′, or e"k

i e′ and h ≤i h′.

• Let wh ∈ V(p) iff w ∈ V (p).

This is a temporal doxastic model as above. "

Now come the key doxastic temporal properties of our

idealized agents.

3 Frame Properties for Priority Updaters

We first introduce the notion of bisimulation, modulo a

choice of language.

3.1 Bisimulation Invariance

Definition 3.1 [≤-Bisimulation]
LetH andH′ be twoDoTL plausibility models 〈H, (≤1

, . . . ,≤n), V 〉 and 〈H ′, (≤′
1, . . . ,≤

′
n), V ′〉 (for simplicity,

assume they are based on the same alphabet Σ). A relation
Z ⊆ H×H ′ is a≤-Bisimulation if, for all h ∈ H , h′ ∈ H ′,

and all ≤i in (≤1, . . . ,≤n),

(prop) h and h′ satisfy the same proposition letters,
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(zig) If hZh′ and h ≤i j, then there exists j′ ∈ H ′ such that

jZj′ and h′ ≤′
i j′,

(zag) If hZh′ and h′ ≤′
i j′, then there exists j ∈ H such that

jZj′ and h ≤i j.

If Z is a ≤n-bisimulation and hZh′, we will say that h
and h′ are ≤-bisimilar. !

Definition 3.2 [≤-Bisimulation Invariance] A DoTL
model H satisfies ≤-bisimulation invariance if, for all

≤-bisimilar histories h, h′ ∈ H , and all events e, h′e ∈ H
iff he ∈ H . !

3.2 Agent-Oriented Frame Properties

In the following we drop agent labels and the “for each

i ∈ N” for the sake of clarity. Also, when we write ha we
will always assume that ha ∈ H . We will make heavy use
of the following notion:

Definition 3.3 [Accommodating Events]

Two events a, b ∈ Σ are accommodating if, for all

ga, g′b, (g ≤ g′ ↔ ga ≤ g′b) and similarly for ≥, i.e.,
a, b preserve and anti-preserve plausibility.

!

Definition 3.4 Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL
model. H satisfies:

• Propositional stability if, whenever h is a finite
prefix of h′, then h and h′ satisfy the same proposition

letters.

• Synchronicity if, whenever h ≤ h′, we have

len(h) = len(h′).

The following three properties trace the belief revising

behavior of agents in doxastic trees.

• Preference Propagation if, whenever ja ≤ j′b,
then h ≤ h′ implies ha ≤ h′b.

• Preference Revelation if, whenever jb ≤ j′a,
then ha ≤ h′b implies h ≤ h′.

• Accommodation if, a and b are accommodating
whenever both ja ≤ j′b and ha '≤ h′b.

!

These properties - and in particular the last one - are some-

what trickier than in the epistemic case, reflecting the pecu-

liarities of priority update in settings where incomparability

is allowed. But we do have:

Fact 3.5 If ≤ is a total pre-order and H satisfies Prefer-

ence Propagation and Preference Revelation, thenH satis-

fies Accommodation.

Proof. From left to right. Assume that g ≤ g′ and ja ≤ j′b.
By Preference Propagation, ga ≤ g′b. Now assume that

ha '≤ h′b. Then by totality, h′b ≤ ha. Since g ≤ g′, it
follows by Preference Propagation that gb ≤ g′a.
From right to left, assume that gb ≤ g′a and that ja ≤

j′b. It follows by Preference Revelation that g ≤ g′. Now
assume that ga ≤ g′b (1) and ha '≤ h′b (2). From (2), it

follows by totality that h′b ≤ ha (3). But if (3) and (1),
then by Preference Revelation we have g ≤ g′. QED

We can also prove a partial converse without totality:

Fact 3.6 If H satisfies Accommodation, it satisfies Prefer-

ence Propagation.

Proof. Let ja ≤ j′b (1) and h ≤ h′ (2). Assume that

ha '≤ h′b. Then by Accommodation, for every ga, g′b, g ≤
g′ ↔ ga ≤ g′b. So, in particular, h ≤ h′ ↔ ha ≤ h′b. But
since h ≤ h′, we get ha ≤ h′b: a contradiction. QED

No similar result holds for Preference Revelation. An

easy counter-example shows that, even when≤ is total:

Fact 3.7 Accommodation does not imply Preference Reve-

lation.

