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Welcome to Introduction to Formal Epistemology. The course will consist of five
90 minute lectures roughly organized as follows:

Day 1: Introduction, Motivation and Basic Models of Knowledge

Day 2: Knowledge in Groups and Group Knowledge

Day 3: Reasoning about Knowledge and ........

Day 4: Logical Omniscience and Other Problems

Day 5: Reasoning about Knowledge in the Context of Social Software

This document contains an extended outline of the course including a bibliography.
The idea of this reader is to provide a bird’s eye view of the literature and to list
the main examples, definitions and theorems we will use throughout the course.
As a consequence, expository text will be kept to a minimum. The website for
the course is

staff.science.uva.nl/∼epacuit/formep esslli.html

On this website you will find the lecture notes and slides (updated each day).
Enjoy the course and please remember to ask questions during the lecture, point
out any mistakes and/or omitted references in this text.

The goal of this course is to introduce students to the field of formal episte-
mology. Although formal methods will be used, the focus of the course is not
technical but rather on intuitions and the main conceptual issues (such as the
logical omniscience problem). As such, there are no prerequisites for this course
except some mathematical maturity.

Remark: The text here is preliminary and may be updated before the course.
Please check the website for the most up-to-date version.
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1 Introduction and Motivation

‘Formal epistemology’ is an umbrella term used to describe a field focused on
formal methods from logic, probability and computability theory to study tradi-
tional epistemological problems. Researchers such as J. Hintikka, D. Lewis, R.
Stalnaker, T. Williamson and others have repeatedly demonstrated that formal
tools can guide and develop important philosophical insights. Nonetheless, much
of the research on formal models of knowledge and beliefs during the latter half of
the 20th century was motivated by applications in Game Theory and Computer
Science. Recently, the focus has shifted back to Philosophy with an interest in
“bridging the gap between formal and mainstream epistemology” (cf. Hendricks
(2006) for a collection of essays on this topic).

For this course we will set our sights on yet a different domain: the Social
Sciences. The main idea is that the formal models developed to reason about the
knowledge and beliefs of a group of agents can be used to deepen our understanding
of social interaction and aid in the design of successful social institutions. Our
goal for this course is to provide a critical introduction to these formal models of
(multi-agent) knowledge and beliefs focusing on how such models can fit into a
larger theory of Social Software (Parikh, 2002) as outlined in (Parikh, 2007b,a)
and (Pacuit and Parikh, 2006).

1.1 Social Software

Social software is an emerging interdisciplinary field devoted to the design and
analysis of social procedures. First discussed by Parikh (2002), social software
has recently gained the attention of a number of different research communities,
including computer scientists, game theorists, social choice theorists and philoso-
phers. The key idea is to analyze social procedures as rigorously and systematically
as computer software is pursued by computer scientists. The main objective is a
new theory of social interaction that is informed by results from the disciplines
listed above and providing new insights for the analysis of social procedures.

Social procedures, such as fair division algorithms (see Brams and Taylor,
1996) or voting procedures (see Brams and Fishburn, 1994; Saari, 2001), have
been analyzed in detail by mathematicians and political scientists. The analysis
typically focuses on comparisons between the mathematical properties of various
procedures. This is certainly a crucial part of social software, but one of the main
goals of social software is to place these issues in the context of a larger discussion1

1This is not to say that discussions on fair division algorithms and voting procedures do not
pay attention to the “larger picture”. The point is that techniques from logics of programs and
logics of knowledge can be useful in this discussion.
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on “designing a society ” or more modestly, “designing a good social procedure”.
When it comes to people taking part in social algorithms, a number of factors
enter. They are

• The Logical Structure of the Procedure

• Communication and Knowledge

• Preferences and Incentives

• Co-ordination and Conflict

• Culture and Tradition

See (Parikh, 2007a) for an extended discussion of this point.

1.2 Motivating Examples

The following examples represent the type of situations we would like our formal
models of knowledge and belief to be able to handle.

Knowledge Based Obligations

Example 1: Uma is a physician whose neighbour is ill. Uma does not know
and has not been informed. Uma has no obligation (as yet) to treat the neighbour.

Example 2: Uma is a physician whose neighbour Sam is ill. The neighbour’s
daughter Ann comes to Uma’s house and tells her. Now Uma does have an obli-
gation to treat Sam, or perhaps call in an ambulance or a specialist.

The difference between Uma’s responsibilities in examples 1 and 2 is that in
the second one she has knowledge of a situation which requires action on her part.
In the first case, none of us would expect her to address a problem whose existence
she does not know of. Thus any decent social algorithm must allow for the pro-
vision of requisite knowledge. However, in the example 3 below, it is the agent’s
own responsibility to acquire the proper knowledge.

Example 3: Mary is a patient in St. Gibson’s hospital. Mary is having a heart
attack. The caveat which applied in case 1) does not apply here. The hospital
cannot plead ignorance, but rather it has an obligation to be aware of Mary’s
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condition at all times and to provide emergency treatment as appropriate.

In all the cases we mentioned above, the issue of an obligation arises. This
obligation is circumstantial in the sense that in other circumstances, the obligation
might not apply. Moreover, the circumstances may not be fully known. In such a
situation, there may still be enough information about the circumstances to decide
on the proper course of action. If Sam is ill, Uma needs to know that he is ill, and
the nature of the illness, but not where Sam went to school.

Such knowledge issues arise all the time in real life. Suppose a shy student is
in your office and you wonder if it is time for your next appointment. If you look
at your watch, then you will know the time, but the student will also realize that
you wanted to know the time, and may, being shy, leave even though he need not.

Levels of Knowledge

Suppose that Ann would like Bob to attend her talk; however, she only wants Bob
to attend if he is interested in the subject of her talk, not because he is just being
polite. There is a very simple procedure to solve Ann’s problem: Have a (trusted)
friend tell Bob the time and subject of her talk.

Just as we can show that Quicksort correctly sorts an array, perhaps we can
show that this simple procedure correctly solves Ann’s problem. While a correct
solution for the Quicksort algorithm is easily defined, it is not so clear how to
define a correct solution to Ann’s problem. If Bob is actually present during
Ann’s talk, can we conclude that Ann’s procedure succeeded? Not really. Bob
may have figured out that Ann wanted him to attend, and so is there only out of
politeness. Thus for Ann’s procedure to succeed, she must achieve a certain level
of knowledge between her and Bob. Besides both Ann and Bob knowing about
the talk and Ann knowing that Bob knows about the talk, Ann must ensure that

Bob does not know that Ann knows about the talk.

This last point is important, since, if Bob knows that Ann knows that he knows
about the talk, he may feel social pressure to attend. We now see that the pro-
cedure to have a friend tell Bob about the talk, but not reveal that it is at Ann’s
suggestion, will satisfy all the conditions. Telling Bob directly will satisfy the first
three, but not the essential last condition.
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Knowledge in Strategic Situations

The following example illustrates the role that the above reasoning can play in an
analysis of a game-theoretic situation. Assume that there are two players i and
j interacting according to the game tree and payoffs given below. Here agent i
moves first, choosing between going down (action d1) and moving right (action
r1). It is then player j’s move who also chooses betwen going down (action D)
and going right (action R). Finally, agent i has another chance to move choosing
again between going down (action d2) and moving right (action r2). The payoffs
are given as pairs of numbers (xi, xj) where the first component is i’s payoff and
the second j’s payoff. So, if i chooses d1 initially, agent i receives 2 “points” and
agent j receives 1 “point”. See (Osborne and Rubinstein, 1994) for more details
about formal models of games.

i j i

(2, 1) (1, 6) (7, 5)

(6, 6)

d1

r1

D

R

d2

r2

Assuming that agents are rational if they choose an action that guarantees a higher
payoff, then a backwards induction2 argument implies that the only rational choice
is for agent i to move down (select D at the first node) thus ending the game with
i’s receiving a payoff of 2 and j receiving a payoff of 1.

Exercise Give the details of this argument.

This creates a rather strange situation in which we are forced to claim that the
only “rational” outcome is one in which all players are worse-off. Indeed, if i had
a good reason to believe that j (if given the chance) would move R, then clearly
i should move R ensuring herself 5. This suggests a refinement in what it means
for an agent to be rational— a player is rational if given its current information,
it acts so as to maximize its payoff. In other words, the rationality of an agent
depends not only on its choice of action, but also on its state of knowledge.

Notice that the above game tree does not contain any information about the
agents’ beliefs or knowledge. Aumann (1999a), (Stalnaker, 1994), (Brandenburger,

2See any book on game theory for a discussion.
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2005) and others have forcefully argued that adding such information to a descrip-
tion of a game-theoretic situation is important for analyzing the rationality of the
agents.

Knowledge and Information

Two players Ann and Bob are told that the following will happen. Some positive
integer n will be chosen and one of n, n + 1 will be written on Ann’s forehead,
the other on Bob’s. Each will be able to see the other’s forehead, but not his/her
own. After this is done, they will be asked repeatedly, beginning with Ann, if they
know what their own number is.

Which agent can successfully answer (and when) that they know their own num-
ber?

2 Basic Frameworks

2.1 Epistemic Logic

The main idea of epistemic logic is to extend the language of propositional logic
with symbols (2) that are used to formalize the statement “the agent knows ϕ”
where ϕ is any formula. For example, the formula Kϕ→ ϕ represents the widely
accepted principle that agents can only know true propositions, i.e., if ϕ is known,
then ϕ must be true.3

Definition 2.1 (Basic Modal Language) Let At = {p1, p2, . . .} be a countable
set of atomic propositions. The basic modal language is the smallest set L(At)
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ϕ | 2ϕ

where p ∈ At. We write L(At) when At is clear from the context. We use the
standard abbreviations for the other boolean connectives (↔,∨,⊥,>) and define
3ϕ as ¬2¬ϕ. /

Exercise If the intended interpretation of 2ϕ is “the agent knows ϕ”, what is
the interpretation of 3ϕ?

3Wittgenstein has pointed out in this context that we rarely argue from “Bob knows that ϕ”
to “ϕ is true”, but rather, from “ϕ is false” to “Bob cannot know ϕ.”
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Of course, 2ϕ is only a formal expression in some language as we have not
yet provided a formal semantics. The goal is to give a precise interpretation of
the expressions in this language that matches as much as possible our informal
readings. Almost surely, making precise our intended interpretation will lead to
unintended consequences4. One of the main goals of this course is to not only give
the formal details of the interpretation of the knowledge statements, but also to
highlight important idealizations.

Indeed, one may be interested in other motivational attitudes such as beliefs,
desires, etc. In this course we focus primarily on the “knowledge” interpretation,
but may on occasion prefer the “belief” interpretation. We use the following
conventions:

• Write Kϕ if the intended interpretation is “the agent knows ϕ”

• Write Bϕ if the intended interpretation is “the agent believes ϕ”

• Write 2ϕ if the intended interpretation is not crucial

We now turn to the formal semantics for the language defined in Definition 2.1.

Definition 2.2 (Kripke Structures) A Kripke Frame is a pair 〈W,R〉 where
W is non-empty set and R ⊆ W ×W . A Kripke Model based on a frame 〈W,R〉
is a triple 〈W,R, V 〉 where V : At → ℘(W ). /

Elements w ∈ W are called states, or worlds. We write wRv if (w, v) ∈ R.
The relation R represents the uncertainty that the agent has about the “actual
situation”. In other words, if wRv and the actual situation is w, then for all agent
i knows, the situation may be v.

