CS 6280 - Multi agent systems Krzysztof R. Apt

CWI, Amsterdam

University of Amsterdam National University of Singapore

Elimination of Dominated Strategies

Strict Dominance: Recap

Consider a game $\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)$.

- A strategy s_{i}^{\prime} strictly dominates a strategy $s_{i}^{\prime \prime}$, or equivalently, a strategy $s_{i}^{\prime \prime}$ is strictly dominated by a strategy s_{i}^{\prime} if

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}^{\prime \prime}, s_{-i}\right)
$$

for all $s_{-i} \in S_{-i}$.

- A strategy of player i is strictly dominant if it strictly dominates any other of his strategy.

Example

Consider

\[

\]

One

$$
\text { B } \quad 2,2 \quad 2,4 \quad 2,1
$$

By eliminating all strictly dominated strategies the game is reduced to

$$
L^{\text {Two }} \quad \text { M }
$$

One T 3,3 3,1
Now, strategy M is strictly dominated by the strategy L. Eliminating it we obtain

Two
 L

One T 3,3

Conclusion

Rational players One and Two will play (T, L).

- Why? Common Knowledge of rational behaviour:
One knows that Two will not play R.
Two knows that One will not play B.
One knows that Two knows that One will not play B. So One knows that Two knows that One will play T.
- How general is this elimination process?
- In the Battle of the Sexes game no strategy (strictly or weakly) dominates another:

$$
\begin{aligned}
& \text { Woman } \\
& \text { F B }
\end{aligned}
$$

$$
\text { F } 2,1 \quad 0,0
$$

Man

$$
\text { B } 0,0 \quad 1,2
$$

- Do we keep all Nash equilibria?

Iterated Deletion

- Given a game $G:=\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)$ and non-empty sets of strategies $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$ such that $S_{i}^{\prime} \subseteq S_{i}$ for $i \in[1 . . n]$ we say that

$$
G^{\prime}:=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}, p_{1}, \ldots, p_{n}\right)
$$

is a subgame of G and identify in the context of G^{\prime} each payoff function p_{i} with its restriction.

- Consider a game $G:=\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)$ and its subgame $G^{\prime}:=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}, p_{1}, \ldots, p_{n}\right)$. Let

$$
G \rightarrow_{S} G^{\prime}
$$

when $G \neq G^{\prime}$ and for all $i \in[1 . . n]$
each $s_{i}^{\prime \prime} \in S_{i} \backslash S_{i}^{\prime}$ is strictly dominated in G by some $s_{i}^{\prime} \in S_{i}$.
Note: we do not require that all strictly dominated strategies are deleted.

Iterated Deletion and Nash Equilibria

Strict Elimination Lemma
Suppose that $G \rightarrow{ }_{S} G^{\prime}$. Then s is a Nash equilibrium of G^{\prime} iff it is a Nash equilibrium of G. Proof. Let

$$
G:=\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)
$$

and

$$
G^{\prime}:=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}, p_{1}, \ldots, p_{n}\right)
$$

(\Rightarrow) Suppose s is not a Nash equilibrium of G. Then for some $i \in[1 . . n]$ and $s_{i}^{\prime} \in S_{i}$

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}(s) .
$$

Choose s_{i}^{\prime} for which $p_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ attains the maximum. s_{i}^{\prime} is eliminated since s is a Nash equilibrium of G^{\prime}. So for some $s_{i}^{*} \in S_{i}$

$$
p_{i}\left(s_{i}^{*}, s_{-i}^{\prime \prime}\right)>p_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime \prime}\right) \text { for all } s_{-i}^{\prime \prime} \in S_{-i}
$$

In particular

$$
p_{i}\left(s_{i}^{*}, s_{-i}\right)>p_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

which contradicts the choice of s_{i}^{\prime}.

Iterated Deletion and Nash Equilibria, ctd

(\Leftarrow) For each player the set of his strategies in G^{\prime} is a subset of the set of his strategies in G.
So to prove that s is a Nash equilibrium of G^{\prime} it suffices to prove that no strategy constituting s is eliminated.
Suppose otherwise. Then some s_{i} is eliminated, so for some $s_{i}^{\prime} \in S_{i}$

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime \prime}\right)>p_{i}\left(s_{i}, s_{-i}^{\prime \prime}\right) \text { for all } s_{-i}^{\prime \prime} \in S_{-i} \text {. }
$$

In particular

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}, s_{-i}\right)
$$

so s is not a Nash equilibrium of

$$
\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)
$$

Iterated Deletion, ctd

- G^{\prime} is an outcome of an iterated elimination of strictly dominated strategies from the game G (IES) if for no game $G^{\prime \prime}, G^{\prime} \rightarrow_{S} G^{\prime \prime}$.
- G is solved by an iterated elimination of strictly dominated strategies if in G^{\prime} each player has just one strategy.

Theorem

Suppose that G^{\prime} is an outcome of an IES starting in the game G.
(i) Then s is a Nash equilibrium of G^{\prime} iff it is a Nash equilibrium of G.
(ii) If G is solved by an iterated elimination of strictly dominated strategies, then the resulting joint strategy is a unique Nash equilibrium of G.

