An Invitation to Modal Logic: Lecture 4

Philosophy 150

Eric Pacuit

Stanford University ai.stanford.edu/~epacuit

December 3, 2007

Plan

- √ Motivating Examples
- √ Formalizing the muddy children puzzle, Introduction to Modal Logic
- √ More about truth of modal formulas
- 12/3: Focus on Epistemic Logic.Digression: A small experiment.
- 12/5: Multiagent Epsitemic Logic, Dynamics in Logic
- 12/7: Dynamics in Logic II

Plan for Today

First half of the lecture: Epsitemic Logic.

Second half of the lecture: a small experiment.

Language: The modal language extends a propositional language with formulas of the form $\Box P$ and $\Diamond P$.

Language: The modal language extends a propositional language with formulas of the form $\Box P$ and $\Diamond P$.

- ► The modal language can formalize natural language sentences involving modalities (eg. knows, believes, necessary, etc.).
- ► The modal language expresses properties of relational structures.

Language: The modal language extends a propositional language with formulas of the form $\Box P$ and $\Diamond P$.

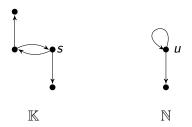
- ► The modal language can formalize natural language sentences involving modalities (eg. knows, believes, necessary, etc.).
- ► The modal language expresses properties of relational structures.

Semantics: A Kripke structure, or more generally relational structures, is a set W of states with a relation R on W.

Language: The modal language extends a propositional language with formulas of the form $\Box P$ and $\Diamond P$.

- ► The modal language can formalize natural language sentences involving modalities (eg. knows, believes, necessary, etc.).
- ► The modal language expresses properties of relational structures.

Semantics: A Kripke structure, or more generally relational structures, is a set W of states with a relation R on W.


Truth:

- $w \models \Box P$ iff for all v, if wRv then $v \models P$
- $w \models \Diamond P$ iff there exists v such that wRv and $v \models P$.

Two issues to remember

1. Modal formulas are interpreted locally.

No modal formula can distinguish between s and u.

Can you think of a first-order formula that can distinguish the Kripke structures?

Two issues to remember

1. Modal formulas are interpreted locally.

- Modal logic can express interesting properties of Kripke structures.
 - $\Box P \rightarrow P$ corresponds to the reflexivity property.
 - $\Box P \rightarrow \Box \Box P$ corresponds to the transitivity property.

Next lecture: Dynamics in logic.

Questions?

Email: epacuit@stanford.edu

Website: ai.stanford.edu/~epacuit

Office: Gates 258