Definition 2.3 (Truth) Suppose ϕ ∈ L(At) and M = 〈W,R, V 〉 is a Kripke
Model. We define ϕ is true at state w ∈ W in model M, written M, w |= ϕ,
inductively as follows:

• M, w |= p iff w ∈ V (p) (with p ∈ At)

• M, w |= ϕ ∨ ψ if M, w |= ϕ or M, w |= ψ

• M, w |= ¬ϕ if M, w 6|= ϕ

• M, w |= 2ϕ if for each v ∈ W , if wRv, then M, v |= ϕ

4Of course, it is the “unintended consequences” of the formal semantics that is the subject
of the most interesting debates.
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If M, w |= ϕ for all states w ∈ W , then we say that ϕ is valid in M and write
M |= ϕ. If ϕ is valid in all models based on a frame F , then we say ϕ is valid in
F and write F |= ϕ. /

Example: We illustrate the above semantics with the following simple example.
Consider the initial situation from Bob’s point of view in the Levels of Knowl-
edge example from Section 1. Before Ann has her friend send a message to
Bob, Bob does not know the time of the talk. Suppose p means “the talk is
at 2PM”. We can represent this situation with the following Kripke structure
M = 〈{w, v}, {(w, v), (v, w), (w,w), (v, v)}, V 〉 with w ∈ V (p) and v 6∈ V (p). This
is pictured as follows:

p

w

¬p

v

In the above model, we have M, w |= ¬Kp, as desired (Bob does not know the
time of the talk).

There are a number of principles about knowledge – listed below – expressible in
the language of epistemic logic that have been widely discussed by many different
communities.

K 2(ϕ→ ψ) → (2ϕ→ 2ψ) Kripke’s axiom
T 2ϕ→ ϕ Truth
4 2ϕ→ 22ϕ Positive introspection
5 ¬2ϕ→ 2¬2ϕ Negative introspection
D ¬2⊥ Consistency

Exercise Discuss the plausibility of the epistemic interpretation of the above for-
mulas.

The following technical result will aid in the discussion of the plausibility of the
above formulas.

Definition 2.4 (Correspondence) A formula ϕ ∈ L(At) corresponds to a
property P of a Kripke frame F provided F |= ϕ iff F has property P . /
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Lemma 2.5 Each of the formulas in the left column correspond to properties in
the right column.

Formula valid in the frame Property of the relation

2(ϕ→ ψ) → (2ϕ→ 2ψ) (valid in all frames)
2ϕ→ ϕ Reflexive

2ϕ→ 22ϕ Transitive
¬2ϕ→ 2¬2ϕ Euclidean
ϕ→ 23ϕ Symmetric
¬2⊥ Serial

Finally, we end this Section with a technical question. Given a particular class of
Kripke frames F, which formulas are valid on this class, i.e., valid in every frame
F ∈ F?

A Primer on Logics: We assume familiarity with axiomatizations of the
propositional calculus (in particular, let MP denote the modus ponens rule). The
necessitation (N) rule is: from ϕ derive 2ϕ. Note that this means that if ϕ is
derivable then so is 2ϕ. Given formulas ϕ1, . . . , ϕn, a logic Λ(PC, ϕ1, . . . , ϕn,MP,N)
denotes the smallest set of formulas closed under the rules MP and N and con-
taining all propositional tautologies and all instances of ϕ1, . . . , ϕn. We write `Λ ϕ
iff ϕ ∈ Λ. In this case there is a finite list of formulas each of which is an instance
of a axiom or follows from previous elements of the list by a rule of the logic. The
following are some well-known epistemic logics:

S5 = Λ(PC,K, T, 4, 5,MP,N)

KD45 = Λ(PC,K,D, 4, 5,MP,N)

S4 = Λ(PC,K, T, 4,MP,N)

T = Λ(PC,K, T,MP,N)

K = Λ(PC,K,MP,N)

Let Γ be a set of formulas and F a class of frames. For a frame F , we write F |= Γ
iff F |= ϕ for each ϕ ∈ Γ. We write Γ |=F ϕ if for each F ∈ F, F |= Γ implies
F |= ϕ. We write Γ `Λ ϕ if there is a derivation of ϕ in logic Λ using formulas
from Γ.

Definition 2.6 (Soundness and Completeness)

• A logic Λ is sound with respect to a class F of Kripke frames if for all
formulas ϕ, `Λ ϕ implies |=F ϕ.
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• A logic Λ is strongly complete with respect to a class of frames F
provided for each Γ ⊆ L(At), Γ |=F ϕ implies Γ `Λ ϕ.

• A logic Λ is weakly complete with respect to a class of frames F
provided |=F ϕ implies `Λ ϕ. /

Theorem 2.7

• S5 is sound and strongly complete with respect to the class of all frames
where the relation is an equivalence relation.

• S4 is sound and strongly complete with respect to the class of all frames
where the relation is reflexive and transitive.

• KD45 is sound and strongly complete with respect to the class of all frames
where the relation is serial, transitive and euclidean.

Lemma 2.8 The following formulas and rules are valid on the class of all Kripke
frames.

• From ϕ→ ψ infer 2ϕ→ 2ψ

• From ϕ↔ ψ infer 2ϕ↔ 2ψ

• 2ϕ ∧2ψ → 2(ϕ ∧ ψ)

• 2>

Exercise The above Lemma has been used to argue that there is an underlying
assumption of logical omniscience in epistemic logic. Explain.

2.1.1 Pointers to Literature

Modern Epistemic Logic began with Jaakko Hintikka’s seminal book Knowledge
and Beliefs: An Introduction of the Logic of the Two Notions (Hintikka, 1962)
(recently extended and republished by Vincent Hendricks and John Symons). A
complete history of Epistemic Logic can be found in the article Epistemic Logic by
P. Gochet and P. Gribomont (Gochet and Gribomont, 2006). The main textbook
presentation of Epistemic Logic (focusing on applications in computer science)
are (Fagin et al., 1995) and (Meyers and van der Hoek, 1995). See also the chap-
ter on Epistemic Logic by J.-J. Meyer (Meyer, 2001) in the Blackwell Guide to
Philosophical Logic (Goble, 2001) and (Zanaboni, 1991) for a somewhat different
perspective.
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Modal Logic: Epistemic Logic is a subarea of Modal Logic. The literature on
modal logic is much too vast to survey here (see Goldblatt, 2006, for an account
of the modern history of modal logic). Consult the Handbook of Modal Logic
(Blackburn et al., 2006) for the current state of affairs on modal logic (Chapter
18, Intelligent Agents and Common-sense Reasoning, (Meyer and Veltman, 2006)
and Chapter 20, Modal Logic for Games and Interaction, (van der Hoek and Pauly,
2006) contain discussions relevant to this course). There are a quite a few text-
books on modal logic — the most comprehensive is Modal Logic (Blackburn et al.,
2002).

2.2 Aumann Structures

The approach sketched above for modeling knowledge of agents is syntactic. That
is, a formal language is developed in which statements about an agent’s knowl-
edge about propositional facts about the world can be expressed. These syntactic
expressions are then given meaning by interpreting them in a Kripke model. This
approach was largely developed by Philosophers, Logicians and Computer Scien-
tists. In the Economics and Game Theory literature, a set-theoretic approach was
used to model knowledge. One of the first attempts to formalize knowledge in
economic situations is by Robert Aumann (Aumann, 1976, 1999a).

As in the previous section, let W be a set of worlds, or states. Let S be the set
of all states of nature. A state of nature is a complete description of the exoge-
nous parameters (i.e. facts about the physical world) that do not depend on the
agents’ uncertainties. As noted above, the previous section started with an object
language which could express knowledge-theoretic statements about the agents.
However, in this section, reasoning about agents is done purely semantically. Thus
we are making essential use of the fact that we can identify a proposition with the
set of worlds in which it is true. Intuitively, we say that a set E ⊆ W , called an
event, is true at state w if w ∈ E.

Aumann represents the uncertainty of each agent about the actual state of
affairs by a partition over the set of states (Aumann, 1999a). Formally, there is a
partition Π over the set W . (A partition of W is a pairwise disjoint collection of
subsets of W whose union is all of W .). Elements of Π are called cells, and for
w ∈ W , let Π(w) denote the cell of Π containing w. Putting everything together,

Definition 2.9 (Aumann Model) An Aumann model based on S is a triple
〈W,Π, σ〉, where W is a nonempty set, Π is a partition over W and σ : W → S. /

So, σ is analogous to a valuation function, it assigns to each world a state
of nature in which every ground fact (any fact not about the uncertainty of the
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agents) is either true or false. If σ(w) = σ(w′) then the two worlds w,w′ will agree
on all the facts, but the agents may have different knowledge in them. Elements
of W are richer in information than the elements of S.

Given a state w ∈ W , the cell Π(w) is called the agent’s information set and
an agent knows event E at state w, denote w ∈ K(E), if Π(w) ⊆ E.

Definition 2.10 (Knowledge Function) Let M = 〈W,Π, σ〉 be an Aumann
model. The knowledge function, K : ℘(W ) → ℘(W ), based on M is defined as
follows:

K(E) = {w | Π(w) ⊆ E}
/

The obvious question is what is the precise connection between the Aumann
models presented in this Section and Kripke models presented in the previous
section? The next Lemma is a first step to answering this question.

Lemma 2.11 Let M = 〈W,Π, σ〉 be a Aumann model and K the knowledge func-
tion based on M. For each E,F ⊆ W

E ⊆ F ⇒ K(E) ⊆ K(F ) Monotonicity
K(E ∩ F ) = K(E) ∩ K(F ) Closure Under Intersection
K(E) ⊆ E Truth
K(E) ⊆ K(K(E)) Positive introspection

K(E) ⊆ K(K(E)) Negative introspection
K(∅) = ∅ Consistency

where E means the set-theoretic complement of E (relative to W ).

These are the analogues of the K,T, 4, 5 and D axiom schemes from the pre-
vious section. In fact, there is an obvious translation between Aumann structures
and Kripke structures. Halpern (1999) formally compares the two frameworks
pointing out similarities and important differences. We end this Section with
some of the formal details of this comparison.

Definition 2.12 (Possibility Structures) An possibility frame is a pair 〈W,P〉
where W is any set, and for each P : W → ℘(W ) is a function. Given a frame
F = 〈W,P〉 and a set of states S, an model based on S is a triple 〈W,P , σ〉,
where σ : W → S. /

Definition 2.13 (Possibility Operator) Given any possibility function P : W →
℘(W ), we can associate a possibility operator P : ℘(W ) → ℘(W ) defined by

P(E) = {w | P(w) ⊆ E}

12
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for any subset E ⊆ W . /

Definition 2.14 (Set Operator Properties) Let P : ℘(W ) → ℘(W ) be a set
operator and E,F ⊆ W . We define the following properties of P:

P1 P(E) ∩ P(F ) = P(E ∩ F )

P2 ∩j∈JP(Ej) = P(∩j∈JEj), for any5 index set J

P3 P(E) ⊆ E

P4 P(E) ⊆ P(P(E))

P5 P(E) ⊆ P(P(E))

P6 P(E) ⊆ P(E) /

Exercise Prove that P2 follows from P1,P3,P4 and P5. See Halpern (1999)
for a discussion.

Definition 2.15 (Possibility Function Properties) Let P : W → ℘(W ) be
any function. We define the following properties of P :

Reflexive ∀w ∈ W , w ∈ P(w)

Transitive ∀w, v ∈ W , v ∈ P(w) ⇒ P(v) ⊆ P(w)

Euclidean ∀w, v ∈ W , v ∈ P(w) ⇒ P(w) ⊆ P(v)

Serial ∀w ∈ W , P(w) 6= ∅ /

Theorem 2.16 (Correspondence, (Halpern, 1999)) Let F = 〈W,P 〉 be a
frame. Let P : ℘(W ) → ℘(W ) be defined from P as above. Then P satisfies
P2 (and hence P1). Also we have the following correspondance: if P is reflexive,
the P satisfies P3, if P is transitive, then P satisfies P4, if P is Euclidean, then
P satisfies P5 and if P is serial, then P satisfies P6.

