CS 6280 - Multi agent systems Krzysztof R. Apt

CWI, Amsterdam University of Amsterdam National University of Singapore

Elimination of Dominated Strategies

Strict Dominance: Recap

Consider a game $(S_1, \ldots, S_n, p_1, \ldots, p_n)$.

• A strategy s'_i strictly dominates a strategy s''_i , or equivalently, a strategy s''_i is strictly dominated by a strategy s'_i if

$$p_i(s'_i, s_{-i}) > p_i(s''_i, s_{-i})$$

for all $s_{-i} \in S_{-i}$.

• A strategy of player *i* is **strictly dominant** if it strictly dominates any other of his strategy.

Example

Consider

		Two L M R		
One	Т	3,3	3,1	3,2
	В	2,2	2,4	2,1

By eliminating all strictly dominated strategies the game is reduced to

> Two L M

One T 3,3 3,1 Now, strategy M *is* strictly dominated by the strategy L. Eliminating it we obtain Two

L

One T 3,3

Conclusion

Rational players **One** and **Two** will play (**T**, **L**).

- Why? Common Knowledge of rational behaviour:
 - One knows that Two will not play R.
 - Two knows that One will not play B.
 - One knows that Two knows that One will not play B. So One knows that Two knows that One will play T.
 - • •
- How general is this elimination process?
- In the Battle of the Sexes game no strategy (strictly or weakly) dominates another:

Woman F B

F 2,1 0,0

Man

B 0,0 1,2

• Do we keep all Nash equilibria?

Iterated Deletion

• Given a game $G := (S_1, \ldots, S_n, p_1, \ldots, p_n)$ and non-empty sets of strategies S'_1, \ldots, S'_n such that $S'_i \subseteq S_i$ for $i \in [1..n]$ we say that

$$G' := (S'_1, \dots, S'_n, p_1, \dots, p_n)$$

is a **subgame** of G and identify in the context of G' each payoff function p_i with its restriction.

• Consider a game $G := (S_1, \ldots, S_n, p_1, \ldots, p_n)$ and its subgame $G' := (S'_1, \ldots, S'_n, p_1, \ldots, p_n)$. Let

$$G \to_S G'$$

when $G \neq G'$ and for all $i \in [1..n]$ each $s''_i \in S_i \setminus S'_i$ is strictly dominated in Gby some $s'_i \in S_i$.

Note: we do not require that all strictly dominated strategies are deleted.

Iterated Deletion and Nash Equilibria

Strict Elimination Lemma

Suppose that $G \to {}_{S}G'$. Then s is a Nash equilibrium of G' iff it is a Nash equilibrium of G. **Proof.** Let

$$G := (S_1, \ldots, S_n, p_1, \ldots, p_n),$$

and

$$G' := (S'_1, \dots, S'_n, p_1, \dots, p_n).$$

 (\Rightarrow) Suppose s is not a Nash equilibrium of G. Then for some $i \in [1..n]$ and $s'_i \in S_i$

$$p_i(s'_i, s_{-i}) > p_i(s).$$

Choose s'_i for which $p_i(s'_i, s_{-i})$ attains the maximum. s'_i is eliminated since s is a Nash equilibrium of G'. So for some $s^*_i \in S_i$

 $p_i(s_i^*,s_{-i}'') > p_i(s_i',s_{-i}'') \text{ for all } s_{-i}'' \in S_{-i}.$ In particular

 $p_i(s_i^*, s_{-i}) > p_i(s_i', s_{-i}),$

which contradicts the choice of s'_i .

Iterated Deletion and Nash Equilibria, ctd

 (\Leftarrow) For each player the set of his strategies in G' is a subset of the set of his strategies in G.

So to prove that s is a Nash equilibrium of G' it suffices to prove that no strategy constituting s is eliminated.

Suppose otherwise. Then some s_i is eliminated, so for some $s'_i \in S_i$

 $p_i(s'_i, s''_{-i}) > p_i(s_i, s''_{-i}) \text{ for all } s''_{-i} \in S_{-i}.$ In particular

$$p_i(s'_i, s_{-i}) > p_i(s_i, s_{-i}),$$

so s is not a Nash equilibrium of

$$(S_1,\ldots,S_n,p_1,\ldots,p_n).$$

Iterated Deletion, ctd

- G' is an outcome of an iterated elimination of strictly dominated strategies from the game G (IES) if for no game $G'', G' \to_S G''$.
- G is solved by an iterated elimination of strictly dominated strategies if in G' each player has just one strategy.

Theorem

Suppose that G' is an outcome of an IES starting in the game G.

- (i) Then s is a Nash equilibrium of G' iff it is a Nash equilibrium of G.
- (ii) If G is solved by an iterated elimination of strictly dominated strategies, then the resulting joint strategy is a unique Nash equilibrium of G.