4 The Main Representation Theorem

We start with a warm-up case, taking plausibility to be a

total pre-order.

4.1 Total pre-orders

Theorem 4.1 Let H be a total doxastic-temporal model,

M a total plausibility model, "ε a sequence of total event
models, and let ⊗ stand for priority update. The following

are equivalent:

• H is isomorphic to the forest generated byM⊗ "ε.

• H satisfies propositional stability, synchronicity,

bisimulation invariance, Preference Propagation, and

Preference Revelation.

Proof.

Necessity We first show that the given conditions are

indeed satisfied by any DoTL model generated through

successive priority updates along some given protocol se-

quence. Here, Propositional stability and Synchronicity are

straightforward from the definition of generated forests.

49



Preference Propagation Assume that ja ≤ j′b (1). It
follows from (1) plus the definition of priority update that

a ≤ b (2). Now assume that h ≤ h′ (3). It follows from (2),

(3) and priority update that ha ≤ h′b.

Preference Revelation Assume that jb ≤ j′a (1). It fol-
lows from (1) and the definition of priority update that b ≤ a
(2). Now assume ha ≤ h′b (3). By the definition of priority
update, (3) can happen in two ways. Case 1: a < b (4). It
follows from (4) by the definition of < that b "≤ a (5). But
(5) contradicts (2). We are therefore in Case 2: a#b (6) and
h ≤ h′ (7). But (7) is precisely what we wanted to show.

Note that we did not make use of totality here.

Sufficiency Given a DoTL modelM, we first show how

to construct a DDL model, i.e., a plausibility model and a
sequence of event models.

Construction Here is the initial plausibility modelM =
〈W, (%i)i∈N , V̂ 〉:

• W := {h ∈ H | len(h) = 1}.

• Set h %i h′ iff ≤i.

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

Now we construct the j-th event model εj =
〈Ej , (%

j
i )i∈N , prej〉:

• Ej := {e ∈ Σ | there is a history he ∈
H with len(h) = j}

• For each i ∈ N , set a%j
i b iff there are ha, h′b ∈ H

such that len(h) = len(h) = j and ha ≤i h′b.

• For each e ∈ Ej , let prej(e) be the formula that char-
acterizes the set {h | he ∈ H and len(h) = j}. By
general modal logic, bisimulation invariance guaran-

tees that there is such a formula, though it may be an

infinitary one in general.

Now we show that the construction is correct in the fol-

lowing sense:

Claim 4.2 (Correctness) Let ≤ be the plausibility relation

in the given doxastic temporal model. Let !F
DDL be the

plausibility relation in the forest induced by priority update

over the just constructed plausibility model and matching

sequence of event models. We have:

h ≤ h′ iff h !F
DDL h′.

Proof of the claim The proof is by induction on the length

of histories. The base case is obvious from the construction

of our initial modelM. Now for the induction step. As for

notation we will write a ≤ b for a%n
i b with n the length for

which the claim has been proved, and i an agent.

From DoTL to Forest(DDL) Assume that h1a ≤ h2b
(1). It follows that in the constructed event model a ≤ b (2).
Case 1: a < b. By priority update we have h1a !F

DDL h2b.
Case 2: b ≤ a (3). This means that there are h3b, h4a such
that h3b ≤ h4a. But then by Preference Revelation and
(1) we have h1 ≤ h2 (in the doxastic temporal model). It

follows by the inductive hypothesis that h1 !F
DDL h2. But

then by priority update, since by (2) and (3) a and b are
indifferent, we have h1a !F

DDL h2b.

From Forest(DDL) to DoTL Next let h1a !F
DDL

h2b. The definition of priority update has two clauses. Case
1: a < b. By definition, this implies that b "≤ a. But then by
the above construction, for all histories h3, h4 ∈ H we have

h3b "≤ h4a. In particular we have h2b "≤ h1a. But then by
totality4, h1a ≤ h2b. Case 2: a#b (4) and h1 !F

DDL h2.

For a start, by the inductive hypothesis, h1 ≤ h2 (5). By

(4) and our construction, there are h3a, h4b with h3a ≤ h4b
(6). But then by Preference Propagation, (5) and (6) imply

that we have h1a ≤ h2b. QED

Next, we turn to the general case of pre-orders, allowing

incomparability.