Theorem 2.17 (Set-Theoretic Completeness, (Halpern, 1999)) Suppose that
P is any operator satisfying P2, then there is a frame 〈W,P 〉 such that the opera-
tor defined from P is exactly P. Moreovere, if P satisfies P3, then P is reflexive,
if P satisfies P4, then P is transitive, if P satisifies P5, then P is Euclidean, and
if P satisfies P6, then P is serial.

5Including, possibly, infinite sets. When J = ∅, we get K(Ω) = Ω
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2.2.1 Bayesian Structures

The above models assume a “crisp” notion of uncertainty of the agent, i.e., if w
is a state of the world, then any other state v ∈ W is either in or not in the same
information set as w. In some cases it may be desirable to work in a probabilistic
setting. Indeed, the “standard” game-theoretic models of knowledge and beliefs,
Harsanyi Type Spaces (Harsanyi, 1967), are probabilistic6.

Let W be a set of worlds and ∆(W ) be the set of probability distributions7

over W . We are interested in functions p : W → ∆(W ). The basic intuition is
that for each state w ∈ W , p(w) ∈ ∆(W ) is a probability function over W . So,
p(w)(v) is the probability the agent assigns to state v in state w. To ease notation
we write pw for p(w).

Definition 2.18 (Bayesian Structure) The pair 〈W, p〉 is called a Bayesian
frame, where W 6= ∅ is any set, and p : W → ∆(W ) is a function such that

if pw(v) > 0 then pw = pv

Given a Bayesian frame F = 〈W, p〉 and a set of states S, an Bayesian model
based on S is a triple 〈W, p, σ〉, where σ : W → S. /

The above condition states that agents never consider the possibility (i.e.,
assign positive probability) that they might be wrong about their own probability
functions. That is, if an agent in state w assigns nonzero probability to a state v,
then her probability functions pw, pv must be the same. This suggests the following
definition:

Definition 2.19 (Type Partition) Given any function p : W → ∆(W ), we
define

Π(w) := {v | pw = pv}

It is easy to see that {Π(w) | w ∈ W} forms a partition of W . The set {Πw | w ∈
W} is called the agent’s type partition. /

Intuitively, if you knew that the agent was the “type” of person to use proaba-
bility pw at state w and the Π(w) is the set of states that the agent is using
that particular probability function. The set Π(w) can also be thought of as the
agent’s information partition at state w. This structure gives a more fine-grained
definition of beliefs.

6That is not to say that logicians and philosophers ignore probabilistic reasoning. See, for
example, Halpern (2003).

7We usually think of W as any finite or countable set. When W is infinite, since we are
working with probabilities, we need to make some additional measure-theoretic assumptions.
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Definition 2.20 (Probabilistic Beliefs) For each r ∈ [0, 1] define Br : 2W →
2W as follows

Br(E) = {w | pw(E) ≥ r}

/

Intuitively, Br(E) is the set of states in which the agent assigns probability at
least r to the event E.

Observation 2.21 We can define a possibility model from a Bayesian model as
follows. Let 〈W, p, σ〉 be a Bayesian model on a state space S. We define a
possibility model 〈W,P, σ〉 base on S as follows: define P : W → 2W by

P(w) = {v | πw(v) > 0}

It is easy to see that P is serial, transitive and Euclidean.

2.2.2 Pointers to Literature

This approach discussed in this section was put forward by Robert Aumann in his
classic paper Aggreing to Disagree (Aumann, 1976). Aumann then extended this
approach in a series of lectures given at the Cowles Foundation for Research in
Economics at Yale University in 1989. This culminated with the publication of the
article Interactive Epistemology I: Knowledge (Aumann, 1999a) (which includes a
discussion of the syntactic approach to modeling knowledge). See also Aumann
and Heifetz (2001), Halpern (1999), and Bonanno and Battigalli (1999) for general
discussions on the set-theoretic models of knowledge.

I Add reference for Bayesian Frames: see Aumann (1999b); Bonanno and Batti-
galli (1999); Ely and Peski (2006) for general discussions.

3 Knowledge in Groups and Group Knowledge

The previous section presented formal models of knowledge for a single agent.
However, all of the examples we presented in Section 1 involved more than one
agent. We now extend the previous models to include more than one agent.
Formally, this is completely straightforward. Let A be a set of agents. We give
the details on how to extend Epistemic Logic to the multi-agent setting. The case
for Aumann Structures and Bayesian Structures is analogous.
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Definition 3.1 (Multi-agent Modal Language) Let At = {p1, p2, . . .} be a
countable set of atomic propositions and A a finite set of agents. The multi-
agent modal language is the smallest set Ln(At) generated by the following
grammar:

p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

where p ∈ At. We use the standard abbreviations for the other boolean connectives
(↔,∨,⊥,>) and define Liϕ as ¬Ki¬ϕ. /

Definition 3.2 (Multi-agent Kripke Structures) A multi-agent Kripke
frame is a pair 〈W, {Ri}i∈A〉 where W is non- empty set and Ri ⊆ W ×W . A
multi-agent Kripke model based on a frame 〈W, {Ri}i∈A〉 is a triple 〈W, {Ri}i∈A,
V 〉 where V : At → ℘(W ). /

Definition 3.3 (Truth) Suppose ϕ ∈ L(At) and M = 〈W, {Ri}i∈A, V 〉 is a
multi-agent Kripke model. We define ϕ is true at state w ∈ W in model M,
written M, w |= ϕ, inductively as follows:

• Boolean connectives and propositional variables are as in Definition 2.3

• M, w |= Kiϕ if for each v ∈ W , if wRiv, then M, v |= ϕ /

Note that we use Ki for the modal operators instead of 2i as we are
primarily interested in the knowledge interpretation in this Section.

In this new setting we can express not only what agents know about the world,
but also what agents know the other agents know about the world, as so on.

Example: Recall the Levels of Knowledge example from Section 1. It is argued
that the state of knowledge that Ann wants to achieve is the following: let p be
the proposition ‘the talks is at 2PM’.

1. KAp: Ann knows that the talks is at 2PM

2. KBp: Bob knows that the talks is at 2PM

3. KAKBp: Ann knows that Bob knows the talks is at 2PM

4. ¬KBKAKBp: Bob doesn’t know that Ann knows that Bob knows that the
talks is at 2PM

The following multi-agent Kripke structure represents this situation:
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Pw1 P w2

¬P w4Pw3

B

A

B

Note that the reflexive arrows are not included in the above picture (so, wjRiwj

for each i ∈ {A,B} and j = 1, 2, 3, 4). One can check that each of the formulas
given above is true at state w1.

Group and Common Knowledge: You and I approach an intersection. You
have the right of way. You should go, I should stop; that is the law and we both
know it. However, that is not enough. You should know that I know. You do
not want to risk your life merely to assert your right of way. Also, I should know
that you know I am going to stop. If not, you will stop (even though you have
the right of way) and neither of us will go; we do not want a deadlock.

Lewis (1969) and Clark and Marshall (1981) argue that the condition of com-
mon knowledge is necessary for such co-ordinated actions. Intuitively, a fact p
is common knowledge if everyone knows p, everyone knows that everyone knows
that p, everyone knows that everyone knows that p, and so on. For another exam-
ple of the relevance of common knowledge, Halpern and Moses (1983) prove that
clock synchronisation is impossible without common knowledge. Finally, Chwe
(2001) provides many examples suggesting the everyday importance of the notion
of common knowledge for co-ordination problems.

3.1 Formalizing Common Knowledge

We start by adding a common knowledge operator to the language of epistemic
logic.

Definition 3.4 (Everyone Knows) The operator “everyone knows ϕ”, denoted
Eϕ, is defined as follows

Eϕ :=
∧
i∈A

Kiϕ

/

Intuitively, common knowledge of a formula ϕ (denoted Cϕ) is the following
infinite conjunction:

ϕ ∧ Eϕ ∧ EEϕ ∧ EEEϕ ∧ · · ·

17
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However, this involves an infinite conjunction, so cannot be a formula in the
language of epistemic logic. This suggests that common knowledge is not definable
in the language of multi-agent epistemic logic8. Thus we need to add a new symbol
to the language Cϕ whose intended interpretation is “common knowledge of ϕ”.

Definition 3.5 (Multi-agent Epistemic Logic with Common Knowledge)
Let At = {p1, p2, . . .} be a countable set of atomic propositions and A a finite set
of agents. The multi-agent modal language with common knowledge is
the smallest set LC

n (At) generated by the following grammar:

p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ

where p ∈ At. /

Before giving semantics to Cϕ, we consider EEEϕ. This formula says that
“everyone knows that everyone knows that everyone knows that ϕ”. When will this
be true at a state w in a multi-agent Kripke model? First some notation. A path
on length n in multi-agent Kripke model is a sequence of states (w0, w2, . . . , wn)
where for each l = 0, . . . , n − 1, we have wlRiwl+1 where i is any agent. Thus,
EEEϕ is true at state w iff every path of length 3 starting at w leads to a state
where ϕ is true. The above intuitive definition of common knowledge suggests the
following definition.

Definition 3.6 (Interpretation of C) Let M = 〈W, {Ri}i∈A, V 〉 be a multi-
agent Kripke model and w ∈ W . The truth of formulas of the form Cϕ is as
follows:

M, w |= Cϕ iff for all v ∈ W , if wR∗v then M, v |= ϕ

where R∗ := (
⋃

i∈ARi)
∗, i.e., R∗ is the reflexive transitive closure of the union of

the Ri’s. /

Sometimes it is useful to work with the following equivalent characterization
of common knowledge:

M, w |= Cϕ iff every finite path starting at w ends with a state satisfying ϕ.

Remark 3.7 (Common Knowledge in a Subgroup) Note that Cϕmeans ‘ϕ
is common knowledge among the entire group A of agents.’ It some cases, it may
be useful to talk about common knowledge among a subgroup G ⊆ A of agents.
In this case we write CGϕ. Formally, we restrict the union in Definition 3.6 to the
agents in G.

8In fact, one can prove this using standard methods in modal logic.
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We have extended the language of multi-agent epistemic logic with a new
operator. An immediate technical question is how this effects the soundness and
completeness results (Theorem 2.7). It turns out that in the presence of common
knowledge, the situation is more complex (see Blackburn et al., 2002, for details).
The following axiom and rule need to be added to S5 to deal with the common
knowledge operator:

• Mix: Cϕ→ E(ϕ ∧ Cϕ)

• Induction: from ϕ→ E(ψ ∧ ϕ) infer ϕ→ Cψ

Exercise Verify that Mix and Induction are valid on the class of all S5 frames.

Let S5C be the logic including the axiom and rules from S5 and Mix and
Induction.

Theorem 3.8 S5C is sound and weakly complete with respect to the class of all
Kripke frames where the relations are equivalence relations.

Common knowledge in Aumann’s setting (cf. Section 2.2) can be defined
directly using the infinite conjunction above as there is no finitary object language
to worry about.

Definition 3.9 (Common Knowledge Set Operators) Let Ki : ℘(W ) → ℘(W )
be a knowledge operator for each i ∈ A (based on a multi-agent Aumann model).
First define Km : ℘(W ) → ℘(W ) for each m ≥ 1:

K1(E) =
⋂
i∈A

Ki(E) and Km+1 = K1Km(E)

Then define K∞ : ℘(W ) → ℘(W ) by

K∞(E) = K1(E) ∩ K2(E) ∩ · · ·

/

Exercise Prove that for all i ∈ A and E ⊆ W , KiK
∞(E) = K∞(E). (cf. Aumann,

1999a, Lemma 2.3).

