Homework 7 Due 12/5/07

1. Consider the following Kripke structure.

For each formula below, list the states where the formula is true.

- (a) $\Box A \rightarrow \Box \Box A$
- (b) $\Box \Box A \rightarrow \Box A$
- (c) $\diamond(\diamond A \land \diamond B)$
- (d) $\Diamond \Box (A \land \neg A)$
- (e) $\Box(\Box A \to A) \to \Box A$
- 2. Using $\Box P$ to mean "the agent knows P" and $\diamond P$ to mean "it is consistent with what the agent knows that P", translate the following sentences:
 - (a) If P is true, then it is consistent with what the agent knows that she knows P.
 - (b) If the agent knows P, then it is consistent with what the agent knows that she knows P
 - (c) If it is consistent with what the agent knows that P and consistent with what the agent knows that Q, then it is consistent with what the agent knows that P and Q.

Which of these seem plausible principles concerning knowledge and possibility?

- 3. Consider the following two formula:
 - (a) $\Box(\Box P \rightarrow P)$
 - (b) $\Box P \rightarrow \Diamond P$

For each formula, give an interpretation in English for each of the Alethic, Deontic and Epistemic interpretations of modal logic. For each interpretation, argue whether the formula under consideration is a plausible principle.

4. Recall Aristotle's sea battle argument:

"If I give the order to attack, then, necessarily, there will be a sea battle tomorrow. If not, then, necessarily, there will not be one. Now, I give the order or I do not. Hence, either it is necessary that there is a sea battle tomorrow or it is necessary that none occurs."

In class we gave two ways to formalize this argument:

$A \to \Box B$	$\Box(A \to B)$
$A \to \Box \neg B$	$\Box(A \to \neg B)$
$A \vee \neg A$	$A \vee \neg A$
$\Box B \lor \Box \neg B$	$\Box B \lor \Box \neg B$

Explain (informally) whether each argument is valid.

5. Recall the argument that $\Box P \land \Box Q \rightarrow \Box (P \land Q)$ is true at any state in any Kripke structure:

Suppose that $\Box P \land \Box Q$ true at a state w in a Kripke structure. Then both $\Box P$ and $\Box Q$ is true at w. This means that in all accessible worlds, P is true and it is the case that in all accessible worlds Q is true. Therefore, in all accessible worlds both P and Q are true. Hence, $\Box (P \land Q)$ is true at w.

Give a similar argument that $(\Box(P \to Q) \land \Box P) \to \Box Q$ is true at any state in any Kripke structure. What about the formula $\diamond(P \to Q) \land \diamond P) \to \diamond Q$?

6. Read the two articles "Intelligent Interaction: dynamic trends in today's logic" and "Logic, Rational Agency, and Intelligent Interaction" by Johan van Benthem (available on the course website).