4.2 The general case

While the argument went smoothly for total pre-orders,

it gets somewhat more interesting when incomparability en-

ters the stage. In the case of pre-orders we need the addi-

tional axiom of Accommodation as stated below:

Theorem 4.3 Let H be a doxastic-temporal model, M a

plausibility model, "ε be a sequence of event models while⊗
is priority update. The following assertions are equivalent:

• H is isomorphic to the forest generated byM⊗ "ε,

• H satisfies bisimulation invariance, propositional sta-

bility, synchronicity, Preference Revelation and Ac-

commodation.

By Fact 3.6, requiring Accommodation also gives us

Preference Propagation.

Proof.

Necessity of the conditions The verification of the condi-

tions in the preceding subsection did not use totality. So we

concentrate on the new condition:

4Note that this is the only place in which we make use of totality.
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Accommodation Assume that ja ≤ j′b (1). It follows
by the definition of priority update that a ≤ b (2). Now let
ha "≤ h′b (3). This implies by priority update that a "< b (4).
By definition, (2) and (4) means that a#b (5). Now assume
that g ≤ g′ (6). It follows from (5), (6) and priority update
that ga ≤ g′b. For the other direction of the consequent
assume instead that g "≤ g′ (7). It follows from (5), (7) and
priority update that ga "≤ g′b.

Sufficiency of the conditions Given a DoTL model, we
again construct aDDL plausibility model plus sequence of
event models:

Construction The plausibility model M = 〈W, (%i

)i∈N , V̂ 〉 is as follows:

• W := {h ∈ H | len(h) = 1},

• Set h %i h′ whenever≤i,

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

We construct the j-th event model εj =
〈Ej , (%

j
i )i∈N , prej〉 as follows:

• Ej := {e ∈ Σ | there is a history of the form he ∈
H with len(h) = j}

• For each i ∈ N , define a%j
i b iff either (a) there are

ha, h′b ∈ H such that len(h) = len(h) = j and
ha ≤i h′b, or (b) [a new case] a and b are accom-
modating, and we put a # b (i.e. a ≤ b and b ≤ a).

• For each e ∈ Ej , let prej(e) be the formula that char-
acterizes the set {h | he ∈ H and len(h) = j}. Bisim-
ulation invariance guarantees that there is always such

a formula (maybe involving an infinitary syntax).

Again we show that the construction is correct in the fol-

lowing sense:

Claim 4.4 (Correctness) Let ≤ be the plausibility relation

in the doxastic temporal model. Let !F
DDL be the plausi-

bility relation in the forest induced by successive priority

updates of the plausibility model by the sequence of event

models we constructed. We have:

h ≤ h′ iff h !F
DDL h′.

Proof of the claim We proceed by induction on the length

of histories. The base case is clear from our construction of

the initial modelM. Now for the induction step, with the

same simplified notation as earlier.

FromDoTL to Forest(DEL) There are two cases:

Case 1. ha ≤ h′b, h ≤ h′. By the inductive hypothesis,

h ≤ h′ implies h !F
DDL h′ (1). Since ha ≤ h′b, it follows

by construction that a ≤ b (2). It follows from (1) and (2)
that by priority update ha !F

DDL h′b.

Case 2. ha ≤ h′b, h "≤ h′. Clearly, then, a and b are not
accommodating and thus the special clause has not been

used to build the event model, though we do have a ≤ b
(1). By the contrapositive of Preference Revelation, we also

conclude that for all ja, j′b ∈ H , we have j′b "≤ ja (2).
Therefore, our construction gives b "≤ a (3), and we con-
clude that a < b (4). But then by priority update, we get
ha !F

DDL h′b.

From Forest(DEL) to DoTL We distinguish again

two relevant cases.

Case 1. ha !F
DDL h′b, h !F

DDL h′. By definition of pri-

ority update, ha !F
DDL h′b implies that a ≤ b (1). There

are two possibilities. Case 1: The special clause of the con-

struction has been used, and a, b are accommodating (2).
By the inductive hypothesis, h !F

DDL h′ implies h ≤ h′

(3). But (2) and (3) imply that ha ≤ h′b. Case 2: Clause (1)
holds because for some ja, j′b ∈ H , in the DoTL model,
ja ≤ j′b (4). By the inductive hypothesis, h !F

DDL h′

implies h ≤ h′ (5). Now, it follows from (4), (5) and Pref-

erence Propagation that ha ≤ h′b.