This exercise suggests an alternative characterization of common knowledge used
by Aumann in (Aumann, 1999a). The main idea is nicely illustrated by the
following quote:
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Suppose you are told “Ann and Bob are going together,”’ and respond
“sure, that’s common knowledge.” What you mean is not only that
everyone knows this, but also that the announcement is pointless, oc-
casions no surprise, reveals nothing new; in effect, that the situation
after the announcement does not differ from that before. ...the event
“Ann and Bob are going together” — call it E — is common knowl-
edge if and only if some event — call it F — happened that entails E
and also entails all players’ knowing F (like all players met Ann and
Bob at an intimate party). (Aumann, 1999a, pg. 271, footnote 8)

The following Definitions and Lemma make this informal statement precise.

Definition 3.10 (Self-Evident Event) An event F is self-evident if Ki(F ) =
F for all i ∈ A. /

Definition 3.11 (Knowledge Field) Let 〈W, {Πi}i∈A, σ〉 be a multi-agent Au-
mann model. For each i ∈ A, the knowledge field of i, denoted Ki, is the family
of all unions of cells in Πi. /

Lemma 3.12 An event E is commonly known iff some self-evident event that
entails E obtains. Formally, K∞(E) is the largest event in ∩i∈AKi that is included
in E.

Agreeing to Disagree: In 1976, Aumann proved a fascinating result (Aumann,
1976). Suppose that two agents have the same prior probability and update their
probability of an event E with some private information using Bayes’ rule. Then
Aumann showed that if the posterior probability of E is common knowledge, then
they must assign the same posterior probability to the event E. In other words,
if agents have the same prior probability and update using Bayes’ rule, then the
agents cannot “agree to disagree” about their posterior probabilities.

Definition 3.13 (Posterior Probability) Let 〈W, {Πi}i∈A, σ〉 be a Aumann model
and p ∈ ∆(W ) a prior probability (common to all the agents). The posterior
probability for agent i of an event A is defined as follows: for all w ∈ W

qi(w) := p(A ∩ Πi(w))/p(Πi(w))

/

Theorem 3.14 ((Aumann, 1976)) Given an Aumann model 〈W, {Πi}i∈{1,2}, σ〉
with a prior proability function p ∈ ∆(W ). Let r′ and r′′ be two numbers in [0, 1].
If it is common knowledge at w that q1(w) = r′ and q2(w) = r′′ then r′ = r′′.
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The key idea is that common knowledge arises through communication. Sup-
pose there are two agents who agree on a prior probability function. Suppose that
each agent receives some private information concerning an event E and updates
their probability function accordingly. Geanakoplos and Polemarchakis (1982)
show that if the agents each announce their posterior probabilities and update
with this new information, then the probabilities will eventually become common
knowledge and the probabilities will be equal.

Parikh and Krasucki (1990) look at the general situation where there may be
more than two agents9 and communication is restricted by a communication graph.
They show that under certain assumptions about the communication graph, con-
sensus can be reached even though the posterior probabilities of the agents may
not be common knowledge10. Before stating their result, some clarification is
needed. Note that a communication graph tells us which agent can communicate
with which agent, but not when two agents do communicate. To represent this
information, Parikh and Krasucki introduce the notion of a protocol. A protocol
is a pair of functions (r, s) where r : N → A and s : N → A. Intuitively, (r(t), s(t))
means that r(t) receives a message from s(t) at time t. Say a protocol (r, s) re-
spects a communication graph G = (A, E) if for each t ∈ N, (r(t), s(t)) ∈ E. A
protocol is said to be fair provided every agent can send a message to any other
agent, either directly or indirectly, infinitely often11.

Parikh and Krasucki show that if the agents are assumed to have finitely many
information sets, then for any protocol, if the agents send the current probability12

(conditioned on the agent’s current information set) of proposition A, then after a
finite amount of time t for each agent i, the messages received after time t will not
change i’s information set. Furthermore, if the protocol is assumed to be fair (i.e.,
the communication graph is strongly connected) then all the agents will eventually
assign the same probability to A. Krasucki takes the analysis further in Krasucki
(1996) and provides conditions on the protocol (and implicitly on the underlying
communication graph) which will guarantee consensus regardless of the agents’
initial information.

9Cave (1983) also considers more than two agents, but assumes all communications are public
announcements.

10This point was formally clarified by Heifetz in Heifetz (1996). He demonstrates how to
enrich the underlying partition space with time stamps in order to formalize precisely when
events become common knowledge.

11Consult Parikh and Krasucki (1990) for a formal definition of “fairness”.
12Actually, Parikh and Krasucki consider a more general setting. They assume agents com-

municate the value of some function f that maps events to real numbers. Intuitively, f need not
be the probability of an event given some information set. The only condition imposed on f is a
convexity condition: for any two disjoint close subsets X and Y , f(X ∪Y ) lies in the open inter-
val between f(X) and f(Y ). Here closed is defined with respect to the agents information sets.
This generalizes a condition imposed by Cave Cave (1983) and Bacharach Bacharach (1985).
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3.2 Levels of Knowledge

While it is true that co-ordinated actions and, supposedly, common knowledge do
happen, it may also be relevant to consider other levels of knowledge, short of the
infinite, common-knowledge, level.13 Such levels also arise in certain pragmatic
situations, e.g. with e-mail or snailmail or messages left on telephones as voice
mail. Thus one purpose of these notes (and this course) is to study levels other
than common knowledge and how they affect the actions of groups.

In typical co-operative situations, even if a certain level of knowledge is needed,
a higher level would also do. If Bob wants Ann to pick up the children at 4 PM,
it is enough for him to know that she knows. Thus if he sends her e-mail at 2 PM
and knows that she always reads hers at 3 PM, he can be satisfied. In such a sit-
uation Bob knows that Ann will know about the children in time, or symbolically
Kb(Ka(C)) and he may feel this is enough. However, if he telephones her at 3
PM instead, this will create common knowledge of C, much more than is needed.
But no harm done, since in this context, Ann and Bob have the same goals. The
following example from (Parikh, 2003) illustrates this point.

Example: Suppose a pedestrian is crossing the street and sees a car approaching
him. It happens in many cities, e.g., Boston, Naples, etc., that the pedestrian will
pretend not to notice the car, thereby preventing KdKp(C) with C representing
the car, d being the driver and p the pedestrian. If the driver knew that the
pedestrian knew, he might drive aggressively and try to bully the pedestrian into
running or withdrawing. But if he does not know that the pedestrian knows, he
will be more cautious.

Let S be the situation where a pedestrian is crossing the street and a car is
coming. Let S ′ be the same situation without the car. In S the pedstrian has two
options, g, i.e., to go, and n, i.e., to not go. The motorist also has two similar
options, G and N . Here are the payoffs for the two in state S.

13The following, possibly apocryphal story about the mathematician Norbert Wiener, well
known for his absent mindedness, illustrates something even more subtle. At one time the
Wieners were moving and in the morning as he was going to work, Mrs. Wiener said to him,
“Now don’t come home to this address in the evening.” And she gave him a piece of paper
with the new address. However, in the evening Wiener found himself standing in front of the old
address and not knowing what to do – he had already lost the slip of paper with the new address.
He went to a little girl standing by and said, “Little girl, do you know where the Wieners have
moved to?” The little girl replied, “Daddy, Mom knew what would happen so she sent me to
fetch you.” The moral of the story, for us, is that common knowledge works only if the memory
of all parties involved is reliable.

22



July 3, 2007 3.2 Levels of Knowledge

Motorist choices

Pedestrian choices

G N

g (-100,-10) (1,0)

n (0,1) (0,0)

Note that there are two Nash equilibria: at (g,N) and at (n,G). However, the
penalty for the pedestrian (injury or loss of life) to depart from (n,G) is much
greater than the penalty for the motorist (fine or loss of license) to depart from
(g,N). Thus the equilibrium (g,N) is less stable than (n,G), and this fact creates
the possibility for the motorist to ‘bully’ the pedestrian.

However, if the pedestrian is unaware of the existence of the car, then the
picture is much simpler and his payoffs are 1 for g and 0 for n. g dominates n,
and once this choice is made by the pedestrian, it is dominant for the motorist
to choose N . This is why the pedestrian tries to achieve the state of knowledge
represented by the formulas Kp(C),¬Km(Kp(C)) indicating that the pedestrian
knows the car is there but the motorist does not know that the pedestrian knows.
The pedestrian chooses the action g, and knowing that the pedestrian will do this,
the motorist must choose N . However, if the motorist has a horn, he can change
the knowledge situation. The existence of the car becomes common knowledge
and thus the possibility for the motorist to bully the pedestrian arises again.

A number of technical questions suggest themselves when one takes the per-
spective outlined in this section. A number of these are explored in (Parikh and
Krasucki, 1992; Parikh, 2003). We give a sample of one of the questions here:
How many levels of knowledge are there of a given fact P?

Definition 3.15 (Level of Knowledge) LetA = {1, 2, . . . , n} be a set of agents.
The modal alphabet based on A is the set ΣA = {21, . . . ,2n}. We will write
Σ for ΣA when the set of agents is understood. Let M = 〈W, {Ri}i∈A, V 〉 be a
multi-agent Kripke model, w ∈ W and P a propositional formula. The level of
knowledge of P at state w is the set:

L(w,P ) = {x | x ∈ Σ∗
A,M, w |= xϕ}

where Σ∗
A is the set of finite strings over ΣA. /

A natural question is what types of sets can arise as levels of some formula in a
Kripke model? The answer to this questions depends on the underlying logic.
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Fact 3.16 Let Σ = {21, . . . ,2n} and F a class of multi-agent Kripke frames. If
for all formulas ϕ and all strings x, y ∈ Σ∗, a ∈ Σ we have

|=F xayϕ↔ xaayϕ

Then for all Kripke models based on frames from F and states w, xay ∈ L(w,ϕ)
iff for all j ≥ 1, xajy ∈ L(w,ϕ).

Theorem 3.17 There are countably many levels of knowledge, but uncountably
many levels of beliefs.

Thus there are levels of belief which cannot be levels of knowledge, no matter how
things are!

3.2.1 Beyond Finite Levels of Knowledge

States in Kripke structures are supposed to be complete descriptions of the world
including descriptions of the knowledge of the other agents. In other words, they
describe the ground facts, the agents’ knowledge of these facts, the agents’ knowl-
edge of the other agents’ knowledge of these facts, the other agents’ knowledge of
the other agents’ knowledge of the other agents’ knowledge of these facts, and so
on ad infinitum. One may wonder whether this description is adequate. Strangely,
it turns out that such descriptions are, in general, not adequate descriptions of
the world, since they do not completely describe an agent’s unceratainty. This
fact was pointed about by Heifetz and Samet (1998, 1999), Fagin et al. (1999) and
Parikh (1991).

This point should be contrasted with the probabilistic models. Under certain
technical assumptions, descriptions of all finite levels of probabilistic beliefs is, in
general, sufficient to describe all possible states of the worlds. The existence of
such a universal probabilistic belief space was first shown to exist by Mertens
and Zamir (1985). The technical details are beyond the scope of this course (see
Bonanno and Battigalli, 1999; Moss and Viglizzo, 2005, and references therein for
details).

3.2.2 Critiques on Common Knowledge

I Critiques on the that common knowledge is required for co-ordinated
action. Cf., the work of Bacharach (Bacharach, 2006) and others.
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4 Reasoning about Knowledge and .........

4.1 ....and Time

Suppose we fix a social interactive situation involving a (finite) set of agents A.
What aspects are relevant for the analysis of social procedures? First of all, since
the intended application of our models is to study agents executing a procedure, it
is natural to assume the existence of a global discrete clock (whether the agents
have access to this clock is another issue that will be discussed shortly). The
natural numbers N will be used to denote clock ticks. Note that this implies that
we are assuming a finite past with a possibly infinite future. The basic idea is
that at each clock tick, or moment, some event takes place.