Iterated Deletion, ctd

In other words,

- each Nash equilibrium of the initial game survives any iterated elimination of strictly dominated strategies,
- each Nash equilibrium of an outcome of an iterated elimination of strictly dominated strategies is also a Nash equilibrium of the initial game,
- if a game is solved by an iterated elimination of strictly dominated strategies, then the resulting joint strategy is its Nash equilibrium.

Proof.

(i) By the repeated application of the Strict Elimination Lemma.
(ii) Note that $\left(s_{1}, \ldots s_{n}\right)$ is a unique Nash equilibrium of the game $\left(\left\{s_{1}\right\}, \ldots,\left\{s_{n}\right\}, p_{1}, \ldots, p_{n}\right)$ Apply (i).

Strict Dominance Theorem

All iterated eliminations of strictly dominated strategies yield the same outcome.

Crucial tool: Newman's Lemma (1942).

- A a set, \rightarrow a binary relation on A.
\rightarrow^{*} : the transitive reflexive closure of \rightarrow.
- b is a \rightarrow-normal form of a if
$-a \rightarrow^{*} b$,
- no c exists such that $b \rightarrow c$.
- If each $a \in A$ has a unique normal form, then (A, \rightarrow) satisfies the unique normal form property.
- \rightarrow is weakly confluent if $\forall a, b, c \in A$

implies that for some $d \in A$

Consider (A, \rightarrow) such that

- no infinite \rightarrow sequences exist,
- \rightarrow is weakly confluent.

Then \rightarrow satisfies the unique normal form property.

Application to Strict Dominance

Observe:

- no infinite \rightarrow_{S} sequences exist.
- One can show that $\rightarrow S$ is weakly confluent.
- Conclusion: strict dominance is order independent.

Strict Dominance: Summary

- Elimination of strictly dominated strategies preserves Nash equilibria.
- An iterated elimination of strictly dominated strategies yields a unique outcome.

Consider a game $\left(S_{1}, \ldots, S_{n}, p_{1}, \ldots, p_{n}\right)$.

- A strategy s_{i}^{\prime} weakly dominates a strategy $s_{i}^{\prime \prime}$, or equivalently, a strategy $s_{i}^{\prime \prime}$ is weakly dominated by a strategy s_{i}^{\prime} if

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq p_{i}\left(s_{i}^{\prime \prime}, s_{-i}\right)
$$

for all $s_{-i} \in S_{-i}$, and

$$
p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}^{\prime \prime}, s_{-i}\right)
$$

for some $s_{-i} \in S_{-i}$.

- A strategy of player i is weakly dominant if it weakly dominates any other of his strategy.

Example

Consider

$$
\begin{array}{cccc}
& & \text { Two } & \\
& \text { Head } & \text { Tail } & \text { Edge } \\
\text { Head } & -1,1 & 1,-1 & -1,-1 \\
\text { One Tail } & 1,-1 & -1,1 & -1,-1 \\
& & & \\
\text { Edge } & -1,-1 & -1,-1 & -1,-1
\end{array}
$$

- No strategy is strictly dominated by another one. So the IES yields no change.
- (Edge, Edge) is its only Nash equilibrium,
- For each player Edge is the only strategy that is weakly dominated.
- Any form of elimination of the Edge strategies yields the Matching Pennies game that has no Nash equilibrium.
So during this eliminating process we 'lost' the only Nash equilibrium.

Partial Result

Define $G \rightarrow{ }_{W} G^{\prime}$ analogously as $G \rightarrow{ }_{S} G^{\prime}$.
Weak Elimination Lemma
Suppose that $G \rightarrow{ }_{W} G^{\prime}$. If s is a Nash equilibrium of G^{\prime}, then it is a Nash equilibrium of G.

Weak Dominance Theorem
Suppose that G^{\prime} is an outcome of an iterated elimination of weakly dominated strategies from the game G.
(i) If s is a Nash equilibrium of G^{\prime}, then it is a Nash equilibrium of G.
(ii) If G is solved by an iterated elimination of weakly dominated strategies, then the resulting joint strategy is a Nash equilibrium of G.

Problems with Order Independence

Consider

\[

\]

One M 1,1 0,0

$$
\begin{array}{lll}
\text { B } & 0,0 & 1,1
\end{array}
$$

1. Eliminate B first:

> | | Two | |
| :---: | :---: | :---: |
| | L | R |
| T | 3,2 | 2,2 |

One
M $1,1 \quad 0,0$
Now L weakly dominates R and T strictly dominates M, so we get:

Two
L
One T 3,2

Problems with Order Independence, ctd

2. Eliminate first M:

\[

\]

One

$$
\text { B } \quad 0,0 \quad 1,1
$$

Now R weakly dominates L and T strictly dominates B:

Two R

One T 2,2
3. Eliminate first both M and B :

\[

\]

One T 3,2 2,2
So three different outcomes were produced.

Weak Dominance: Summary

- Elimination of weakly dominated strategies can lead to a deletion of Nash equilibria.
- An iterated elimination of weakly dominated strategies does not yield a unique outcome.