Case 2. ha !F
DDL h′b, h "!F

DDL h′. Here is where we

put our new accommodation clause to work. Let us label

our assertions: h "!F
DDL h′ (1) and ha !F

DDL h′b (2). It
follows from (1) and (2) by the definition of priority update

that a < b (3), and hence, by definition b "≤ a (4). Clearly, a
and b are not accommodating (5): for otherwise, we would
have had a#b, and hence b ≤ a, contradicting (4). There-
fore, (3) implies that there are ja, j′b ∈ H with ja ≤ j′b
(6). Now assume for contradictio that (in theDoTLmodel)
ha "≤ h′b (7). It follows from (6) and (7) by Accommo-

dation that a and b are accommodating, contradicting (5).
Thus we have ha ≤ h′b. QED

Given a doxastic temporal model describing the evolu-

tion of the beliefs of a group of agents, we have determined

whether it could have been generated by successive ‘local’

priority updates of a plausibility model. Of course, further

scenarios are possible, e.g., bringing in knowledge as well.

We discuss some extensions in the next subsection.

4.3 Extensions and variations

4.3.1 Unified plausibility models

There are two roads to merging epistemic indistinguishabil-

ity and doxastic plausibility. The first works with a plau-
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sibility order and an epistemic indistinguishability relation,

explaining the notion of belief with a mixture of the two.

Baltag and Smets [3] apply product update to epistemic in-

distinguishability and priority update to the plausibility re-

lation. A characterization for the doxastic epistemic tempo-

ral models induced in this way follows from van Benthem

et al. [9] Theorem 1.4 plus Theorem 4.3 of previous sub-

section (or its simpler counterpart for total orders). All this

has the flavor of working with prior beliefs and information

partitions, taking the posteriors to be computed from them.

However there are also reasons for working with (poste-

rior) beliefs only (see e.g. [22]). Indeed, Baltag and Smets

[3] take this second road, using unified ‘local’ plausibility

models with just one explicit relation !. We briefly show

how our earlier results transform to this setting. In what

follows, we write a ∼= b iff a ! b and b ! a.

Definition 4.5 The priority update of a unified plausibility

model M = 〈W, (!i)i∈N , V 〉 and a !-event model ε =
〈E, (!i)i∈N , pre〉 is the unified plausibility model M ⊗
ε = 〈W ′, (!′

i)i∈N , V ′〉 constructed as follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)},

• (w, a) !′
i (w′, b) iff either 1. a !i b, b ' !a and w !

w′ ∨ w′ ! w or 2. a !i b, b ! a and w ! w′,

• V ′((s, e)) = V (s).

"

Here are our familiar key properties in this setting:

Agent revision properties in terms of!i

• !-Perfect Recall if, whenever ha ! h′b we have h !

h′ ∨ h′ ! h.

• !-Preference Propagation if, wheneverh!h′ and ja!

j′b then ha ! h′b.

• !-Preference Revelation if, whenever ha ! h′b and
jb ! j′a, also h ! h′.

• !-Accommodation if, whenever (ja!j′b, h′!h and
ha ' !h′b), for all ga, g′b ∈ H (g ! g′ ↔ ga ! g′b),
and for all g′a, gb ∈ H (g ! g′ ↔ gb ! g′a).

The last axiom is slightly weaker than Accommodation.

The following result is proved in the extended version of

this paper.

Theorem 4.6 Let H be a unified doxastic-temporal model,

M a unified plausibility model, #ε be a sequence of unified
event models, while ⊗ is priority update. The following as-

sertions are equivalent:

• H is isomorphic to the forest generated byM⊗ #ε,

• H satisfies bisimulation invariance, propositional sta-

bility, synchronicity, !-Perfect Recall, !-Preference

Propagation, !-Preference Revelation and !-

Accommodation.

Our next source of variation is an issue that we have left

open throughout our analysis so far, which may have both-

ered some readers.

4.3.2 Bisimulations and pre-condition languages

Our definition of event models presupposed a language for

the preconditions, and correspondingly, the right notion of

bisimulation in our representation results should matching

(at least, on finite models) the precondition language used.