This leads us to our second basic assumption. Typically, no agent will have
all the information about a situation. For one thing agents are computationally
limited and can only process a bounded amount of information. Thus if a social
situation can only be described using more bits of information than an agent can
process, then that agent can only maintain a portion of the total information
describing the situation. Also, the observational power of an agent is limited. For
example, suppose that the exact size of a piece of wood is the only relevant piece
of information about some situation. While an agent may have enough memory
to remember this single piece of information, measuring devices are subject to
error. Furthermore, some agents may not see, or be aware of, many of the events
that take place. Therefore it is fair to assume that two different agents may
have different views, or interpretations, of the same situation. We now turn to
the formal details of the model. A variant of these models were first defined in
(Parikh and Ramanujam, 1985, 2003).

Let Σ be any set of events. Given any set X, X∗ is the set of finite strings over
X and Xω is the set of infinite strings over X. Elements of Σ∗ ∪Σω will be called
histories. Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H, i.e. the number of
characters (possibly infinite) in H. Given H,H ′ ∈ Σ∗ ∪Σω, we write H � H ′ if H
is a finite prefix of H ′. If H � H ′ we call H an initial segment of H ′ and H ′ an
extension of H. Given an event e ∈ Σ, we write H ≺e H

′ if H ′ = He. Finally,
let ε be the empty string and FinPre(H) = {H | ∃H ′ ∈ H such that H � H ′} be
the set of finite prefixes of the elements of H and FinPre−ε(H) = FinPre(H)−{ε}.

Definition 4.1 (Protocol) Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is
called a protocol provided FinPre−ε(H) ⊆ H. A rooted protocol is any set
H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H. /

Intuitively, a protocol is the set of all possible ways an interactive situation may
evolve. Once the underlying temporal structure is in place, we can add the uncer-

25



July 3, 2007 4.1 ....and Time

tainty of the agents. The most general models we have in mind are ‘forests’ with
epistemic relations between finite branches.

Definition 4.2 (ETL Structure) An ETL frame is a tuple 〈Σ,H, {∼i}i∈A〉
where Σ is a (finite or infinite) set of events, H is a protocol, and for each i ∈ A,
∼i is an equivalence relation on the set of finite strings in H. An ETL model
based on an ETL frame 〈Σ,H, {∼i}i∈A〉 is a tuple 〈Σ,H, {∼i}i∈A, V 〉 where V is
a valuation function V : At → 2FinPre(H). /

Making assumptions about the underlying event structure corresponds to “fixing
the playground” where the agents will interact. The assumptions of interest are
as follows: Let F = 〈Σ,H, {∼i}i∈A〉 be an ETL frame. If Σ is assumed to be
finite, then we say that F is finitely branching. If H is a rooted protocol, F
is a tree frame. We will be interested in protocol frames which satisfy both
of these conditions. These are finitely branching trees with epistemic relations
between the finite branches.

Remark 4.3 (Three Equivalent Approaches) : There are at least two fur-
ther approaches to uncertainty in the literature. The first, discussed in Parikh and
Ramanujam (1985), represents agents’ “observational” power. That is, each agent
i has a set Ei of events it can observe14. For simplicity, we can assume Ei ⊆ Σ but
this is not necessary. A local view function is a map λi : FinPre(H) → E∗

i . Given
a finite history H ∈ H, the intended interpretation of λi(H) is “the sequence of
events observed by agent i at H”. The second approach comes from Fagin et al.
Fagin et al. (1995). Each agent has a set Li of local states (if necessary, one can
also assume a set Le of environment states). Events e are tuples of local states
(one for each agent) 〈l1, . . . , ln〉 where for each i = 1, . . . , n, li ∈ Li. Then two
finite histories H and H ′ are i-equivalent provided the local state of the last of
event on H and H ′ is the same for agent i. From a technical point of view, the
three approaches to modeling uncertainty are equivalent (Pacuit (2007) provides
the relevant intertranslations). However, they may still be different for modeling
purposes.

Agent Oriented Conditions: Various types of agents place constraints on
the interplay between the epistemic and temporal relations. We survey some
conditions from the literature.

Definition 4.4 (No Miracles) Fix an epistemic temporal frame 〈Σ,H, {∼i}i∈A〉.
An agent i ∈ A satisfies the property No Miracles (sometimes called, somewhat

14This may be different from what the agent does observe in a given situation.

26



July 3, 2007 4.1 ....and Time

misleadingly, No Learning) if for all finite histories H,H ′ ∈ H and events e ∈ Σ
with He ∈ H and H ′e ∈ H, if H ∼i H

′ then He ∼i H
′e. /

Thus, unless a ‘miracle’ happens, uncertainty of agents cannot be erased by
the same event. The next condition is the dual property.

Definition 4.5 (Perfect Recall) An agent i ∈ A satisfies the property Perfect
Recall provided for all finite histories H,H ′ ∈ H and events e ∈ Σwith He ∈ H
and H ′e ∈ H, if He ∼i H

′e then H ∼i H
′. /

Perfect Recall means that the histories an agent considers possible can only
decrease or remain the same, unless new indistinguishable events occur.

Definition 4.6 (Synchronized Communication) An agent i ∈ A is synchro-
nized provided for all finite histories H,H ′ ∈ H, if H ∼i H

′ then len(H) =
len(H ′). /

Intuitively, if an agent is synchronized, then that agent knows the value of the
global clock (this may or may not be expressible in the formal language). For
other assumptions that can be made about the interaction between the epistemic
relation and time, the reader is referred to Fagin et al. (1995); van Benthem and
Liu (2004). Finally, note that in general we do not assume that all agents have
the same reasoning capabilities. When they do, we say, for example, that a frame
F is synchronous if all agents are synchronized.

Modal Languages: Different modal languages can reason about the above
structures (see the Handbook chapter Hodkinson and Reynolds (ming)), with
‘branching’ or ‘linear’ variants. Here we give just the bare necessities.

Let At be a countable set of atomic propositions. We are interested in languages
with various combinations of the following modalities: Pϕ (ϕ is true sometime in
the past), Fϕ (ϕ is true sometime in the future), Y ϕ (ϕ is true at the previous
moment), Nϕ (ϕ is true at the next moment), Kiϕ (agent i knows ϕ) and CBϕ
(the group B ⊆ A commonly knows ϕ). Dual operators are written as usual (eg.,
Liϕ = ¬Ki¬ϕ). If X is a sequence of modalities from {P, F, Y,N} let LX

n be the
language with n knowledge modalities K1, . . . , Kn together with the modalities
from X. For a sequence of modalities X, LX

C is the language LX
n closed under

the common knowledge modality C. Let LETL be the full epistemic temporal
language, i.e., it contains all of the above temporal and knowledge operators.

Regardless of whether the language has branching time or linear time temporal
operators, formulas express properties about finite histories. The difference lies in
the format of the satisfaction relation. In a linear temporal setting, formulas are
interpreted at pairs H, t where H is a ‘maximal’ (possibly infinite) history and t
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an element of N. The intended interpretation of H, t |= ϕ is that on the branch
H at time t, ϕ is true. In the branching time setting, we only need the moment,
and formulas can be interpreted at finite histories H. In the interest of a unified
approach we will interpret formulas at branch-time pairs.

Formulas are interpreted at pairs H, t where t ∈ N and H ∈ H has length
longer than t (finite or infinite). Truth for the languages LX

n is defined as usual:
see Fagin et al. (1995) and Hodkinson and Reynolds (ming) for details. We only
remind the reader of the definition of the knowledge and some temporal operators:

• H, t |= Pϕ iff there exists t′ ≤ t such that H, t′ |= ϕ

• H, t |= Fϕ iff there exists t′ ≥ t such that H, t′ |= ϕ

• H, t |= Kiϕ iff for each H ′ ∈ H and m ≥ 0 if Ht ∼i H
′
m then H ′,m |= ϕ

Example: We again return to the Levels of Knowledge example from Section. In
Section 3, we gave an example of a multi-agent Kripke model in which all of the
necessary knowledge statements are true. Given the framework in this Section,
we can be more precise about where the Kripke structure comes from. In the
model below, the event t stands for a clock tick, mA→C is the event that “Ann
tells Charles that the talk is at 2PM”, mC→B is the event that “Charles tells Bob
the talks is at 2PM”, m2PM is the event that the “Ann receives the message that
the talk is at 2PM” and m3PM is the event that “Ann receives the message that
the talk is at 3PM”.

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B mC→B t
t

The uncertainty lines are derived according to the following rules: Ann is
only aware of the events m2PM ,m3PM and mA→C while Bob (only) is aware of
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the event mC→B. Let H be the highlighted branch. Then we can check that
all of the knowledge statements from Section 3 are true at H, 3 (eg., H, 3 |=
¬ KBKAKBP2PM

I Add references

4.1.1 ....and Obligation

I Formal details of the Knowledge based obligation examples from (Pacuit et al.,
2006)

4.2 ....and Effort

Moss and Parikh (1992) introduce a bimodal logic intended to formalize reasoning
about points and sets. This new logic called Topologic can also be understood as
an epistemic logic with an effort modality. Formally, the two modalities are: K
and 3. The intended interpretation of Kϕ is that ϕ is known; and the intended
interpretation of 3ϕ is that after some amount of effort ϕ can become true. For
example, the formula

ϕ→ 3Kϕ

means that if ϕ is true, then after some “work”, Kϕ can become true, i.e., ϕ is
known. In other words, the formula says that if ϕ is true, then ϕ can be known
with some effort. What exactly is meant by “effort” depends on the application.
For example, we may think of effort as meaning taking a measurement, performing
a calculation or observing a computation.

There is a temptation to think that the effort modality can be understood as
(only) a temporal operator, reading 3ϕ as “ϕ is true some time in the future”.
While there is a connection between the logics of knowledge and time and logics
of knowledge and effort, following (Moss and Parikh, 1992) we will assume that
such effort leaves the base facts about the world unchanged. In particular, in any
topologic model, if ϕ does not contain any modalities, then ϕ ↔ 2ϕ is valid.
Thus, effort will not change the base facts about the world – it can only change
knowledge of these facts.

Given a set W , a subset space is a pair 〈W,O〉, where O is a collection of
subsets of W . A point x ∈ W represents a complete description of the world in
which all ground facts are settled, whereas a set U ∈ O represents an observation.
The pair (x, U), called a neighborhood situation, can be thought of as an actual
situation together with an observation made about the situation. Formulas are
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interpreted at neighborhood situations. Thus the knowledge modality K repre-
sents movement within (consistent with) the current observation, while the effort
modality 3 represents a refining of the current observation.

Formally,

1. x, U |= Kϕ iff (∀y ∈ U)(y, U |= ϕ)

2. x, U |= 3ϕ iff (∃V ∈ O)((x ∈ V ⊆ U) and (x, V |= ϕ))

Moss and Parikh (1992) provide a sound and complete axiomatization for all
subset spaces. Georgatos (1994, 1997) provides a sound and complete axiomati-
zation for subset spaces that are topological spaces and complete lattices. For a
complete discussion of topologic and the resulting literature consult (Parikh et al.,
2006).

4.3 ....and Communication

The study of Dynamic Epistemic Logic attempts to combine ideas from dynamic
logics of actions and epistemic logic. The main idea is to start with a formal
model that represents the uncertainty of an agent in a social situation, i.e., a
Kripke model. Then define an ‘epistemic update’ operation that represents the
effect of a communicatory action, such as a public announcement, on the original
model. For example, publicly announcing a true formula ϕ, shifts from the current
model to a submodel in which ϕ is true at each state. Starting with (Plaza, 1989)
and more recently (Baltag and Moss, 2004; Kooi, 2003; van Ditmarsch, 2000;
Gerbrandy, 1999; van Benthem, 2002), logical systems have been developed with
the intent to capture the dynamics of information in a social situation. See (van
Ditmarsch et al., 2007) and (van Benthem, 2002) for a thorough discussion of the
current state of affairs.

