Problem Set 6 Introduction to Modal Logic

Institute for Logic, Language and Computation Universiteit van Amsterdam

Due October 19, 2005

- 1. Prove any two of the following:
 - Let F be a filter over W, prove that F is an ultrafilter if and only if it is proper and maximal, that is, it has no proper extension
 - Prove that a filter F (over W) is an ultrafilter if and only if it is proper and for each pair of subsets X, Y of W we have that $X \cup Y \in F$ iff $X \in F$ or $Y \in F$.
 - Prove that an ultarfilter is non-principal if and only if it contains only infinite sets if and only if it contains all co-finite sets.
- 2. (Exercise 2.5.5, pg. 99) Given a model $\mathfrak{M} = \langle W, R, V \rangle$ and two ultrafilters u and v over W, show that $uR^{ue}v$ if and only if $\{Y \mid l_R(Y) \in u\} \subseteq v$.
- 3. We first need some definitions. Let $\mathcal{F} = \langle W, R \rangle$ be any frame.

 \mathcal{F} is weakly dense if \mathcal{F} satisfies $\forall x \forall y (xRy \rightarrow \exists z (xRz \land zRy)).$

 \mathcal{F} is weakly connected if \mathcal{F} satisfies $\forall x \forall y \forall z (xRy \land xRz \rightarrow zRy \lor y = z \lor yRz$.

 \mathcal{F} is weakly directed if \mathcal{F} satisfies $\forall x \forall y \forall z (xRy \land xRz \exists u (yRu \land zRu)).$

Prove any two of the following:

- A frame \mathcal{F} is weakly dense if and only if $\Box \Box \phi \to \Box \phi$ is valid on \mathcal{F} .
- A frame \mathcal{F} is weakly connected if and only if $\Box(\phi \land \Box \phi \to \psi) \lor \Box(\psi \land \Box \psi \to \phi)$ is valid on \mathcal{F} .
- A frame \mathcal{F} is weakly directed if and only if $\Diamond \Box \phi \to \Box \Diamond \phi$ is valid on \mathcal{F} .