For instance, if the precondition language contains a belief

operator scanning the intersection of a plausibility ≤i rela-

tion and an epistemic indistinguishability relation ∼, then
the zig and zag clauses should not only apply to ≤i and

∼i separately, but also to ≤i ∩ ∼i. And things get even

more complicated if we allow temporal operators in our lan-

guages (cf. [10]). We do not commit to any specific choice

here, since the choice of a language seems orthogonal to

our main concerns. But we will discuss formal languages in

the next section, taking definability of our major structural

constraints as a guide.

Finally, our results can be generalized by including one

more major parameter in describing processes:

4.3.3 Protocols

So far we have assumed that the same sequences of events

were executable uniformly anywhere in the initial doxastic

model, provided the worlds fulfilled the preconditions. This

strong assumption is lifted in [10, 9], who allow the pro-

tocol, i.e., the set of executable sequences of events form-

ing our current informational process, to vary from state to

state. Initially, they still take the protocol to be common

knowledge, but eventually, they allow for scenarios where

agents need not know which protocol is running. These

variations change the complete dynamic-epistemic logic of

the system. It would be of interest to extend this work to

our extended doxastic setting.

5 Dynamic Languages and Temporal Doxas-

tic Languages

Our emphasis so far has been on structural properties of

models. To conclude, we turn to the logical languages that

can express these, and hence also, the type of doxastic rea-

soning our agents can be involved with.
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5.1 Dynamic doxastic language

We first look at a core language that matches dynamic

belief update.

5.1.1 Syntax

Definition 5.1 [Dynamic Doxastic-Epistemic language]

The language of dynamic doxastic languageDDEL is de-
fined as follows:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈i〉φ | Eφ | 〈ε, e〉φ

where i ranges over overN , p over a countable set of propo-
sition letters Prop, and (ε, e) ranges over a suitable set of
symbols for event models. #

All our dynamic doxastic logics will be interpreted on

the following models.

5.1.2 Models

Definition 5.2 [Epistemic Plausibility Models] An epis-

temic plausibility model M = 〈W, (%i)i∈N , (∼i)i∈N , V 〉
has W '= ∅, and for each i ∈ N , %i is a pre-order on

W , and ∼i any relation, while V : Prop → ℘H . #

Definition 5.3 [∼,%-event model] An epistemic plausibil-
ity event model (∼,%-event model for short) ε is of the form
〈E, (%i)i∈N , (∼i)i∈N , pre〉 where E '= ∅, for each i ∈ N ,
%i is a pre-order on E and ∼i is a relation on W . Also,

there is a precondition function pre : E → DDEL
#

Definition 5.4 [Priority update] The priority update of

an epistemic plausibility model M = 〈W, (%i)i∈N , (∼i

)i∈N , V 〉 and a ∼,≺-event model ε = 〈E, (%i)i∈N , (∼i

)i∈N , pre〉 is the plausibility model M ⊗ ε = 〈W ′, (%′
i

)i∈N , V ′〉 whose structure is defined as follows:

• W ′ = {(w, e) ∈ W × E | M, w ! pre(e)}

• (w, e) %′
i (w′, e′) iff e≺ie

′, or e.ie
′ and w %i w′

• (w, e) ∼′
i (w′, e′) iff e ∼i e′ and w ∼i w′

• V ′((s, e)) = V (s).

The result of the update is an epistemic plausibility model.

#

5.1.3 Semantics

Here is how we interpret theDDE(L) language. A pointed
event model is an event model plus an element of its do-

main. To economize on notation we use event symbols in

the semantic clause. We write pre(e) for preε(e) when it
is clear from context.

Definition 5.5 [Truth definition]

LetKi[w] = {v | w ∼i v}.

M, w ! p iff w ∈ V (p)
M, w ! ¬φ iff M, w '! φ
M, w ! φ ∨ ψ iff M, w ! φ orM, w ! ψ
M, w ! 〈≤i〉φ iff ∃v such that w %i v andM, v ! φ
M, w ! 〈i〉φ iff ∃v such that v ∈ Ki[w] andM, v ! φ
M, w ! Eφ iff ∃v ∈ W such thatM, v ! φ
M, w ! 〈ε, e〉φ iff M, w ! pre(e) andM× ε, (w, e) ! φ

#

The knowledge operator Ki and the universal modality A

are defined as usual.