I Add details of Public Announcement Logic

4.4 ....and Games

In a game-theoretic situation15 two types of uncertainty can be distinguished: in-
complete information and imperfect information. The former concerns uncertainty
about structure of the game (eg., available moves, players payoffs, etc.) and the
latter concerns uncertainty about the current stage of the game (i.e., precisely
which moves are currently available to a player).

15See Osborne and Rubinstein (1994) for an introduction to game theory. Technical details
about game theory that are important for this course will be introduced as needed.
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I Add a discussion about Common Knowledge of Rationality and the
Backwards Induction Solution. (Aumann, 1995), (Stalnaker, 1996),
(Halpern, 2001)

5 Logical Omniscience and Other Problems

The Single Agent Case: Suppose that Jack knows ϕ and ϕ → ψ. Must Jack
know ψ in that case? Of course a logically omniscient Jack would know. In Plato
(Plato) Socrates suggests that Jack must know ψ in such a case, but when we
follow Socrates’ conversation with the slave boy, it is clear that a person who
knows ϕ and ϕ→ ψ can be brought to see ψ, but not necessarily that he already
knows ψ. Similarly, the Kripke structure account going back to Hintikka and
others suggests that Jack must know ψ, but this account is seen to be defective
on this point. For we are well aware that most Jacks, and Jills, are not logically
omniscient. It is quite possible that they know ϕ and ϕ → ψ, but not ψ. So let
us accept this and then proceed.

It is important to note now that the fact that Jack knows ϕ and ϕ → ψ,
but not ψ is a contingent truth. Surely no logic is going to prevent Jack from
knowing ψ, and hence to discover this fact about Jack, like any other contingent
fact, we must resort to observation and experiment. Similarly, the situation that
Jack knows ϕ and ϕ→ ψ but not ψ cannot be represented by a Kripke structure,
as a Kripke structure which represents Jack as knowing ϕ and ϕ → ψ, would
necessarily represent him as knowing ψ as well. So we need another representation
of knowledge besides Kripke structures and also a method for directly measuring
Jack’s knowledge.

Such a method was suggested (for belief) long ago by Ramsey (1931). How
do we know that a chicken thinks that a particular caterpillar is poisonous? It
refuses to eat it. Of course, we might need to know a bit more about the chicken’s
past before we can attribute such a belief to it, but perhaps we already know that
the chicken ate such a caterpillar yesterday and was sick. If the current caterpillar
is of the same kind as yesterday’s, we will say that the chicken knows that it
is poisonous, and if it is of a different, benign species, then we will say that the
chicken has a false belief that it is poisonous. Such false beliefs can be deliberately
created by a supposedly lower form of life.

Mimicry is the term applied to the phenomenon presented by certain
species which, being themselves eatable, and belonging to groups which
are attacked and devoured by numerous enemies, obtain protection by
their close resemblance to some of the brightly coloured species which
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are free from attack on account of their nauseous odour or general ined-
ibility. In most cases it is not a general but a special resemblance which
serves this purpose, sometimes carried so far that the mode of flight
and general habits are imitated, as well as colour and marking. The
most numerous examples of mimicry occur among butterflies, but there
are almost equally remarkable cases among beetles and other orders of
insects, as well as a few among reptiles and birds.

From “Protective Mimicry in Animals”
by Alfred Russel Wallace, Science for All, 1881.

This is a case of what Robin Dunbar (2004) would describe as a second level
of mental representation occurring in the animal world. An animal A of species
X is creating a false belief in an animal B of species Y (the likely predator). Thus
A knows that B believes “A is dangerous.”

In any case, our knowledge about the chicken is going to be independent of
any Kripke structure and will be based on its behaviour.

With Jack, we have two methods. If Jack picks up an umbrella as he is going
out, and it is indeed raining, we will say that he knows it is raining. We might
even ask him and be rewarded with a piece of verbal behaviour (he says, ”You
know, it is raining!”) which corresponds with his action (though it might not).
Also, if he picks up his umbrella, but neglects to remind you to take yours, he
might be guilty of a lack of consideration, or perhaps a lack of logical omniscience
is the culprit here.

It is important to note that non-verbal behaviour will be a response to a
proposition, or a state of affairs. A chicken responds to how things are, and
if ϕ and ϕ′ are logically equivalent, then the chicken will act the same way in
worlds which satisfy ϕ as it does in worlds which satisfy ϕ′ – for they are in fact
the same worlds.. Verbal behaviour on the other hand is going to be a response
to sentences and it is quite easy for us to imagine that someone may assent to
“Is ϕ true?” and dissent from or express doubt about a logically (or necessarily)
equivalent ϕ′. Lois Lane may say “Yes” to ”Does Superman fly?” and respond
with “Are you kidding?” to “Does Clark Kent fly?” Until a few years ago, many
of us who willingly assented to 0 = 0, expressed doubts about Fermat’s theorem,
even though the two are logically equivalent.

Parikh (2005, 2007c) investigates this phenomenon in detail. An agent’s belief
state is represented as an element b of a space B with the property that in a
decision situation where an agent has to make a choice, either between two (or
more) actions, or between two statements, b gives us a decision. That decision
depends also on the agent’s space P of preferences. If Jack takes an umbrella
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when going out, this action depends not only on his belief that it is raining, but
also on his preference for not getting wet. Thus what we have is a map →ch:

B × P × S →ch B × C

Here S is the space of choice situations, and C is the space of actual choices.
Thus {take umbrella,don’t take umbrella} is an element of S whereas take umbrella
is an element of C.

The belief state b ∈ B can be revised by several means. It can be revised by
witnessing an external event, e.g., raindrops falling on your head; it can be revised
by hearing a sentence from someone, “Hey, it is raining!”; or it can be revised by
a deduction like, “Didn’t I just see Jill coming in with a wet umbrella? It must
be raining.”

Clearly a theory based on more observations and less theoretical deduction is
going to be messier to deal with than the current one based on Kripke structures.
But it will be more realistic and more useful.

We have talked so far about belief and not knowledge. The gap between belief
and knowledge is important of course. Knowledge requires truth, justification, and
that other magic factor which we still do not quite have (Gettier, 1963). However,
we canot understand knowledge unless we understand belief as well, and it is
important to address both kinds of lack of logical omniscience.

The Many Agent Case: More complex problems arise with many person knowl-
edge. How does Jack know that Jill knows it is raining? Perhaps he saw her take
her umbrella. But common knowledge of the fact that is raining is going to be
harder to measure and we suspect that it does not exist.

Suppose A travelling north sees a green light and also sees a car, driven by B
heading east on a cross road. No doubt B will see a red light. At this moment,
perhaps A and B have common knowledge that A should go and B should stop.
But perhaps it is much simpler, that A is conditioned to go when the light is
green and B is conditioned to stop when it is red. Such cultural habits are likely
to be the right explanation when there is co-ordinated action which we explain by
appealing to common knowledge.

We will now carry out a detailed mathematical investigation of a puzzle from
Section 1 which goes back to Littlewood (1953).

Imagine the following situation16. Two players Ann and Bob are told that the

16This sort of problem has been discussed elsewhere, e.g. Littlewood (1953); van Emde Boas
et al. (1984), etc. See Parikh (1991) for a discussion of such dialogues in both the finite and
infinite casse.
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following will happen. Some positive integer n will be chosen and one of n, n+ 1
will be written on Ann’s forehead, the other on Bob’s. Each will be able to see
the other’s forehead, but not his/her own. After this is done, they will be asked
repeatedly, beginning with Ann, if they know what their own number is.

Let us denote the situation where Ann has a and Bob has b as (a, b), and of
course |a − b| = 1. Consider now the situation (1,2). When Ann is asked if she
knows her number, she sees that Bob has a 2 and so her own number must be
either 1 or 3. Not knowing which one, she will say, “I don’t know”. However, if
Bob is asked next, he will realise that n must be 1, written on Ann’s forehead,
with 2 on his, since 0 is not a positive integer.

This argument also leads to a solution for the situation (3,2). Ann will respond
as before, since her evidence in the beginning is the same as before. However, this
time, Bob will also have to say, “I don’t know”, and so, when Ann is asked a second
time, she will realise that the situation is not the same as the one just above, and
hence that her number cannot be 1. Since 3 is the only other possibility, she will
now say, “My number is 3”

Can we continue this argument beyond 3? If the situation is, say, (4,5), then
not only must each party say, “I don’t know” at the first stage, the other party
must already expect this response. Thus Bob, seeing a 4, knows that his own
number must be either 3 or 5, and in either case, Ann must say, “I don’t know”.
Similarly, Bob must also say “I don’t know” when first asked, and Ann must
expect this answer. If the answers were already expected, then how can there be
any learning, and if there is no learning, how can there be any progress?

Nonetheless, there is a “proof” by induction on n, that the dialogue will always
terminate with one or the other player guessing his/her number. In the following,
a stage will be a single question. A round will therefore consist of two stages.

Theorem 5.1 In those cases where Ann has the even number, the reponse at the
nth stage will be, “my number is n + 1”, and in the other cases, the response at
the (n + 1)st stage will be “my number is n + 1”. In either case, it will be the
person who sees the smaller number, who will respond first.

Proof. By induction on n. We divide the cases into four categories.

(A)n: n is even, Ann has n.In this case, Bob sees n and concludes that his own
number is n− 1 or n+1. In the first case, we are in case (B)n−1 and by induction
hypothesis, if Bob’s number is n − 1, then Ann should guess her own number at
stage n−1. Since she said “I don’t know my number”, Bob realises that his number
is not n−1 and hence must be n+1, which he will say at the next stage, i.e. n+1.
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(B)n: n is odd, Bob has n. If n is 1, then at the very first stage, Ann, seeeing a
1, will say, “my number is 2”. If n > 1, then we reduce to the case (A)n−1 as above.

(C)n: n is even, Bob has n. Ann knows that her number is n − 1 or n + 1. If
it were n − 1, Bob would say at stage n that his number is n. Hence, when Bob
says “I don’t know my number”, she realises that she is in case (C)n rather than
in (D)n−1 and at the next stage she guesses her number.

(D)n: n is odd, Ann has n. This case is like the case (B). Note that if n is 1, then
the number will be guessed at stage 2, since that is Bob’s first chance to speak.

qed

However, there is a gap in this argument in that both Ann and Bob’s reasoning
depends heavily on what the other one is thinking, including a consideration of
what the other does not know. Ann’s reasoning is justified if Bob thinks as she
believes he does, and Bob’s reasoning is justified if she thinks as he believes she
does. But there is no guarantee that they do indeed think this way. How do we
justify what each thinks and what each does and does not know?

In order to deal with this question we need some apparatus. We will use the
Kripke structures as defined in Section ??

In the example we are looking at, the set of states W = {(m,n)|m,nεN+

and |m − n| = 1}. If s, t ∈ W and i ∈ {1, 2}, then sRit iff (s)j = (t)j , where
j = 3− i, and (s)j is the j-the component of s. Intuitively, sRit means that when
the dialogue begins, player i cannot distinguish between s and t, where Ann is
player 1 and Bob is player 2.

Definition 5.2 (Closed Sets) A subset X of W is i-closed if s ∈ X and sRit
imply that t ∈ X. X is closed if it is both 1-closed and 2-closed. /

Using this notion, we can give an alternative characterization of common
knowledge (cf. Definition 3.6).