Iterated Deletion, ctd

In other words,

- each Nash equilibrium of the initial game **survives** any iterated elimination of strictly dominated strategies,
- each Nash equilibrium of an outcome of an iterated elimination of strictly dominated strategies **is also** a Nash equilibrium of the initial game,
- if a game is solved by an iterated elimination of strictly dominated strategies, then the **resulting joint strategy** is its Nash equilibrium.

Proof.

(i) By the repeated application of the Strict Elimination Lemma.

(*ii*) Note that (s_1, \ldots, s_n) is a unique Nash equilibrium of the game $(\{s_1\}, \ldots, \{s_n\}, p_1, \ldots, p_n)$ Apply (*i*).

Order Independence

Strict Dominance Theorem

All iterated eliminations of strictly dominated strategies yield the same outcome.

Crucial tool: **Newman's Lemma** (1942).

Weak Confluence

- A a set, \rightarrow a binary relation on A. \rightarrow^* : the transitive reflexive closure of \rightarrow .
- b is a \rightarrow -normal form of a if

 $-a \rightarrow^* b$,

 $-\operatorname{no} c$ exists such that $b \to c$.

- If each a ∈ A has a unique normal form, then (A, →) satisfies the unique normal form property.
- \rightarrow is **weakly confluent** if $\forall a, b, c \in A$

implies that for some $d \in A$

Newman's Lemma ('42)

Consider (A, \rightarrow) such that

- **no infinite** \rightarrow sequences exist,
- \rightarrow is weakly confluent.

Then \rightarrow satisfies the **unique normal form property**.

Application to Strict Dominance

Observe:

- no infinite \rightarrow_S sequences exist.
- One can show that \rightarrow_S is weakly confluent.
- Conclusion: strict dominance is **order independent**.

Strict Dominance: Summary

- Elimination of strictly dominated strategies preserves Nash equilibria.
- An iterated elimination of strictly dominated strategies yields a unique outcome.

Weak Dominance: Recap

Consider a game $(S_1, \ldots, S_n, p_1, \ldots, p_n)$.

• A strategy s'_i weakly dominates a strategy s''_i , or equivalently, a strategy s''_i is weakly dominated by a strategy s'_i if

$$p_i(s'_i, s_{-i}) \ge p_i(s''_i, s_{-i})$$

for all $s_{-i} \in S_{-i}$, and

$$p_i(s'_i, s_{-i}) > p_i(s''_i, s_{-i})$$

for some $s_{-i} \in S_{-i}$.

• A strategy of player *i* is **weakly dominant** if it weakly dominates any other of his strategy.

Example

Consider

		Head	Two Tail	Edge
One	Head	-1,1	1,-1	-1,-1
	Tail	1,-1	-1,1	-1,-1
	Edge	-1,-1	-1,-1	-1,-1

- No strategy is **strictly dominated** by another one. So the IES yields no change.
- (Edge, Edge) is its only Nash equilibrium,
- For each player Edge is the only strategy that is **weakly dominated**.
- Any form of elimination of the Edge strategies yields the Matching Pennies game that has no Nash equilibrium.

So during this eliminating process we **'lost'** the only Nash equilibrium.

Partial Result

Define $G \to WG'$ analogously as $G \to {}_SG'$.

Weak Elimination Lemma

Suppose that $G \to WG'$. If s is a Nash equilibrium of G', then it is a Nash equilibrium of G.

Weak Dominance Theorem

Suppose that G' is an outcome of an iterated elimination of weakly dominated strategies from the game G.

- (i) If s is a Nash equilibrium of G', then it is a Nash equilibrium of G.
- (ii) If G is solved by an iterated elimination of weakly dominated strategies, then the resulting joint strategy is a Nash equilibrium of G.

Problems with Order Independence

Consider

		Two		
		L	R	
	Т	3,2	2,2	
One	М	1,1	0,0	
	В	0,0	1,1	
1. Eliminate B first:				
		Τv	Two	
		L	R	
One	Т	3,2	2,2	
	М	1,1	0,0	

Now L weakly dominates R and T strictly dominates M, so we get:

Two L One T 3,2 Problems with Order Independence, ctd

strictly dom-

2. Eliminate first M:

Two				
		L	R	
One	Т	3,2	2,2	
	В	0,0	1,1	
Now I	R WE	eakly do	ominates L and T	
inates	5 B:			
		Two R		
One	Т	2,2		
3. Eliminate first both M and B:				
Two				
		L	R	
One	Т	3,2	2,2	

So **three** different outcomes were produced.

Weak Dominance: Summary

- Elimination of weakly dominated strategies can lead to a deletion of Nash equilibria.
- An iterated elimination of weakly dominated strategies does not yield a unique outcome.