5.1.4 Reduction axioms

The methodology of dynamic epistemic and dynamic dox-

astic logics revolves around reduction axioms. On top

of some complete static base logic, these fully describe

the dynamic component. Here is well-known Action −
Knowledge reduction axiom of [2]:

[ε, e]Kiφ ↔ (pre(e) →
∧

{Ki[ε, f ]φ : e ∼i f}) (1)

Similarly, here are the key reduction axioms for 〈ε, e〉〈≤i〉
with priority update:

Proposition 5.6 The following dynamic-doxastic principle

is sound for plausibility change:

〈ε, e〉〈≤i〉φ ↔

(pre(e) ∧ (〈≤i〉
∨

{〈f〉φ : e.if}∨

E
∨

{〈g〉φ : e <i g}))

(2)

The crucial feature of such a dynamic ‘recursion step’ is

that the order between action and belief is reversed. This

works because, conceptually, the current beliefs already

pre-encode the beliefs after some specified event. In the

epistemic setting, principles like this also reflect agent prop-

erties of Perfect Recall and No Miracles [11]. Here, they

rather encode radically ‘event-oriented’ revision policies,

and the same point applies to the principles we will find

later in a doxastic temporal setting.

Finally for the existential modality 〈ε, e〉E we note the
following fact:
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Proposition 5.7 The following axiom is valid for the exis-

tential modality:

〈ε, e〉Eφ ↔ (pre(e) ∧ (E
∨

{〈f〉φ : f ∈ Dom(ε)})) (3)

We do not pursue further issues of axiomatic complete-

ness here, since we are just after the model theory of our

dynamic and temporal structures.

5.2 Doxastic epistemic temporal language

Next epistemic-doxastic temporal models are simply our

old doxastic temporal models H extended with epistemic

accessibility relations∼i.

5.2.1 Syntax

Definition 5.8 [Doxastic Epistemic Temporal Languages]

The language of DETL is defined by the following in-
ductive syntax:

φ := p | ¬φ | φ ∨ φ | 〈e〉φ | 〈e−1〉φ | 〈≤i〉φ | 〈i〉φ | Eφ

where i ranges over N , e over Σ, and p over proposition
letters Prop. #

5.2.2 Semantics

The language DETL is interpreted over nodes h in our

trees (cf. [11]):

Definition 5.9 [Truth definition]

LetKi[h] = {h′ | h ∼i h′}.

H, h ! p iff h ∈ V (p)
H, h ! ¬φ iff H, h )! φ
H, h ! φ ∨ ψ iff H, h ! φ orH, h ! ψ
H, h ! 〈e〉φ iff ∃h ′ ∈ H s.t. h′ = he andH, h′ ! φ
H, h ! 〈e−1〉φ iff ∃h ′ ∈ H s.t. h′e = h andH, h′ ! φ
H, h ! 〈≤i〉φ iff ∃h ′ s.t. h ≤i h′ andH, h′ ! φ
H, h ! 〈i〉φ iff ∃h ′ s.t. h′ ∈ Ki[h] andH, h′ ! φ
H, h ! Eφ iff ∃h ′ ∈ H s.t. H, h′ ! φ

#

Now we have the right syntax to analyze our earlier struc-

tural conditions.

5.3 Defining the frame conditions

We will prove semantic correspondence results (cf. [13])

for our crucial properties using somewhat technical axioms

that simplify the argument. Afterwards, we present some re-

formulations whose meaning for belief-revising agents may

be more intuitive to the reader:

5.3.1 The key correspondence result

Theorem 5.10 (Definability) Preference Propagation,

Preference Revelation and Accommodation are definable in

the doxastic-epistemic temporal languageDETL.

• H satisfies Preference Propagation iff the following

axiom is valid:

E〈a〉〈≤i〉〈b
−1〉+ →

((〈≤i〉〈b〉p ∧ 〈a〉q)

→ 〈a〉(q ∧ 〈≤i〉p)

(PP )

• H satisfies Preference Revelation iff the following ax-

iom is valid:

E〈b〉〈≤i〉〈a
−1〉+ →

(〈a〉〈≤i〉(p ∧ 〈b−1〉+) → 〈≤i〉〈b〉p)
(PR)

• H satisfies Accommodation iff the following axiom is

valid:

E〈a〉〈≤i〉〈b
−1〉+

∧ E [〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉+) )

∧ [a] (p1 → [≤i]¬p2)]

→ ( (〈≤i〉〈b〉q → [a]〈≤i〉q)

∧ (〈a〉〈≤i〉(r ∧ 〈b−1〉+) → 〈≤i〉〈b〉r)

(AC)

Proof. We only prove the case of Preference Propagation,

the other two are in the extended version of the paper. We

drop agent labels for convenience.