Definition 5.3 (Common Knowledge, again) Given multi-agent Kripke model
M = 〈W, {Ri}i∈A, V 〉, X ⊆ W , and s ∈ X, then i knows X at s iff for all t, sRit
implies that t ∈ X. X is common knowledge at s iff there is a closed set Y
such that s ∈ Y ⊆ X. /

What we have given above amounts to endorsing a Kripke structure account
of knowledge, which justifies the theorem above, but which we have already found
defective. Now we proceed to a somewhat more realistic and more behavioral
account of how Ann and Bob may actually proceed.
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Definition 5.4 (Interactive Discovery System) An IDS (interactive dis-
covery system) for M is a map f : W ×N+ → {“no”} ∪W such that for each
odd n, f(s, n) (Ann’s response at stage n) depends only on the R1 equivalence
class of s and on f(s,m) for m < n. For each even n, f(s, n) depends only on the
R2 equivalence class of s and on f(s,m) for m < n. /

Thus, e.g. if n is odd and sR1t and for all m < n, f(s,m) = f(t,m) then
f(s, n) = f(t, n).

The answer “no” means “I don’t know my number”, whereas saying one’s own
number is equivalent to giving the full state. We shall refer to “no” as the trivial
response. Any other response will be non-trivial.

Definition 5.5 (Sound IDS) The IDS f is sound if for all s, if f(s, n) 6= “no”,
then f(s, n) = s. We define if (s) = µn(f(s, n) 6= “no”) and p(s) = 1 if if (s) is
odd and 2 if if (s) is even. (Here µ stands for “least”. if (s) = ∞ if f(s, n) is
always “no”. We may drop the subscript f from if if it is clear from the context.)

/

Note that we allow people to be ignorant even when they should not be, but a
sound IDS requires that all nontrivial responses be correct. Thus the IDS which
takes the constant value “no” is sound though it may not be very interesting. The
IDS used by most non-mathematicians may correspond to the strategy, “if you
see a 1, then say 2. If you see a 2 and the other player has already said ‘no’,
then say 3. Otherwise say ‘I don’t know’ ”. This strategy is also sound, but not
optimal. Without loss of generality we will confine ourselves to functions f where
the dialogue after any non-trivial response is constant. I.e. if one person says the
state s, then it is s thereafter.

Lemma 5.6 Let f be a sound IDS. Let sRit, i(s) = k < ∞ and p(s) = i. Then
i(t) < k and p(t) 6= i.

Proof. At stage i(s), i has evidence distinguishing between s and t. Since all
previous utterances associated with s were “no”, some previous utterance associ-
ated with t must have been nontrivial. Formally, f(s, i(s)) = s 6= f(t, i(s)). But
sRit. Hence (∃m < i(s))(f(s,m) 6= f(t,m)). Since m < i(s), f(s,m) = “no” and
so f(t,m) 6= “no”. Thus i(t) ≤ m < i(s). Now, if p(t) = i, then, by a symmetric
argument, we could prove also that i(t) < i(s). But this is absurd. Hence p(t) 6= i.

qed

Corollary 5.7 Suppose that p(s) = i and there is a chain s = s1R1s2R2s3R1 · · · sm.
Then i(s) ≥ m.
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Proof. i(sm) ≥ 1. Now we can show using induction on k and lemma 1, that
i(sm−k) ≥ k+1. For we have i(sm−k) > i(sm−k+1) = i(sm−(k−1)) ≥ k (by induction
hypothesis). Taking k = m− 1 we get i(s1) ≥ m. qed

Corollary 5.8 Suppose that there is a chain s1R1s2R2s3R1...smR2s1, with m > 1.
Then i(si) = ∞ for all i.

Proof. If, say, i(s1) = k <∞, we would get i(s1) > i(s2) > ... > i(sm) > i(s1), a
contradiction. qed

Remark 5.9 (What does Theorem 5.1 say?) We now return to a discussion
of the proof of theorem 5.1 above. The theorem is really a proof that the IDS f
is sound where f is defined by:

Ann’s strategy: If you see 2n+1, then say n “no”’s and then, if Bob has not said
his number, say “2n+2”. If you see 2n, then say n “no”’s and if Bob has not said his
number, say “2n+1”.

Bob’s strategy: If you see 2n+1, then say n “no”’s and then, if Ann has not said
her number, say “2n+2”. If you see 2n, then say n “no”’s and if Ann has not said
her number, say “2n+1”.

These strategies yield: i(2n+2, 2n+1) = 2n+1, i(2n, 2n+1) = 2n, i(2n+1, 2n+
2) = 2n + 2 and i(2n + 1, 2n) = 2n + 1. In other words, the smaller number if
Ann’s number is even, and the bigger number if it is odd. These strategies are
optimal. E.g. we have

(6, 5) R1 (4, 5) R1 (4, 3) R1 (2, 3) R2 (2, 1)

and hence i(6, 5) has a minimum value of 5, the value achieved by the strategy
above.

Theorem 5.10 The strategies implicit in theorem 1 and described in remark 1
are optimal. I.e. if h is any other sound IDS, then if (s) ≤ ih(s) for all s.

Proof. By cases. Suppose, for example, that Ann has an even number and
s = (2n, 2n − 1). if (s) = 2n − 1. Suppose Bob is the one who first notices
the state. Then we have (2n, 2n − 1)R2(2n, 2n + 1)R1(2n + 2, 2n + 3)..., and by
lemma 1, ih(s) could not be finite. So Ann does first discover s. But then we have
(2n, 2n− 1)R1(2n− 2, 2n− 1)R2(2n− 2, 2n− 3) · · ·R2(2, 1) and so, by lemma 1,
ih(s) ≥ 2n− 1. qed
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Remark 5.11 (Common Knowledge of the IDS) We have not said whether
the IDS f itself is common knowledge between Ann and Bob. The reason is, it
does not matter. If they do act as described in the strategy, then their utterances
will be correct whenever they are non-trivial.

How can Ann and Bob learn such co-ordinated strategies? Perhaps they both
start with a naive strategy where each says “I don’t know” except when (s)he
sees a 1, and says “My number is 2,” if a 1 is seen. But once each is acting that
way, it is possible for one of them to proceed to a more sophisticated situation.
If the other person has a 2 on his forehead, but does not say, “My number is 2,”
then that signals that my number must be 3 since it cannot be 1. Thus group
activities involving some sort of co-ordination may evolve without anyone planning
that they evolve just this way.

6 Reasoning about Knowledge in the Context of

Social Software

We end these notes by re-examining the original motivation for developing formal
models of knowledge in multi-agent situations. Namely, how the formal analysis
we developed in the previous sections fits into a larger theory of social software.
We do this by highlighting three examples where knowledge-theoretic properties
are important for the analysis of a social procedure.

6.1 Knowledge and Social Networks

The topic “who knew what and when” is not just of interest to epistemic logicians.
Often it is the subject of political scandals (both real and imagined). For exam-
ple, consider the much talked about Valerie Plame affair. A July 2003 column
in the Washington Post reported that Plame was an undercover CIA operative.
This column generated much controversy due to the fact that such information
(the identity of CIA operatives) is restricted to the relevant government officials.
Of course, in this situation, we know full well “Who knew what and when”: in
July of 2003, Robert Novak (the author of the article) knew that Plame was a
CIA operative. What creates a scandal in this situation is how Novak came to
know such information. Since the CIA goes to great lengths to ensure that com-
munication about sensitive information is contained within its own organization,
the only way Novak could have known that Plame was a CIA operative was if a
communication channel had been created between Novak and someone inside the
CIA organization.
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To put this a bit more formally, given a set of agents A, call any graph G =
(A, E) a communication graph where the intended interpretation of an edge
between agent i and agent j is that i and j can communicate. In this setting, the
CIA can be represented as a connected component of G. Given that the CIA is
the only group of agents that (initially) knows the identity of CIA operatives, and
Novak is not an element of the CIA component of G then we can conclude that
Novak did not originally know the identity of CIA operatives and no amount of
communication that respects the graph G can create a situation in which Novak
does know the identity of a CIA operative. Thus Novak’s report in the Washington
Post implied that our original communication graph was incorrect17. That is,
there must be an edge (or a chain) between Novak and some agent inside the CIA
component. Since in principle, Novak could be connected to any member of the
CIA component, much resources and time has been spent discussing the possible
edges.

A multi-agent epistemic logic with a communication modality where agents
are assumed to communicate according to some fixed communication graph is
developed in (Pacuit and Parikh, 2005, 2007). Agents are assumed to have some
private information at the outset, but may refine their information by acquiring
information possessed by other agents, possibly via yet other agents. That is, each
agent is initially informed about the truth values of a finite set of propositional
variables. Agents are assumed to be connected by a communication graph. In the
communication graph, an edge from agent i to agent j means that agent i can
directly receive information from agent j. Agent i can then refine its information
by learning information that j has, including information acquired by j from
another agent, k.

In keeping with the CIA-theme, we give an example from Pacuit and Parikh
(2005) of the type of situations that we have in mind. LetKiϕmean that according
to i’s current information ϕ is true. Given a communication graph G = (A, E),
we say that a sequence of communications (i learns a fact from j who learns a
fact from k, and so on) respects the communication graph if agents only
communicate with their immediate neighbors in G. Let 3ϕ mean that ϕ becomes
true after a sequence of communications that respects the communication graph.
Suppose now that ϕ is a formula representing the exact whereabouts of Bin Laden,
and that Bob, the CIA operative in charge of maintaining this information knows
ϕ. In particular, KBobϕ, but suppose that at the moment, Bush does not know
the exact whereabouts of Bin Laden (¬KBushϕ). Presumably Bush can find out
the exact whereabouts of Bin Laden (3KBushϕ) by going through Hayden, but

17Of course, it could also mean that we were incorrect about the agents’ initial information
— Novak could have had previous knowledge about the identity of CIA agents. In this paper,
we are interested in studying communication and so will not consider this case.
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of course, we cannot find out such information (¬3KEϕ ∧ ¬3KRϕ) since we do
not have the appropriate security clearance. Clearly, then, as a pre-requisite for
Bush learning ϕ, Hayden will also have to come to know ϕ. We can represent this
situation by the following formula:

¬KBushϕ ∧2(KBushϕ→ KHaydenϕ)

where 2 is the dual of diamond (2ϕ is true if ϕ is true after every sequence of
communications that respect the communication graph).

6.2 Manipulating a Fair Division Procedure

Suppose there are two players, called Ann (A) and Bob (B), and n (divisible18)
goods (G1, . . . , Gn) which must be distributed to Ann and Bob. Steven Brams
and Alan Taylor invented an algorithm called Adjusted Winner (AW ) to “fairly”
divide these goods between Ann and Bob (Brams and Taylor, 1996). We begin
by discussing an example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing four goods: G1, G2, G3 and G4. Adjusted
Winner begins by giving each of Ann and Bob 100 points to divide among the
four goods as they see fit. Say Ann assigns points 15, 46, 14, and 25 respectively
to G1 through G4, and Bob assigns 7,36,12, and 45. We get the following table:

Item Ann Bob
G1 15 7
G2 46 36
G3 14 12
G4 25 45

Total 100 100

The first step of the procedure is to give each agent the goods for which it assigns
more points. So, Ann receives the goods G1, G2 and G3 while Bob receives G4.
However this is not an equitable outcome since Ann has received 75 points while
Bob only received 45 points (each according to their personal valuation). We
must now transfer some of Ann’s goods to Bob. In order to determine which
goods should be transfered from Ann to Bob, we look at the ratios of Ann’s
valuations to Bob’s valuations. For G1 the ratio is 15/7 ≈ 2.14, for G2 the ratio
is 46/36 ≈ 1.28, and for G3 the ratio is 14/12 ≈ 1.17. Since 1.17 is the smallest

18Actually all we need to use is that one particular good is divisible. However, since we do not
know before the algorithm begins which good will be divided, we assume all goods are divisible.
See (Brams and Taylor, 1996) for a discussion of this fact.
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ratio (i.e., the ratio closest to 1), we transfer as much of G3 as needed from Ann
to Bob19 to achieve equitability.