(PP ) characterizes Preference Propagation We first

show that (PP ) is valid on all models H based on

preference-propagating frames. Assume that H, h !

E〈a〉〈≤i〉〈b−1〉+ (1). Then there are ja, j′b ∈ H such

that ja ≤ j′b (2). Now let H, h ! (〈≤〉〈b〉p ∧ 〈a〉q)
(3). Then there is h′ ∈ H such that h ≤ h′ (4) and

H, h′ ! 〈b〉p (5), while also H, ha ! q (6). We must show
that H, h " 〈a〉(q ∧ 〈≤i〉p) (7). But, from (2),(4),(6) and
Preference Propagation, we get ha ≤ h′b, and the conclu-
sion follows by the truth definition.

Next, we assume that axiom (PP ) is valid on a doxas-
tic temporal frame, that is, true under any interpretation of

its proposition letters. So, assume that ja ≤ j′b (1), and
also h ≤ h′ (2). Moreover, let ha, h′b ∈ H (3). First note

that (1) automatically verifies the antecedent of (PP ) in any
node of the tree. Next, we make the antecedent of the sec-

ond implication in (PP ) true at h by interpreting the propo-
sition letter p as just the singleton set of nodes h′b, and q as
just ha (4). Since (PP ) is valid, its consequent will also
hold under this particular valuation V . Explicitly we have
H, V, h ! 〈a〉(q ∧ 〈≤i〉p). But spelling out what p, q mean
there, we get just the desired conclusion that ha ≤ h′b. QED
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The preceding correspondence argument is really just a

Sahlqvist substitution case (cf. [13]), and so are the other

two. We do not prove a further completeness result, but will

show one nice derivation, as a syntactic counterpart to our

earlier Fact 3.5.

E [〈a〉 (ψ ∧ E (φ ∧ 〈b−1〉$) ) ∧ [a] (ψ → [≤i]¬φ)]

→ (〈a〉〈≤i〉(φ ∧ 〈b−1〉$) → 〈≤i〉〈b〉φ)
(F )

Here is an auxiliary correspondence observation:

Fact 5.11 On total doxastic temporal models the following

axiom is valid:

〈a〉(ψ ∧ E (φ ∧ 〈b−1〉$)) →

( 〈a〉(ψ ∧ 〈≤i〉φ) ∨ E〈b〉(φ ∧ 〈≤i〉(ψ ∧ 〈a−1〉$))
(Tot)

Now we can state an earlier semantic fact in terms of

axiomatic derivability in some obvious minimal system for

the languageDETL:

Fact 5.12

• ( ((PP ) ∧ (F )) → (AC)

• ( ((PR) ∧ (Tot)) → (F )

We leave the simple combinatorial details to the ex-

tended version of this paper. We now get an immediate

counterpart to Fact 3.5:

Corollary 5.13

( ((PP ) ∧ (PR) ∧ (Tot)) → (AC) (4)

5.3.2 Two intuitive explanations

Here are two ways to grasp the intuitive meaning of our

technical axioms.

Reformulation with safe belief. An intermediate notion

of knowledge first considered by [24] has been argued for

doxastically as safe belief by [3] as describing those beliefs

we do not give up under true new information. The safe be-

lief modality !≥ is just the universal dual of the existential

modality 〈≥〉 scanning the converse of ≤. Without going
into details of its logic (e.g., safe belief is positively, but not

negatively introspective), here is how we can rephrase our

earlier axiom:

• H satisfies Preference Propagation iff the following

axiom is valid onH:

E〈a〉〈≥〉〈b−1〉$ → (〈a〉!≥ip → !≥i [b]p) (PP ’)

A similar reformulation is easy to give for Preference

Revelation. These principles reverse action modalities and

safe belief much like the better-known Knowledge-Action

interchange laws in the epistemic-temporal case. We invite

the reader to check their intuitive meaning in terms of ac-

quired safe beliefs as informative events happen.

Analogies with reduction axioms Another way to under-

stand the above axioms in their original format with exis-

tential modalities is their clear analogy with the reduction

axiom for priority update. Here are two cases juxtaposed:

〈ε, e〉〈≤i〉p ↔

(pre(e) ∧ (〈≤i〉
∨

{〈f〉p : e+if}

∨ E
∨

{〈g〉p : e <i g}))

(2)

E〈a〉〈≤i〉〈b
−1〉$ →

(〈≤i〉〈b〉p → [a]〈≤i〉p)
(PP )

E〈b〉〈≤i〉〈a
−1〉$ →

(〈a〉〈≤i〉(p ∧ 〈b−1〉$) → 〈≤i〉〈b〉p)
(PR)

Family resemblance is obvious, and indeed, (PP ) and
(PR) may be viewed as the two halves of the reduction
axiom, transposed to the more general setting of arbitrary

doxastic-temporal models.

5.4 Variations and extensions of the dox-
astic temporal language

5.4.1 Weaker languages

The above doxastic-temporal language is by no means the

only reasonable one. Weaker forward-looking modal frag-

ments also make sense, dropping both converse and the ex-

istential modality. But they do not suffice for the purpose of

our correspondence.

Proposition 5.14 (Undefinability)

Preference Propagation, Preference Revelation and

Accommodation are not definable in the forward looking

fragment ofDETL.

Proof. The reason is the same in all cases: we show that

these properties are not preserved under taking bounded p-
morphic images. The Figure gives an indication how this

works concretely. QED
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Figure 1. Preference Propagation is not pre-

served under p-morphic images

5.4.2 Richer languages

But there is also a case to be made for richer languages. For

instance, if we want to define the frame property of syn-

chronicity, we must introduce an equilevel relation in our

models, with a corresponding modality for it. While ex-

pressing synchronicity then becomes easy, this move is dan-

gerous in principle. Van Benthem and Pacuit [11] point at

the generally high complexity of tree logics when enriched

with this expressive power.

Likewise, finer epistemic and doxastic process descrip-

tions require further temporal modalities, such as “Since”

and “Until”, beyond the basic operators we used for match-

ing the needs of dynamic doxastic logic directly.

Finally, there may be even more urgent language exten-

sions for doxastic temporal logic, having to do with our very

notion of belief. We have emphasized the notion of safe be-

lief, which scans the plausibility relation ≥ as an ordinary

modality. This notion can be used to define the more stan-

dard notion of belief as truth in all most plausible worlds:

cf. [15]. But it has been argued recently by [3], and also by

[16] that we really want a more ‘entangled’ version of the

latter notion as well, referring to the most plausible worlds

inside the epistemically accessible ones. Such a notion of

‘posterior belief’ has the following semantics:

H, h ! Biφ iff ∀h ′ ∈ Min(Ki[h],≤i) we haveH, h′ ! φ

Technically, expressing this requires an additional inter-

section modality. While this extension loses some typical

modal properties, it does satisfy reduction axioms in the for-

mat discussed here: cf. [21].

6 Conclusion

Agents that update their knowledge and revise their be-

liefs can behave very differently over time. We have deter-

mined the special constraints that capture agents operating

with the ‘local updates’ of dynamic doxastic logic. This

took the form of some representation theorems that state

just when a general doxastic temporal model is equivalent

to the forest model generated by successive priority updates

of an initial doxastic model by a protocol sequence of event

models. We have also shown how these conditions can be

defined in an appropriate extended modal language, making

it possible to reason formally about agents engaged in such

updates and revisions. Our methods are like those of exist-

ing epistemic work, but the doxastic case came with some

interesting new notions.

As for open problems, the paper has indicated several

technical issues along the way, e.g., concerning the ex-

pressive power of different languages over our models and

their complexity effects (cf. [11] for the epistemic case).

In particular, we have completely omitted issues of com-

mon knowledge and common belief, even though these are

known to generate complications [12].

But from where we are standing now, we see several

larger directions to pursue:

• A systematic “protocol logic” of axiomatic complete-
ness for constrained revision processes, analogous to

the purely epistemic theory of observation and conver-

sation protocols initiated in [9],

• A comparison of our ‘constructive’ DDL-inspired
approach to DTL universes with the more abstract

AGM -style postulational approach of [14],

• A theory of variation for different sorts of agents with
different abilities and tendencies, as initiated in [21],

• An analysis of knowledge and belief dynamics in
games [7, 17, 4]

• Connections with formal learning theory over

epistemic-doxastic temporal universes (cf. [20]).
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