However, even giving all of item G3 to Bob will not create an equitable division
since Ann still has 61 points, while Bob has only 57 points. In order to create
equitability, we must now transfer part of item G2 from Ann to Bob. Let p be the
proportion of item G2 that Ann will keep. Then p should satisfy

15 + 46p = 45 + 12 + 36(1− p)

yielding p = 78/82 ≈ 0.9512, so Ann will keep 95.12% of item G2 and Bob will
get 5.12% of item G2. Thus both Ann and Bob receive 58.76 points. It turns out
that this allocation (Ann receives all of G1 and 95.12% of G3 and Bob receives all
of items G4 and G3, plus 5.12% of item G2) is envy-free, equitable and efficient,
or Pareto optimal. In fact, Brams and Taylor show that Adjusted Winner always
produces such an allocation Brams and Taylor (1996).

It turns out that agents may improve their total allocation by misrepresenting
their preferences. The following example from Brams and Taylor (1996) illustrates
how Ann can deceive Bob. Suppose that Ann and Bob are dividing two paintings:
one by Matisse and one by Picasso. Suppose that Ann and Bob’s actual valuations
are given by the following table.

Item Ann Bob
Matisse 75 25
Picasso 25 75

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or
her points.

But now suppose Ann knows Bob’s preferences, but Bob does not know Ann’s.
Can Ann benefit from being insincere? Suppose that Ann announces the following
allocation:

Item Ann Bob
Matisse 26 25
Picasso 74 75

So Ann will get the Matisse, receiving 26 of her announced (and insincere) points
and Bob gets 75 of his announced points. But Ann will also get a time share in
the Picasso! Let x be the fraction of the Picasso that Ann will get, then we want

26 + 74p = 75− 75p

19When the ratio is closer to 1, a unit gain for Bob costs a smaller loss for Ann.
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Solving for p gives us p = 0.33 and each gets 50 of his or her announced preference.
In terms of Ann’s true preference, however, the situation is very different. She
is getting from her true preference 75 + 0.33 ∗ 25 = 83.33 (cf. Theorem ?? from
Brams and Taylor (1996) for a proof that this is, in fact, the best Ann can do).

However, while honesty may not always be the best policy, it is the only safe
one; i.e., it is the only one which will guarantee 50%. For suppose that Ann’s
actual valuation is (a1, ..., an) but she reports (c1, ..., cn). We show how she can
end up with less than 50%. Suppose that Bob also reported (c1, ..., cn). We know
that in that case both Ann and Bob would get exactly 50% of their declared
valuations. So Ann would receive 50% according to her declared valuation and
this might be different from her actual valuation. To see how it might be less
consider the eventuality that Bob reports slightly more than ci when ci < ai and
slightly less than ci when ci > ai. In the initial allocation then Bob will get all
the pieces where Ann’s declared valuation is less than her actual valuation, and
Ann will get those where it is more. There will be adjustments of course, but
Ann will still tend to get pieces where her declared valuation is more than her
actual valuation. If she gets (approximately) 50% by her declared valuation, then
it will be less than 50% by her actual valuation. Thus she can lose out by being
dishonest (unless of course she knows something about Bob’s declared values).

Suppose both players know each other’s preferences but neither knows that
the other knows their own. Their announced point allocations might then be as
follows:

Item Ann Bob
Matisse 26 74
Picasso 74 26

Each will get 74 of his or her announced points, but each one is really getting only
25 of his or her true points. The following theorem of Brams and Taylor describes
the situation when agents divide two goods.

Suppose both players know each other’s preferences. Moreover, Ann knows
that Bob knows her preference and Bob doesn’t know that Ann knows, then the
announced allocation will be as follows:

Item Ann Bob
Matisse 73 74
Picasso 27 26

Now suppose they both know each other’s preference and each know that the other
person knows his or her preference. Then the announced valuations will be:

Item Ann Bob
Matisse 73 27
Picasso 27 73
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What happens as the level of knowledge increases?

6.3 Strategic Voting

The following example is from (Brams and Fishburn, 1994). Suppose that there
are four candidates O = {o1, o2, o3} and nine voters divided into three groups:
A,B and C. Suppose that the sizes of the groups are given as follows: |A| = 4,
|B| = 3, and |C| = 2. We assume that all the voters in each group have the same
true preference and that they all vote the same way. Suppose that the voting
procedure is plurality voting. Assume the voters’ true preferences are as follows:

P ∗
A = o1 >P ∗

A
o3 >P ∗

A
o2

P ∗
B = o2 >P ∗

B
o3 >P ∗

B
o1

P ∗
C = o3 >P ∗

C
o1 >P ∗

C
o2

Since we assume that in the absence of additional information, the voters will
vote sincerely20, candidate o1 will win an initial election with a total of 4 votes.
Now, Brams and Fishburn make the following assumption about the effect of poll
information on a candidates choice of vote: “After the poll, voters will adjust their
voting strategies to differentiate between the top two candidates, as indicated by
the poll, if they prefer one of these candidates to the other one of these choices.
Given that they are not indifferent between the top two candidates in the poll, they
will vote after the poll for the one of these two they prefer” Brams and Fishburn
(1994). Following this protocol, only the voters in group C will change their
votes. Given that they prefer o1 to o2, group C will give their votes to candidate
o1, thus strengthening the lead of o1. However, note that it is candidate o3 who
is the Condorcet candidate, i.e., a candidate who defeats every other candidate in
a pairwise contest.

Brams and Fishburn go on to generalize this example and show that if the
voters follow the protocol described above, then under plurality voting, if the
Condorcet candidate is not one of the top two candidates identified by the poll,
then that Condorcet candidate will always lose. In the above example, the pro-
tocol is set up so that the second round of votes is a fixed point, i.e., the voters
will not change their votes a second time. The next example (from Chopra et al.
(2004)) describes a situation in which a fixed point does not occur until round IV:

Example: Suppose that there are four candidates O = {o1, o2, o3, o4} and five
groups of voters: A,B,C,D and E. Suppose that the sizes of the groups are given

20See Parikh and Pacuit (2005) for a proof of the fact that voting honestly is the only protocol
which dominates not voting under plurality voting.

43



July 3, 2007 6.3 Strategic Voting

as follows: |A| = 40, |B| = 30, |C| = 15, |D| = 8 and |E| = 7. We assume that
all the voters in each group have the same true preference and that they all vote
the same way. Suppose that the voting procedure is plurality voting. The voters’
true preferences are as follows:

P ∗
A = o1 >P ∗

A
o4 >P ∗

A
o2 >P ∗

A
o3

P ∗
B = o2 >P ∗

B
o1 >P ∗

B
o3 >P ∗

B
o4

P ∗
C = o3 >P ∗

C
o2 >P ∗

C
o4 >P ∗

C
o1

P ∗
D = o4 >P ∗

D
o1 >P ∗

D
o2 >P ∗

D
o3

P ∗
E = o3 >P ∗

E
o1 >P ∗

E
o2 >P ∗

E
o4

We assume that the voters all use the following protocol. If the current winner is
o, then voter i will switch its vote to some candidate o′ provided:

1. i prefers o′ to o, formally o′ >Pi
o, and

2. the current total for o′ plus voter i’s group’s votes for o′ is greater than the
current total for o.

By this protocol a voter (thinking only one step ahead) will only switch its vote
to a candidate which is currently not the winner. Initially, we assume that the
voters all report their (unique) sincere vote. The following table describes what
happens if the voters use this protocol. The candidates in bold are the winner of
the current election round.

Size Group I II III IV
40 A o1 o1 o4 o1

30 B o2 o2 o2 o2

15 C o3 o2 o2 o2

8 D o4 o4 o1 o4

7 E o3 o3 o1 o1

In round I, everyone reports their top choice and o1 is the winner. C likes o2

better than o1 and its own total plus B’s votes for o2 exceed the current votes
for o1. Hence by the protocol, C will change its vote to o2. A will not change
its vote in round II since its top choice is the winner. D and E also remain fixed
since they do not have an alternative like o′ required by the protocol. In round
III, group A changes its vote to o4 since it is preferred to the current winner (o2)
and its own votes plus D’s current votes for o4 exceed the current votes for o2. B
and C do not change their votes. For B’s top choice o2 is the current winner and
as for C, they have no o′ better than o2 which satisfies condition 2). Ironically,
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Group D and E change their votes to o1 since it is preferred to the current winner
is o2 and group A is currently voting for o1. Finally, in round IV, group A notices
that E is voting for o1 which A prefers to o4 and so changes its votes back to o1.
The situation stabilizes with o1 which, as it happens, is also the Condorcet winner.

Finally, an example in which the strategizing does not stabilize.

Example: Consider three candidates {o1, o2, o3}, and 100 voters. Suppose that
there are three groups of voters A, B, and C. The sizes of the groups are |A| = 40,
|B| = 30 and |C| = 30. The actual preferences are given as follows:

P ∗
A = o1 >P ∗

A
o2 >P ∗

A
o3

P ∗
B = o2 >P ∗

B
o3 >P ∗

B
o1

P ∗
C = o3 >P ∗

C
o1 >P ∗

C
o2

Assume that the voters use the following protocol. A voter i will switch its vote
for o to o′ provided (assume w is the current winner)

1. o′ is i’s second choice and the current winner is i’s last choice, or

2. o′ is i’s top choice and the current winner is i’s top choice.

Assuming that the voting protocol is plurality voting and that all voters follow
the above protocol generates the following table.

Size Group I II III IV V VI VII VIII IX · · ·
40 A o1 o1 o2 o2 o2 o1 o1 o2 o1 · · ·
30 B o2 o3 o3 o2 o2 o2 o3 o3 o3 · · ·
30 C o3 o3 o3 o3 o1 o1 o1 o3 o3 · · ·

After reporting their initial preferences, candidate o1 will be the winner with 40
votes. The members of group B dislike o1 the most, and will strategize in the
next election by reporting o3 as their preference. So, in the second round, o3

will win. But now, members of group A will report o2 as their preference, in an
attempt to draw support away from their lowest ranked candidate. o3 will still win
the third election, but by changing their preferences (and making them public)
group A sends a signal to group B that it should report its true preference - this
will enable group A to have its second preferred candidate o2 come out winner.
This cycling will continue indefinitely; o2 will win for two rounds, then o1 for two
rounds, then o3 for two, etc.
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7 Notes

Relevant Conferences: A number of regular conferences address issues sur-
rounding formal epistemology:

• FEW: Formal Epistemology Workshop is a yearly conference aimed at gen-
eral issues in formal epistemology:

ist-socrates.berkeley.edu/∼fitelson/few/

• TARK: Theoretical Aspects of Rationality and Knowledge is a bi- annual con-
ference on the interdisciplinary issues involving reasoning about rationality
and knowledge:

www.tark.org

• LOFT: Logic and the Foundations of Game and Decision Theory is a bi-
annual conference which focuses, in part, on applications of formal episte-
mology in game and decision theory:

www.econ.ucdavis.edu/faculty/bonanno/loft.html

• KR: Conference on the Principles of Knowledge Representation and Rea-
soning is a bi-annual conference geared towards computer scientists that
emphasizes both theoretical and practical applications (although the focus
in on knowledge representation as opposed to reasoning about knowledge).

www.kr.org

• See also the website

www.cs.gc.cuny.edu/∼kgb
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